Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Methods ; 20(9): 1323-1335, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550580

RESUMO

Droplet-based single-cell assays, including single-cell RNA sequencing (scRNA-seq), single-nucleus RNA sequencing (snRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), generate considerable background noise counts, the hallmark of which is nonzero counts in cell-free droplets and off-target gene expression in unexpected cell types. Such systematic background noise can lead to batch effects and spurious differential gene expression results. Here we develop a deep generative model based on the phenomenology of noise generation in droplet-based assays. The proposed model accurately distinguishes cell-containing droplets from cell-free droplets, learns the background noise profile and provides noise-free quantification in an end-to-end fashion. We implement this approach in the scalable and robust open-source software package CellBender. Analysis of simulated data demonstrates that CellBender operates near the theoretically optimal denoising limit. Extensive evaluations using real datasets and experimental benchmarks highlight enhanced concordance between droplet-based single-cell data and established gene expression patterns, while the learned background noise profile provides evidence of degraded or uncaptured cell types.


Assuntos
RNA Nuclear Pequeno , Software , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
2.
Nature ; 618(7965): 616-624, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258680

RESUMO

Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.


Assuntos
Biologia , Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Biologia/métodos , Análise da Expressão Gênica de Célula Única , Conjuntos de Dados como Assunto , Cromatina/genética , Cromatina/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatias/metabolismo
3.
J Am Coll Cardiol ; 81(14): 1320-1335, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37019578

RESUMO

BACKGROUND: As the largest conduit vessel, the aorta is responsible for the conversion of phasic systolic inflow from ventricular ejection into more continuous peripheral blood delivery. Systolic distention and diastolic recoil conserve energy and are enabled by the specialized composition of the aortic extracellular matrix. Aortic distensibility decreases with age and vascular disease. OBJECTIVES: In this study, we sought to discover epidemiologic correlates and genetic determinants of aortic distensibility and strain. METHODS: We trained a deep learning model to quantify thoracic aortic area throughout the cardiac cycle from cardiac magnetic resonance images and calculated aortic distensibility and strain in 42,342 UK Biobank participants. RESULTS: Descending aortic distensibility was inversely associated with future incidence of cardiovascular diseases, such as stroke (HR: 0.59 per SD; P = 0.00031). The heritabilities of aortic distensibility and strain were 22% to 25% and 30% to 33%, respectively. Common variant analyses identified 12 and 26 loci for ascending and 11 and 21 loci for descending aortic distensibility and strain, respectively. Of the newly identified loci, 22 were not significantly associated with thoracic aortic diameter. Nearby genes were involved in elastogenesis and atherosclerosis. Aortic strain and distensibility polygenic scores had modest effect sizes for predicting cardiovascular outcomes (delaying or accelerating disease onset by 2%-18% per SD change in scores) and remained statistically significant predictors after accounting for aortic diameter polygenic scores. CONCLUSIONS: Genetic determinants of aortic function influence risk for stroke and coronary artery disease and may lead to novel targets for medical intervention.


Assuntos
Doenças da Aorta , Acidente Vascular Cerebral , Humanos , Aorta Torácica , Aorta , Doenças da Aorta/patologia , Imageamento por Ressonância Magnética
4.
Nat Genet ; 54(6): 792-803, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697867

RESUMO

Congenital heart diseases often involve maldevelopment of the evolutionarily recent right heart chamber. To gain insight into right heart structure and function, we fine-tuned deep learning models to recognize the right atrium, right ventricle and pulmonary artery, measuring right heart structures in 40,000 individuals from the UK Biobank with magnetic resonance imaging. Genome-wide association studies identified 130 distinct loci associated with at least one right heart measurement, of which 72 were not associated with left heart structures. Loci were found near genes previously linked with congenital heart disease, including NKX2-5, TBX5/TBX3, WNT9B and GATA4. A genome-wide polygenic predictor of right ventricular ejection fraction was associated with incident dilated cardiomyopathy (hazard ratio, 1.33 per standard deviation; P = 7.1 × 10-13) and remained significant after accounting for a left ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac phenotyping, our results yield insights into the genetic determinants of right heart structure and function.


Assuntos
Cardiomiopatia Dilatada , Cardiopatias Congênitas , Cardiomiopatia Dilatada/patologia , Estudo de Associação Genômica Ampla , Coração , Humanos , Volume Sistólico , Função Ventricular Direita
5.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932938

RESUMO

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Assuntos
Exoma , Variação Genética , Estudo de Associação Genômica Ampla , Lipídeos/sangue , Fases de Leitura Aberta , Alelos , Glicemia/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Anotação de Sequência Molecular , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Nat Genet ; 54(1): 40-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837083

RESUMO

Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 × 10-20). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images.


Assuntos
Aorta Torácica/anatomia & histologia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adulto , Idoso , Aorta Torácica/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Variação Biológica da População , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Transcriptoma
7.
Life Sci Alliance ; 4(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663679

RESUMO

Extracellular vesicles (EVs) mediate intercellular signaling by transferring their cargo to recipient cells, but the functional consequences of signaling are not fully appreciated. RBC-derived EVs are abundant in circulation and have been implicated in regulating immune responses. Here, we use a transgenic mouse model for fluorescence-based mapping of RBC-EV recipient cells to assess the role of this intercellular signaling mechanism in heart disease. Using fluorescent-based mapping, we detected an increase in RBC-EV-targeted cardiomyocytes in a murine model of ischemic heart failure. Single cell nuclear RNA sequencing of the heart revealed a complex landscape of cardiac cells targeted by RBC-EVs, with enrichment of genes implicated in cell proliferation and stress signaling pathways compared with non-targeted cells. Correspondingly, cardiomyocytes targeted by RBC-EVs more frequently express cellular markers of DNA synthesis, suggesting the functional significance of EV-mediated signaling. In conclusion, our mouse model for mapping of EV-recipient cells reveals a complex cellular network of RBC-EV-mediated intercellular communication in ischemic heart failure and suggests a functional role for this mode of intercellular signaling.


Assuntos
Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/sangue , Infarto do Miocárdio/sangue , Miocárdio/metabolismo , RNA Nuclear/genética , RNA-Seq/métodos , Transdução de Sinais/genética , Análise de Célula Única/métodos , Animais , Comunicação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo
8.
ESC Heart Fail ; 8(6): 5531-5541, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480422

RESUMO

AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10-8 under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Feminino , Genômica , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
9.
Circ Genom Precis Med ; 14(4): e003300, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34319147

RESUMO

BACKGROUND: Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood. METHODS: Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval). RESULTS: We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes (KCNQ1, KCNH2, and SCN5A), a controversial monogenic SCD gene (KCNE1), and novel genes (PAM and MFGE8) involved in cardiac conduction. Loss-of-function and pathogenic SCN5A variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (P=8.4×10-5). Similar variants in KCNQ1 and KCNH2 (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation (P=4×10-25), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals. CONCLUSIONS: Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.


Assuntos
Morte Súbita Cardíaca/etnologia , Eletrocardiografia , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Síndrome do QT Longo , Feminino , Humanos , Síndrome do QT Longo/etnologia , Síndrome do QT Longo/genética , Masculino , Sequenciamento do Exoma
10.
Nat Commun ; 11(1): 2542, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439900

RESUMO

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.


Assuntos
Arritmias Cardíacas/genética , Eletrocardiografia , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Arritmias Cardíacas/fisiopatologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Endofenótipos , Feminino , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Herança Multifatorial , Locos de Características Quantitativas/genética
11.
Nat Commun ; 11(1): 163, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919418

RESUMO

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.


Assuntos
Fibrilação Atrial/genética , Cardiomiopatias/genética , Doença da Artéria Coronariana/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Função Ventricular Esquerda/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatias/patologia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Inibidor de Quinase Dependente de Ciclina p21/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Fatores de Risco
12.
J Proteome Res ; 18(3): 1446-1450, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30562035

RESUMO

High-throughput metabolomics using liquid chromatography and mass spectrometry (LC/MS) provides a useful method to identify biomarkers of disease and explore biological systems. However, the majority of metabolic features detected from untargeted metabolomics experiments have unknown ion signatures, making it critical that data should be thoroughly quality controlled to avoid analyzing false signals. Here, we present a postalignment method relying on intermittent pooled study samples to separate genuine metabolic features from potential measurement artifacts. We apply the method to lipid metabolite data from the PREDIMED (PREvención con DIeta MEDi-terránea) study to demonstrate clear removal of measurement artifacts. The method is publicly available as the R package MetProc, available on CRAN under the GPL-v2 license.


Assuntos
Biomarcadores/metabolismo , Lipídeos/isolamento & purificação , Metabolômica/métodos , Artefatos , Cromatografia Líquida , Lipídeos/química , Metaboloma/genética , Espectrometria de Massas em Tandem
13.
Nat Genet ; 50(12): 1753, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30390058

RESUMO

In the version of this article originally published, there were two errors in the text of the second paragraph of the Methods section. In the sentence "To identify genetic variants that contribute to doctor-diagnosed asthma and allergic diseases (detailed phenotype information described in the Supplementary Note) and link them with other conditions, we performed GWASs using phenotype measures in UK Biobank participants (N = 487,409)" the number of participants should have been 150,509. In the sentence "Thus, a total of 110,361 European descendants with high-quality genotyping and complete phenotype/covariate data were used for these analyses, including 25,685 allergic diseases subjects (hay fever/allergic rhinitis or eczema, without doctor-diagnosed asthma), 14,085 asthma subjects and 76,768 controls for the analysis" the phrase "without doctor-diagnosed asthma" should have read "some with doctor-diagnosed asthma." The errors have been corrected in the HTML and PDF versions of the article.

14.
Nat Genet ; 50(9): 1225-1233, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29892015

RESUMO

Atrial fibrillation (AF) affects more than 33 million individuals worldwide1 and has a complex heritability2. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.


Assuntos
Fibrilação Atrial/genética , Etnicidade/genética , Fibrilação Atrial/etnologia , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Locos de Características Quantitativas , Transcriptoma
15.
Nat Genet ; 50(6): 857-864, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29785011

RESUMO

Clinical and epidemiological data suggest that asthma and allergic diseases are associated and may share a common genetic etiology. We analyzed genome-wide SNP data for asthma and allergic diseases in 33,593 cases and 76,768 controls of European ancestry from UK Biobank. Two publicly available independent genome-wide association studies were used for replication. We have found a strong genome-wide genetic correlation between asthma and allergic diseases (rg = 0.75, P = 6.84 × 10-62). Cross-trait analysis identified 38 genome-wide significant loci, including 7 novel shared loci. Computational analysis showed that shared genetic loci are enriched in immune/inflammatory systems and tissues with epithelium cells. Our work identifies common genetic architectures shared between asthma and allergy and will help to advance understanding of the molecular mechanisms underlying co-morbid asthma and allergic diseases.


Assuntos
Asma/genética , Hipersensibilidade/genética , Adulto , Idoso , Bancos de Espécimes Biológicos , Estudos de Casos e Controles , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Reino Unido
16.
PLoS One ; 9(4): e95380, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743558

RESUMO

Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.


Assuntos
Archaea/genética , Archaea/classificação , DNA Arqueal/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA