Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Toxins (Basel) ; 16(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393164

RESUMO

Cattle are the primary reservoir for STEC O157, with some shedding >104 CFU/g in feces, a phenomenon known as super-shedding (SS). The mechanism(s) responsible for SS are not understood but have been attributed to the environment, host, and pathogen. This study aimed to compare genetic characteristics of STEC O157 strains from cattle in the same commercial feedlot pens with SS or low-shedding (LS) status. Strains from SS (n = 35) and LS (n = 28) collected from 11 pens in three feedlots were analyzed for virulence genes, Shiga toxin-carrying bacteriophage insertion sites, and phylogenetic relationships. In silico analysis showed limited variation regarding virulence gene profiles. Stx-encoding prophage insertion sites mrlA and wrbA for stx1a and stx2a, respectively, were all occupied, but two isolates had fragments of the stx-carrying phage in mrlA and wrbA loci without stx1a and stx2a. All strains screened for lineage-specific polymorphism assay (LSPA-6) were 111111, lineage I. Of the isolates, 61 and 2 were clades 1 and 8, respectively. Phylogenetic analysis revealed that pens with more than one SS had multiple distantly related clusters of SS and LS isolates. Although virulence genes and lineage were largely similar within and across feedlots, multiple genetic origins of strains within a single feedlot pen illustrate challenges for on-farm control of STEC.


Assuntos
Bacteriófagos , Doenças dos Bovinos , Infecções por Escherichia coli , Escherichia coli O157 , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Filogenia , Toxina Shiga/genética , Virulência/genética , Bacteriófagos/genética , Infecções por Escherichia coli/veterinária , Fezes
2.
Front Nutr ; 9: 855115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464018

RESUMO

The growth of spoilage and pathogenic bacteria during storage represents significant losses in marketing raw milk cheeses. Thus, reducing NaCl in these products is challenging, as sodium has a critical antimicrobial role. Despite advances in non-thermal technologies, the short shelf life still limits the availability of raw goat cheese. Thus, combined preservation methods can be promising because their synergies can extend shelf life more effectively. In this context, Principal Component Analysis (PCA) was applied to variables to investigate the effect of pequi waste extract (PWE), a native Brazilian fruit, combined with UV-C radiation (CEU) and vacuum packaging (CEV) on the preservation of low-sodium raw goat cheese. CEV samples had lower loadings for Staphylococcus subsp. and Enterobacteriaceae than other treatments in PC2, having a count's reduction up to 3-fold (P < 0.05) compared to vacuum alone. In contrast, CEU showed an increase of up to 1.2-fold on staphylococcal count compared to UV-C alone. Still, the addition of PWE to UV-C-treated cheeses resulted in 8.5% protein loss. Furthermore, PWE, especially in CEV, delayed post-acidification during storage. It made CEV up to 4.5 and 1.6-fold more stable for color and texture, respectively than vacuum alone. These data strongly suggest that PWE may be a novel and promising synergistic agent in the microbial and physicochemical preservation of low-sodium raw milk cheese when combined with the vacuum.

3.
J Dairy Sci ; 104(6): 6535-6547, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33741165

RESUMO

The presence of pathogenic Shiga toxin-producing Escherichia coli (STEC) in dairy products represents a public health concern because of its ability to produce the toxins Stx1 and Stx2, which cause intestinal diseases. Monitoring the stages of milk production and checking dairy products for contamination are crucial steps to ensure dairy safety. This study aimed to report the occurrence of thermotolerant coliforms, E. coli, and STEC strains in pasteurized dairy products and to evaluate the antibiotic resistance profiles, serotypes, and characterizations of the STEC isolates by pulsed-field gel electrophoresis. We obtained a total of 138 pasteurized dairy products from 15 processing plants in Bahia, Brazil, to examine coliforms, E. coli, and STEC strains. We found that 43% of samples (59/138) contained thermotolerant coliforms, and 30% (42/138) did not comply with Brazilian regulations. Overall, 6% (9/138) were positive for E. coli and 4% (5/138) were positive for STEC. We recovered 9 STEC isolates from pasteurized cream (2/9), Minas Padrão cheese (2/9), Minas Frescal cheese (4/9), and ricotta (1/9). All isolates were stx2-positive, and 2 were eae-positive. All isolates were negative for the "big 6" STEC serogroups, belonging instead to serotypes ONT:HNT, ONT:H12, O148:H-, OR:H40, OR:HNT, and O148:HNT. Pulsed-field gel electrophoresis revealed 100% genetic similarity among 3 isolates from 2 different samples produced in the same production facility, which may suggest cross-contamination. As well, we found isolates that were 98% similar but in samples produced in different production facilities, suggesting a mutual source of contamination or a circulating strain. Two STEC strains exhibited resistance to streptomycin. Although the isolates presented a low resistance profile and no strain belonged to the "big 6" pathogenic group, the circulation of stx2-positive STEC strains in ready-to-eat products highlights the importance of epidemiological surveillance inside the Brazilian dairy chain.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Brasil , Laticínios , Infecções por Escherichia coli/veterinária , Sorotipagem/veterinária , Escherichia coli Shiga Toxigênica/genética
4.
Meat Sci ; 172: 108308, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32966953

RESUMO

This study aimed to test the effect of UV-C light (0.01-0.64 J/cm2) (UV) and lactic acid (0.1-12.9%) (LA) combined treatment on sliced Brazilian dry-cured loin (Socol, BDL) for (i) Salmonella Typhimurium reduction, (ii) physicochemical changes (color (a*, cured color, and ΔE), protein and lipid oxidation) and (iii) optimization using response surface methodology (RSM). Linear inactivation rate was achieved and UV was 2-fold more efficient than LA to inactivate S. Typhimurium. At the same time these combined technologies increased lipid (linear rate, R2adj = 0.88), protein oxidation (quadratic rate, R2adj = 0.86) and meat discoloration. Furthermore, the minimum point of the physicochemical changes was obtained using RSM, and the decontamination process was optimized. Hence, a reduction of 1.3 log cfu/g was achieved using 0.36 J/cm2 of UV and 7.7% of LA. These combined methods represent a promising industrial intervention strategy to dry-meat safety and quality.


Assuntos
Ácido Láctico/farmacologia , Produtos da Carne/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/efeitos da radiação , Raios Ultravioleta , Animais , Cor , Descontaminação/métodos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Produtos da Carne/análise , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Suínos
5.
Curr Microbiol ; 77(4): 612-620, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31834432

RESUMO

The main Enterobacteriaceae habitat is the mammal gastrointestinal tract. In most cases, this group of species displays a symbiotic relationship with its hosts. However, some groups may be pathogenic to humans, such as Shiga toxin-producing Escherichia coli and enteroaggregative Escherichia coli. The presence of these groups represents a direct risk to consumers, and recent serotypes displaying the presence of pathogenic genes in both groups are a novel challenge for food production. Thus, microbiological control strategies presenting accurate detection methodologies are required. However, with the appearance of mutations among different species, knowledge, genetic monitoring, and bioinformatics techniques must be expanded. In addition, as a strategy to ensure safe products on an industrial scale, the monitoring by different techniques and fundamentals should be applied throughout the entire processing chain. Therefore, the aim of this review is to describe the pathogenesis mechanisms of different groups, mutant strain dispersion, and current and alternative epidemiological investigation methods.


Assuntos
Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/epidemiologia , Escherichia coli/patogenicidade , Doenças Transmitidas por Alimentos/microbiologia , Escherichia coli Shiga Toxigênica/patogenicidade , Animais , Surtos de Doenças/prevenção & controle , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Mutação , Filogenia , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Virulência
6.
Foods ; 8(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766476

RESUMO

This study assessed if exposure of foodborne Salmonella enterica in Brazilian dry-cured loin (BDL) affects pathogen inactivation in simulated gastric fluid (SGF). The acid tolerance responses of three Salmonella enterica serovars, Typhimurium, Derby and Panama, were assessed by an acid challenge trial at pH 3.0 for 4 h following pre-adaptation to three conditions: neutral pH, acidic pH (4.5) or BDL matrix. The influence of Salmonella exposure temperature and time in the BDL on pathogen gastric fluid resistance was evaluated by the response surface methodology. The Salmonella serovars acquired acid tolerance when exposed to the BDL matrix and their response to acid stress was strain-dependent, with S. Typhimurium being the most tolerant strain. S. Typhimuirum exposed to temperatures >25 °C in the BDL matrix displayed increased resistance to SGF. By using the response surface methodology, it was determined that S. Typhimurium becomes less resistant against SGF if maintained in the BDL matrix at temperatures <7 °C, reinforcing the recommendation to store dry-cured meat under refrigeration in order to minimize consumer risks. The results presented herein point to a novel aspect of hurdle technology that should be taken into account to further understand the risks associated with hurdle-stable meat product, such as dry-cured meats, concerning foodborne pathogen contamination.

7.
J Dairy Sci ; 102(4): 2966-2972, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30712936

RESUMO

Sodium chloride reduction in foods is a significant focus of the dairy industry; however, it can interfere with dairy product quality. Thus, researchers have carried out studies on alternatives to maintain dairy product safety when presenting reduced NaCl content, such as natural antimicrobial addition. Caryocar brasiliense (pequi) is a fruit with high phenolic compound concentrations in the pulp and peel and known antioxidant and antimicrobial properties. This study aimed to define the optimum stage for pequi waste extract addition during cheese manufacturing in order to maintain and prolong the shelf life of reduced-sodium goat Minas Frescal cheese. Four different goat Minas Frescal cheese treatments were carried out: control cheese (without extract; CC), pequi extract addition to milk (CM), pequi extract addition to mass (CS), and cheese immersion in pequi extract (CIE). The treatments were subjected to microbiological (Staphylococcus spp., Escherichia coli, Enterobacteriaceae, coliforms and fecal coliforms, Lactococcus spp., and lactic acid bacteria counts), textural (hardness and consistency), and instrumental color (luminosity, yellow intensity, red intensity, chroma, hue angle, and total color change) analyses. No Enterobacteriaceae, Staphylococcus spp., E. coli, or coliforms and fecal coliforms were detected during storage for any of the assessed samples, including CC. Regarding texture, all samples presented a trend for decreasing rigidity during storage. In addition, lower luminosity values were also observed in cheeses produced with added pequi extract (CM, CS, and CIE) when compared with CC. All cheeses produced with added pequi were stable regarding all evaluated parameters; however, pequi extract addition to milk (CM) was shown to be more efficient, leading to higher textural parameters and better microbiological quality during storage. Thus, the CM treatment is the most recommended for pequi waste extract addition during Minas Frescal cheese manufacture.


Assuntos
Anti-Infecciosos/farmacologia , Queijo/microbiologia , Malpighiales/química , Leite/microbiologia , Extratos Vegetais/farmacologia , Animais , Indústria de Laticínios , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli , Cabras , Lactobacillales , Lactococcus/efeitos dos fármacos , Leite/química , Cloreto de Sódio/análise , Staphylococcus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA