Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Infect Control ; 47(3): 243-250, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442443

RESUMO

BACKGROUND: The health care community is increasingly aware of the processing challenges and infection risks associated with duodenoscopes owing to published reports of outbreaks and regulatory recalls. Studies have demonstrated that the current practices are inadequate for consistently producing patient-ready endoscopes. Alternatively, terminal sterilization would offer a greater margin of safety and potentially reduce the risk of patient infection. The purpose of this study was to evaluate the efficacy of a hydrogen peroxide-ozone sterilizer with regulatory clearance for terminal sterilization of duodenoscopes. METHODS AND RESULTS: Validation studies were performed under laboratory simulated-use and clinical in-use conditions. The overkill method study demonstrated a reduction of at least 6-log of Geobacillus stearothermophilus spores at half-cycle, providing a sterility assurance level of 10-6. In addition, the sterilizer achieved a 6-log reduction of G stearothermophilus in the presence of inorganic and organic soils in a simulated-use study. The clinical in-use study confirmed that the sterilizer achieved sterilization of patient-soiled duodenoscopes under actual use conditions. CONCLUSIONS: Simulated-use and clinical in-use studies demonstrated the efficacy of a hydrogen peroxide-ozone sterilizer for terminal sterilization of duodenoscopes. This offers health care facilities a viable alternative for duodenoscope processing to enhance patient safety as part of a comprehensive infection control strategy.


Assuntos
Anti-Infecciosos Locais/farmacologia , Duodenoscópios/microbiologia , Peróxido de Hidrogênio/farmacologia , Controle de Infecções/métodos , Ozônio/farmacologia , Esterilização/métodos , Infecção Hospitalar/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Geobacillus stearothermophilus/isolamento & purificação , Humanos
2.
Biomed Pharmacother ; 64(10): 723-32, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21106331

RESUMO

Previous investigations showing that polydisperse biguanide (PDBG) molecules have activity against human immunodeficiency virus type 1 (HIV-1) also suggested a relationship between PDBG biologic activity and the lengths of hydrocarbon linkers surrounding the positively charged biguanide unit. To better define structure-activity relationships, PDBG molecules with select linker lengths were evaluated for cytotoxicity, anti-HIV-1 activity, and in vivo toxicity. Results of the in vitro experiments demonstrated that increases in linker length (and, therefore, increases in compound lipophilicity) were generally associated with increases in cytotoxicity and antiviral activity against HIV-1. However, a relationship between linker length asymmetry and in vitro therapeutic index (TI) suggested structural specificity in the mechanism of action against HIV-1. Polyethylene hexamethylene biguanide (PEHMB; biguanide units spaced between alternating ethylene and hexamethylene linkers) was found to have the highest in vitro TI (CC50/IC50) among the compounds examined. Recent improvements in PEHMB synthesis and purification have yielded preparations of PEHMB with in vitro TI values of 266 and 7000 against HIV-1 strains BaL and IIIB, respectively. The minimal toxicity of PEHMB relative to polyhexamethylene biguanide (PHMB; biguanide units alternating with hexamethylene linkers) in a murine model of cervicovaginal microbicide toxicity was consistent with considerable differences in cytotoxicity between PEHMB and PHMB observed during in vitro experiments. These structure-activity investigations increase our understanding of PDBG molecules as agents with activity against HIV-1 and provide the foundation for further preclinical studies of PEHMB and other biguanide-based compounds as antiviral and microbicidal agents.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Biguanidas/química , Biguanidas/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Animais , Fármacos Anti-HIV/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biguanidas/síntese química , Linhagem Celular , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Camundongos , Modelos Animais , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Polietilenos/química , Polietilenos/farmacologia , Relação Estrutura-Atividade
3.
Antimicrob Agents Chemother ; 50(2): 713-23, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16436731

RESUMO

The first product to be clinically evaluated as a microbicide contained the nonionic surfactant nonoxynol-9 (nonylphenoxypolyethoxyethanol; N-9). Many laboratories have used N-9 as a control compound for microbicide assays. However, no published comparisons of the results among laboratories or attempts to establish standardized protocols for preclinical testing of microbicides have been performed. In this study, we compared results from 127 N-9 toxicity and 72 efficacy assays that were generated in five different laboratories over the last six years and were performed with 14 different cell lines or tissues. Intra-assay reproducibility was measured at two-, three-, and fivefold differences using standard deviations. Interassay reproducibility was assessed using general linear models, and interaction between variables was studied using step-wise regression. The intra-assay reproducibility within the same N-9 concentration, cell type, assay duration, and laboratory was consistent at the twofold level of standard deviations. For interassay reproducibility, cell line, duration of assay, and N-9 concentration were all significant sources of variability (P < 0.01). Half-maximal toxicity concentrations for N-9 were similar between laboratories for assays of similar exposure durations, but these similarities decreased with lower test concentrations of N-9. Results for both long (>24 h) and short (<2 h) exposures of cells to N-9 showed variability, while assays with 4 to 8 h of N-9 exposure gave results that were not significantly different. This is the first analysis to compare preclinical N-9 toxicity levels that were obtained by different laboratories using various protocols. This comparative work can be used to develop standardized microbicide testing protocols that will help advance potential microbicides to clinical trials.


Assuntos
Fármacos Anti-HIV/farmacologia , Anti-Infecciosos/farmacologia , Nonoxinol/farmacologia , Linhagem Celular , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Replicação Viral/efeitos dos fármacos
4.
Biomed Pharmacother ; 59(8): 460-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16154719

RESUMO

Comparative assays of in vitro cytotoxicity using nonoxynol-9 (N-9) and the candidate microbicides C31G and sodium dodecyl sulfate (SDS) demonstrated that these agents, which are, respectively, characterized as nonionic, amphoteric, and anionic surfactants, differed in their concentration-dependent effects on cell viability, especially after prolonged exposure. We hypothesized that differences in cellular sensitivity may have been due, in part, to cellular changes induced by long-term exposure to each agent. To examine this possibility, HeLa cells were exposed to N-9, C31G, or SDS for extended periods of time and subsequently reassessed for sensitivity to each of these agents. Following 10 continuous days of C31G exposure, HeLa cells were less sensitive to a subsequent C31G exposure compared to cells that had not undergone long-term C31G treatment. Interestingly, long-term C31G exposure also changed subsequent sensitivity to N-9 but not SDS. In contrast, prolonged exposure to either N-9 or SDS did not reduce sensitivity to re-exposure. The effect of long-term C31G exposure was both concentration-dependent and transient, as treated cells reverted to pre-exposure sensitivity in a time-dependent manner following the cessation of C31G exposure. Lipid analyses of cells exposed to C31G for extended durations revealed altered phospholipid profiles relative to C31G-naïve cells. Experiments examining the individual components of C31G demonstrated the involvement of the amine oxide moiety in reductions in cellular sensitivity. These studies, which provide new information concerning the cytotoxicity of surfactant microbicides, suggest that cervicovaginal epithelial cells may have greater in vivo tolerance for products containing C31G through unique interactions between C31G and components of the cellular membranes.


Assuntos
Anti-Infecciosos/farmacologia , Betaína/análogos & derivados , Tolerância a Medicamentos , Ácidos Graxos Insaturados/farmacologia , Aminas/química , Aminas/farmacologia , Anti-Infecciosos/química , Betaína/química , Betaína/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos Insaturados/química , Células HeLa , Humanos , Lipídeos de Membrana/metabolismo , Nonoxinol/farmacologia , Dodecilsulfato de Sódio/farmacologia , Fatores de Tempo
5.
Biomed Pharmacother ; 59(8): 430-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16154721

RESUMO

C31G, which has potent activity against the human immunodeficiency virus type 1 (HIV-1) and an established record of safety in animal studies and human trials, is a microbicidal agent comprised of a buffered equimolar mixture of two amphoteric, surface-active agents: an alkyl amine oxide (C14AO) and an alkyl betaine (C16B). Studies of long-term in vitro exposure to C31G and its constituents have suggested that the components of C31G may contribute differentially to its toxicity and efficacy. In the present studies, in vitro assays of cytotoxicity and anti-HIV-1 activity demonstrated that C16B was slightly less cytotoxic compared to either C31G or C14AO, whereas the anti-HIV-1 activities of C31G and its individual constituents were similar. In the murine model of cervicovaginal microbicide toxicity, in vivo exposure to C14AO resulted in severe cervical inflammation followed by a delayed disruption of the columnar epithelium. In contrast, exposure to C16B caused severe cervical epithelial disruption and a secondary, less intense inflammatory response. These results demonstrate that (i) there are both mechanistic and temporal differences in toxicity associated with the components of C31G not necessarily predicted by in vitro assessments of cytotoxicity and (ii) contributions of each component to the anti-HIV-1 activity of C31G appear to be equal. In addition, these findings indicate that direct and indirect mechanisms of in vivo toxicity can be observed as separate but interrelated events. These results provide further insight into the activity of C31G, as well as mechanisms potentially associated with microbicide toxicity.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/toxicidade , Betaína/análogos & derivados , Colo do Útero/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/toxicidade , HIV-1/efeitos dos fármacos , Administração Intravaginal , Aminas/química , Aminas/farmacologia , Aminas/toxicidade , Animais , Fármacos Anti-HIV/química , Betaína/química , Betaína/farmacologia , Betaína/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colo do Útero/patologia , Relação Dose-Resposta a Droga , Ácidos Graxos Insaturados/química , Feminino , Humanos , Inflamação , Camundongos , Modelos Animais , Mucosa/efeitos dos fármacos , Mucosa/patologia
6.
Antimicrob Agents Chemother ; 49(4): 1509-20, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15793133

RESUMO

C31G is currently the focus of clinical trials designed to evaluate this agent as a microbicidal and spermicidal agent. In the following studies, the in vivo safety of C31G was assessed with a Swiss Webster mouse model of cervicovaginal toxicity and correlated with results from in vitro cytotoxicity experiments and published clinical observations. A single exposure of unformulated 1% C31G resulted in mild-to-moderate epithelial disruption and inflammation at 2 and 4 h postapplication. The columnar epithelium of the cervix was the primary site of damage, while no perturbation of the vaginal mucosa was observed. In contrast, application of unformulated 1.7% C31G resulted in greater levels of inflammation in the cervical epithelium at 2 h postapplication and severe epithelial disruption that persisted to 8 h postapplication. Application of a nonionic aqueous gel formulation containing 1% C31G resulted in no apparent cervicovaginal toxicity at any time point evaluated. However, formulation of 1.7% C31G did not substantially reduce the toxicity associated with unformulated C31G at that concentration. These observations correlate with findings gathered during a recent clinical trial, in which once-daily applications resulted in no adverse events in women receiving the formulation containing 1% C31G, compared to moderate-to-severe adverse events in 30% of women receiving the 1.7% C31G formulation. The Swiss Webster mouse model was able to effectively discriminate between concentrations and formulations of C31G that produced distinct clinical effects in human trials. The Swiss Webster animal model may be a highly valuable tool for preclinical evaluation of candidate vaginal microbicides.


Assuntos
Betaína/análogos & derivados , Betaína/efeitos adversos , Colo do Útero/efeitos dos fármacos , Ácidos Graxos Insaturados/efeitos adversos , Nonoxinol/efeitos adversos , Vagina/efeitos dos fármacos , Administração Intravaginal , Animais , Anti-Infecciosos Locais , Betaína/administração & dosagem , Betaína/toxicidade , Linhagem Celular , Colo do Útero/citologia , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/toxicidade , Feminino , Células HeLa , Humanos , Camundongos , Nonoxinol/administração & dosagem , Nonoxinol/toxicidade , Vagina/citologia , Cremes, Espumas e Géis Vaginais/administração & dosagem , Cremes, Espumas e Géis Vaginais/efeitos adversos , Cremes, Espumas e Géis Vaginais/toxicidade
7.
Antimicrob Agents Chemother ; 48(5): 1614-23, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15105112

RESUMO

Evidence indicates that galactosyl ceramide (GalCer) and its 3'-sulfated derivative, sulfatide (SGalCer), may act as alternate coreceptors for human immunodeficiency virus type 1 (HIV-1) in CD4(-) cells. Glycosphingolipids (GSLs) may also be necessary for fusion of HIV-1 and host cell membranes. Using an enzyme-linked immunosorbent assay to determine which GSL was the best ligand for both recombinant and virus-associated gp120, we found that SGalCer was the best ligand for each rgp120 and HIV-1 isolate tested. Therefore, novel multivalent glycodendrimers, which mimic the carbohydrate clustering reportedly found in lipid rafts, were synthesized based on the carbohydrate moiety of SGalCer. Here we describe the synthesis of a polysulfated galactose functionalized, fifth generation DAB dendrimer (PS Gal 64mer), containing on average two sulfate groups per galactose residue. Its ability to inhibit HIV-1 infection of cultured indicator cells was compared to that of dextran sulfate (DxS), a known, potent, binding inhibitor of HIV-1. The results indicate that the PS Gal 64mer inhibited infection by the HIV-1 isolates tested as well as DxS.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Galactosídeos/síntese química , Galactosídeos/farmacologia , Infecções por HIV/prevenção & controle , HIV-1 , Poliaminas/síntese química , Poliaminas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sulfato de Dextrana/farmacologia , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/virologia , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Sulfoglicoesfingolipídeos/farmacologia
8.
Antimicrob Agents Chemother ; 48(5): 1837-47, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15105142

RESUMO

Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.


Assuntos
Anti-Infecciosos Locais/toxicidade , Colo do Útero/patologia , Vagina/patologia , Vaginite/induzido quimicamente , Administração Intravaginal , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Anti-Infecciosos Locais/administração & dosagem , Linhagem Celular , Células Cultivadas , Colo do Útero/efeitos dos fármacos , Feminino , Queratinócitos/efeitos dos fármacos , Camundongos , Nonoxinol/administração & dosagem , Nonoxinol/efeitos adversos , Vagina/efeitos dos fármacos , Cremes, Espumas e Géis Vaginais/administração & dosagem , Cremes, Espumas e Géis Vaginais/toxicidade , Vaginite/patologia
9.
Antimicrob Agents Chemother ; 46(7): 2292-8, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12069993

RESUMO

In experiments to assess the in vitro impact of the candidate microbicides nonoxynol 9 (N-9), C31G, and sodium dodecyl sulfate (SDS) on human immune and epithelial cell viability, cell lines and primary cell populations of lymphocytic and monocytic origin were generally shown to be equally sensitive to exposures ranging from 10 min to 48 h. However, U-937 cells were more sensitive to N-9 and C31G after 48 h than were primary monocyte-derived macrophages. Cytokine activation of monocytes and lymphocytes had no effect on cell viability following exposure to these microbicidal compounds. Primary and passaged vaginal epithelial cultures and cell lines differed in sensitivity to N-9 and C31G but not SDS. These studies provide a foundation for in vitro experiments in which cell lines of human immune and epithelial origin can be used as suitable surrogates for primary cells to further investigate the effects of microbicides on cell metabolism, membrane composition, and integrity and the effects of cell type, proliferation, and differentiation on microbicide sensitivity.


Assuntos
Betaína/análogos & derivados , Betaína/farmacologia , Ácidos Graxos Insaturados/farmacologia , Nonoxinol/farmacologia , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células HeLa , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Vagina/citologia , Vagina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA