RESUMO
Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Resistencia a Medicamentos Antineoplásicos , Melanoma , Inibidores de Proteínas Quinases , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Animais , Camundongos , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , FemininoRESUMO
AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.
Assuntos
Proteínas Serina-Treonina Quinases , Fuso Acromático , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Ciclo Celular , Células HeLa , Proteína Quinase CDC2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
BACKGROUND: Medulloblastoma (MB) is the most common cerebellar malignancy during childhood. Among MB, MYC-amplified Group 3 tumors display the worst prognosis. MYC is an oncogenic transcription factor currently thought to be undruggable. Nevertheless, targeting MYC-dependent processes (i.e. transcription and RNA processing regulation) represents a promising approach. METHODS: We have tested the sensitivity of MYC-driven Group 3 MB cells to a pool of transcription and splicing inhibitors that display a wide spectrum of targets. Among them, we focus on THZ531, an inhibitor of the transcriptional cyclin-dependent kinases (CDK) 12 and 13. High-throughput RNA-sequencing analyses followed by bioinformatics and functional analyses were carried out to elucidate the molecular mechanism(s) underlying the susceptibility of Group 3 MB to CDK12/13 chemical inhibition. Data from International Cancer Genome Consortium (ICGC) and other public databases were mined to evaluate the functional relevance of the cellular pathway/s affected by the treatment with THZ531 in Group 3 MB patients. RESULTS: We found that pharmacological inhibition of CDK12/13 is highly selective for MYC-high Group 3 MB cells with respect to MYC-low MB cells. We identified a subset of genes enriched in functional terms related to the DNA damage response (DDR) that are up-regulated in Group 3 MB and repressed by CDK12/13 inhibition. Accordingly, MYC- and CDK12/13-dependent higher expression of DDR genes in Group 3 MB cells limits the toxic effects of endogenous DNA lesions in these cells. More importantly, chemical inhibition of CDK12/13 impaired the DDR and induced irreparable DNA damage exclusively in MYC-high Group 3 MB cells. The augmented sensitivity of MYC-high MB cells to CDK12/13 inhibition relies on the higher elongation rate of the RNA polymerase II in DDR genes. Lastly, combined treatments with THZ531 and DNA damage-inducing agents synergically suppressed viability of MYC-high Group 3 MB cells. CONCLUSIONS: Our study demonstrates that CDK12/13 activity represents an exploitable vulnerability in MYC-high Group 3 MB and may pave the ground for new therapeutic approaches for this high-risk brain tumor.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Regulação para Cima , Anilidas , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Proteína Quinase CDC2 , Quinases Ciclina-Dependentes/genéticaRESUMO
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinases/genética , Mitose , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Segregação de Cromossomos , Neoplasias/tratamento farmacológico , Neoplasias/genéticaRESUMO
BACKGROUND: AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population. RESULTS: We demonstrated that the silencing of the ambra1b gene determines a reduction of primordial germ cells (PGCs), a condition that, in the zebrafish, leads to the development of all-male progeny. PGC reduction was confirmed by knockdown experiments and rescued by injection of ambra1b and human AMBRA1 mRNAs, but not ambra1a mRNA. Moreover, PGC loss was not rescued by injection with human AMBRA1 mRNA mutated in the CUL4-DDB1 binding region, thus suggesting that interaction with this complex is involved in PGC protection from loss. Results from zebrafish embryos injected with murine Stat3 mRNA and stat3 morpholino suggest that Ambra1b could indirectly regulate this protein through CUL4-DDB1 interaction. According to this, Ambra1+/- mice showed a reduced Stat3 expression in the ovary together with a low number of antral follicles and an increase of atretic follicles, indicating a function of Ambra1 in the ovary of mammals as well. Moreover, in agreement with the high expression of these genes in the testis and ovary, we found significant impairment of the reproductive process and pathological alterations, including tumors, mainly limited to the gonads. CONCLUSIONS: By exploiting ambra1a and ambra1b knockout zebrafish lines, we prove the sub-functionalization between the two paralogous zebrafish genes and uncover a novel function of Ambra1 in the protection from excessive PGC loss, which seems to require binding with the CUL4-DDB1 complex. Both genes seem to play a role in the regulation of reproductive physiology.
Assuntos
Diferenciação Sexual , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Reprodução , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Assuntos
Apoptose , Caspases , Animais , Humanos , Apoptose/genética , Morte Celular , Caspases/genética , Caspases/metabolismo , Carcinogênese , Mamíferos/metabolismoRESUMO
Glucosylceramide synthase (GCS) is an enzyme that catalyzes the first reaction of ceramide glycosylation in sphingolipid metabolism. It represents a primary target in the pharmacological treatment of some lysosomal storage diseases (LSDs), such as Gaucher and Niemann-Pick syndromes. In this study, starting from the model reported in the AlphaFold Protein Structure Database, the location and conformations of GCS substrates and cofactors have been provided by a step-by-step in silico procedure, by which the functional manganese ion and the substrates have been inserted in the GCS structure through combined molecular docking and full-atomistic molecular dynamics approaches, including metadynamics. A detailed analysis by structural dynamics of the complete model system, i.e., the enzyme anchored to the plasma membrane, containing the manganese ion and the two substrates, has been carried out to identify its complex conformational landscape by means of well-tempered metadynamics. A final structure was selected, in which both substrates were present in the active site of the enzyme at minimum distance, thus giving support to a SNi-type reaction mechanism for catalysis. Asp236, Glu235, and Asp144 are found to interact with the metal cofactor, which is able to trap the phosphates of UDP-glucose, while Gly210, Trp276, and Val208 cooperate to provide its correct orientation. Phe205, Cys207, Tyr237, and Leu284 form a pocket for the polar head of the ceramide, which is transiently placed in position to determine the catalytic event, when His193 interacts with the head of the ceramide, thus anchoring the substrate to the active site.
RESUMO
BACKGROUND: Loss of Ambra1 (autophagy and beclin 1 regulator 1), a multifunctional scaffold protein, promotes the formation of nevi and contributes to several phases of melanoma development. The suppressive functions of Ambra1 in melanoma are mediated by negative regulation of cell proliferation and invasion; however, evidence suggests that loss of Ambra1 may also affect the melanoma microenvironment. Here, we investigate the possible impact of Ambra1 on antitumor immunity and response to immunotherapy. METHODS: This study was performed using an Ambra1-depleted BrafV600E /Pten-/ - genetically engineered mouse (GEM) model of melanoma, as well as GEM-derived allografts of BrafV600E /Pten-/ - and BrafV600E /Pten-/ -/Cdkn2a-/ - tumors with Ambra1 knockdown. The effects of Ambra1 loss on the tumor immune microenvironment (TIME) were analyzed using NanoString technology, multiplex immunohistochemistry, and flow cytometry. Transcriptome and CIBERSORT digital cytometry analyses of murine melanoma samples and human melanoma patients (The Cancer Genome Atlas) were applied to determine the immune cell populations in null or low-expressing AMBRA1 melanoma. The contribution of Ambra1 on T-cell migration was evaluated using a cytokine array and flow cytometry. Tumor growth kinetics and overall survival analysis in BrafV600E /Pten-/ -/Cdkn2a-/ - mice with Ambra1 knockdown were evaluated prior to and after administration of a programmed cell death protein-1 (PD-1) inhibitor. RESULTS: Loss of Ambra1 was associated with altered expression of a wide range of cytokines and chemokines as well as decreased infiltration of tumors by regulatory T cells, a subpopulation of T cells with potent immune-suppressive properties. These changes in TIME composition were associated with the autophagic function of Ambra1. In the BrafV600E /Pten-/ -/Cdkn2a-/ - model inherently resistant to immune checkpoint blockade, knockdown of Ambra1 led to accelerated tumor growth and reduced overall survival, but at the same time conferred sensitivity to anti-PD-1 treatment. CONCLUSIONS: This study shows that loss of Ambra1 affects the TIME and the antitumor immune response in melanoma, highlighting new functions of Ambra1 in the regulation of melanoma biology.
Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Animais , Camundongos , Autofagia , Movimento Celular , Proliferação de Células , Citocinas , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de SinalRESUMO
Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.
Assuntos
Transtorno Autístico , Região CA1 Hipocampal , Feminino , Camundongos , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Receptores de Estrogênio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Interneurônios/metabolismo , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
BACKGROUND: AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population. RESULTS: We demonstrated that the silencing of the ambra1b gene determines a reduction of primordial germ cells (PGCs), a condition that, in the zebrafish, leads to the development of all-male progeny. PGC reduction was confirmed by knockdown experiments and rescued by injection of ambra1b and human AMBRA1 mRNAs, but not ambra1a mRNA. Moreover, PGC loss was not rescued by injection with human AMBRA1 mRNA mutated in the CUL4-DDB1 binding region, thus suggesting that interaction with this complex is involved in PGC protection from loss. Results from zebrafish embryos injected with murine Stat3 mRNA and stat3 morpholino suggest that Ambra1b could indirectly regulate this protein through CUL4-DDB1 interaction. According to this, Ambra1+/- mice showed a reduced Stat3 expression in the ovary together with a low number of antral follicles and an increase of atretic follicles, indicating a function of Ambra1 in the ovary of mammals as well. Moreover, in agreement with the high expression of these genes in the testis and ovary, we found significant impairment of the reproductive process and pathological alterations, including tumors, mainly limited to the gonads. CONCLUSIONS: By exploiting ambra1a and ambra1b knockout zebrafish lines, we prove the sub-functionalization between the two paralogous zebrafish genes and uncover a novel function of Ambra1 in the protection from excessive PGC loss, which seems to require binding with the CUL4-DDB1 complex. Both genes seem to play a role in the regulation of reproductive physiology.
Assuntos
Humanos , Animais , Masculino , Feminino , Camundongos , Diferenciação Sexual , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Reprodução , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMO
Cancer genomics and cancer mutation databases have made an available wealth of information about missense mutations found in cancer patient samples. Contextualizing by means of annotation and predicting the effect of amino acid change help identify which ones are more likely to have a pathogenic impact. Those can be validated by means of experimental approaches that assess the impact of protein mutations on the cellular functions or their tumorigenic potential. Here, we propose the integrative bioinformatic approach Cancermuts, implemented as a Python package. Cancermuts is able to gather known missense cancer mutations from databases such as cBioPortal and COSMIC, and annotate them with the pathogenicity score REVEL as well as information on their source. It is also able to add annotations about the protein context these mutations are found in, such as post-translational modification sites, structured/unstructured regions, presence of short linear motifs, and more. We applied Cancermuts to the intrinsically disordered protein AMBRA1, a key regulator of many cellular processes frequently deregulated in cancer. By these means, we classified mutations of AMBRA1 in melanoma, where AMBRA1 is highly mutated and displays a tumor-suppressive role. Next, based on REVEL score, position along the sequence, and their local context, we applied cellular and molecular approaches to validate the predicted pathogenicity of a subset of mutations in an in vitro melanoma model. By doing so, we have identified two AMBRA1 mutations which show enhanced tumorigenic potential and are worth further investigation, highlighting the usefulness of the tool. Cancermuts can be used on any protein targets starting from minimal information, and it is available at https://www.github.com/ELELAB/cancermuts as free software.
Assuntos
Proteínas Intrinsicamente Desordenadas , Melanoma , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos , Humanos , Melanoma/genética , Mutação de Sentido Incorreto/genética , SoftwareRESUMO
BACKGROUND: Maintaining healthy mitochondria is mandatory for muscle viability and function. An essential surveillance mechanism targeting defective and harmful mitochondria to degradation is the selective form of autophagy called mitophagy. Ambra1 is a multifaceted protein with well-known autophagic and mitophagic functions. However, the study of its role in adult tissues has been extremely limited due to the embryonic lethality caused by full-body Ambra1 deficiency. METHODS: To establish the role of Ambra1 as a positive regulator of mitophagy, we exploited in vivo overexpression of a mitochondria-targeted form of Ambra1 in skeletal muscle. To dissect the consequence of Ambra1 inactivation in skeletal muscle, we generated muscle-specific Ambra1 knockout (Ambra1fl/fl :Mlc1f-Cre) mice. Mitochondria-enriched fractions were obtained from muscles of fed and starved animals to investigate the dynamics of the mitophagic flux. RESULTS: Our data show that Ambra1 has a critical role in the mitophagic flux of adult murine skeletal muscle and that its genetic inactivation leads to mitochondria alterations and myofibre remodelling. Ambra1 overexpression in wild-type muscles is sufficient to enhance mitochondria clearance through the autophagy-lysosome system. Consistently with this, Ambra1-deficient muscles display an abnormal accumulation of the mitochondrial marker TOMM20 by +76% (n = 6-7; P < 0.05), a higher presence of myofibres with swollen mitochondria by +173% (n = 4; P < 0.05), and an alteration in the maintenance of the mitochondrial membrane potential and a 34% reduction in the mitochondrial respiratory complex I activity (n = 4; P < 0.05). Lack of Ambra1 in skeletal muscle leads to impaired mitophagic flux, without affecting the bulk autophagic process. This is due to a significantly decreased recruitment of DRP1 (n = 6-7 mice; P < 0.01) and Parkin (n = 6-7 mice; P < 0.05) to the mitochondrial compartment, when compared with controls. Ambra1-deficient muscles also show a marked dysregulation of the endolysosome compartment, as the incidence of myofibres with lysosomal accumulation is 20 times higher than wild-type muscles (n = 4; P < 0.05). Histologically, Ambra1-deficient muscles of both 3- and 6-month-old animals display a significant decrease of myofibre cross-sectional area and a 52% reduction in oxidative fibres (n = 6-7; P < 0.05), thus highlighting a role for Ambra1 in the proper structure and activity of skeletal muscle. CONCLUSIONS: Our study indicates that Ambra1 is critical for skeletal muscle mitophagy and for the proper maintenance of functional mitochondria.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Mitocôndrias , Mitofagia , Músculo Esquelético , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitofagia/genética , Músculo Esquelético/metabolismoRESUMO
Autophagy is a highly dynamic and multi-step process, regulated by many functional protein units. Here, we have built up a comprehensive and up-to-date annotated gene list for the autophagy pathway, by combining previously published gene lists and the most recent publications in the field. We identified 604 genes and created main categories: MTOR and upstream pathways, autophagy core, autophagy transcription factors, mitophagy, docking and fusion, lysosome and lysosome-related genes. We then classified such genes in sub-groups, based on their functions or on their sub-cellular localization. Moreover, we have curated two shorter sub-lists to predict the extent of autophagy activation and/or lysosomal biogenesis; we next validated the "induction list" by Real-time PCR in cell lines during fasting or MTOR inhibition, identifying ATG14, ATG7, NBR1, ULK1, ULK2, and WDR45, as minimal transcriptional targets. We also demonstrated that our list of autophagy genes can be particularly useful during an effective RNA-sequencing analysis. Thus, we propose our lists as a useful toolbox for performing an informative and functionally-prognostic gene scan of autophagy steps.
Assuntos
Autofagia/genética , Técnicas Genéticas , Transcrição Gênica , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lisossomos/metabolismo , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR/metabolismoRESUMO
TRK-fused gene (TFG) is a protein implicated in multiple neurodegenerative diseases and oncogenesis. We have recently shown that, under starvation conditions, TFG contributes to spatial control of autophagy by facilitating Unc-51 like autophagy activating kinase 1 (ULK1)-microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C) interaction to modulate omegasome and autophagosome formation. Defective TFG-mediated autophagy could thus be postulated as a possible contributor to ontogenesis or progression of TFG-related diseases.
RESUMO
The scaffold protein AMBRA1 regulates the early steps of autophagosome formation and cell growth, and its deficiency is associated with neurodevelopmental defects and cancer. In a recent study, we show that AMBRA1 is a key factor in the upstream branch of the MYCN-MYC and CDK4-CDK6-dependent regulation of G1/S phase transition. Indeed, in the developing neuroepithelium, in neural stem cells, and in cancer cells, we demonstrate that AMBRA1 regulates the expression of D-type cyclins by controlling both their proteasomal degradation and their MYCN-MYC-mediated transcription. Also, we show that this regulation axis maintains genome integrity during DNA replication, and we identify a possible line of treatment for tumors downregulating AMBRA1 and/or overexpressing CCND1 (cyclin D1), by demonstrating that AMBRA1-depleted cells carry an AMBRA1-loss-specific lethal sensitivity to CHEK1 inhibition. Interestingly, we show that this aspect is specific for AMBRA1 loss, because ATG7 knockdown does not display the same response to CHEK1 inhibitors. Hence, our findings underscore that the AMBRA1-CCND1 pathway represents a novel crucial mechanism of cell cycle regulation, deeply interconnected with genomic stability in development and cancer.
Assuntos
Autofagia , Replicação do DNA , Ciclo Celular/fisiologia , Divisão Celular , Proliferação de Células , Quinase 4 Dependente de Ciclina/metabolismoRESUMO
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de SinaisRESUMO
Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Criança , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas , Prognóstico , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Proteína 3 Supressora da Sinalização de Citocinas/antagonistas & inibidoresRESUMO
c-FLIP (cellular FLICE-like inhibitory protein) protein is mostly known as an apoptosis modulator. However, increasing data underline that c-FLIP plays multiple roles in cellular homoeostasis, influencing differently the same pathways depending on its expression level and isoform predominance. Few and controversial data are available regarding c-FLIP function in autophagy. Here we show that autophagic flux is less effective in c-FLIP-/- than in WT MEFs (mouse embryonic fibroblasts). Indeed, we show that the absence of c-FLIP compromises the expression levels of pivotal factors in the generation of autophagosomes. In line with the role of c-FLIP as a scaffold protein, we found that c-FLIPL interacts with Beclin-1 (BECN1: coiled-coil, moesin-like BCL2-interacting protein), which is required for autophagosome nucleation. By a combination of bioinformatics tools and biochemistry assays, we demonstrate that c-FLIPL interaction with Beclin-1 is important to prevent Beclin-1 ubiquitination and degradation through the proteasomal pathway. Taken together, our data describe a novel molecular mechanism through which c-FLIPL positively regulates autophagy, by enhancing Beclin-1 protein stability.