Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Tradit Complement Med ; 14(3): 276-286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707916

RESUMO

Background and aim: Taxol modulates local inflammatory conditions in peripheral nerves, which may impair their regeneration and recovery when injured. This study aimed to determine the effects of rosmarinic acid (RA, a polyphenol constituent of many culinary herbs) on the regeneration of the sciatic nerves in the bridging conduits. Experimental procedure: In the cell study, RA decreased nuclear factor (NF)-κB activity induced by taxol in a dose dependency. In the animal model, taxol-treated rats were divided into 3 groups (n = 10/group): taxol (2 mg/kg body weight for 4 times) and taxol + RA (3 times/week for 4 weeks at 20 and 40 mg/kg body weight) groups. Macrophage infiltration, calcitonin gene-related peptide (CGRP) expression levels, neuronal connectivity, animal behavior, and neuronal electrophysiology were evaluated. Results and conclusion: At the end of 4 weeks, macrophage density, CGRP expression level, and axon number significantly increased in the RA group compared with the taxol group. The RA administration unaffected heat, cold plate licking latencies, and motor coordination. Moreover, the 40 mg/kg RA group had significantly larger nerve conduction velocity and less latency compared to the taxol group. This study suggested that RA could ameliorate local inflammatory conditions to augment the recovery of regenerating nerves by accelerating their regrowth and improving electrophysiological function in taxol-treated peripheral nerve injury repaired with the silicone rubber conduit.

2.
Opt Express ; 30(26): 46435-46449, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558597

RESUMO

Light extraction improvement is still an important issue for active-matrix organic light-emitting diode displays (AMOLEDs). In our previous work, a three-dimensional (3D) reflective pixel configuration embedding the OLED in the concave 3D reflector and patterned high-index filler had been proposed for significant enhancement of the pixel light extraction. In this work, influences of thin film encapsulation (TFE) on light extraction of such reflective 3D OLED pixels are considered as well by simulation studies. Unfortunately, the optical simulation reveals strong reduction of the light extraction efficiency induced by TFE layers. As such, an additional angle-selective optical film structure between the pixel and the encapsulation layers is introduced to control the angular distribution of the light coupled into the encapsulation layers and to solve TFE-induced optical losses. As a result, TFE-induced losses can be substantially reduced to retain much of light extraction efficiency. The results of this study are believed to provide useful insights and guides for developing even more efficient and power-saving AMOLEDs.

3.
Sci Rep ; 12(1): 11029, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773308

RESUMO

Based on incredibly increasing applications in modern optoelectronic devices, the demand for securing a superior conductive transparent electrode (TCE) candidate becomes significant and urgent. However, boosting both transmittance and conductance simultaneously is an intrinsic limitation. In this work, we present silver nanoscale plasmonic wires (Ag NPWs) to function as TCEs in the visible light region by lowering their corresponding plasma frequencies. By carefully designing geometric dimensions of the Ag NPWs, we also optimize the performance for red, green, and blue colors, respectively. The demonstrated figure of merits for RGB colors appeared respectively 443.29, 459.46, and 133.78 in simulation and 302.75, 344.11, and 348.02 in experiments. Evidently, our Ag NPWs offer much greater FoMs beyond conventional TCEs that are most frequently comprised of indium tin oxide and show further advantages of flexibility and less Moire effect for the applications of flexible and high-resolution optoelectronic devices.

4.
Materials (Basel) ; 13(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120862

RESUMO

Taxol, a type of antimitotic agent, could modulate local inflammatory conditions in peripheral nerves, which may impair their regeneration and recovery when injured. This study provided in vivo trials of silicone rubber chambers to bridge a long 10 mm sciatic nerve defect in taxol-treated rats. It was aimed to determine the effects of electrical stimulation at various frequencies on regeneration of the sciatic nerves in the bridging conduits. Taxol-treated rats were divided into four groups (n = 10/group): sham control (no current delivered from the stimulator); and electrical stimulation (3 times/week for 3 weeks at 2, 20, and 200 Hz with 1 mA current intensity). Neuronal electrophysiology, animal behavior, neuronal connectivity, macrophage infiltration, calcitonin gene-related peptide (CGRP) expression levels, and morphological observations were evaluated. At the end of 4 weeks, animals in the low- (2 Hz) and medium-frequency (20 Hz) groups had dramatic higher rates of successful regeneration (90% and 80%) across the wide gap as compared to the groups of sham and high-frequency (200 Hz) (60% and 50%). In addition, the 2 Hz group had significantly larger amplitudes and evoked muscle action potentials compared to the sham and the 200 Hz group, respectively (P < 0.05). Heat, cold plate licking latencies, motor coordination, and neuronal connectivity were unaffected by the electrical stimulation. Macrophage density, CGRP expression level, and axon number were all significantly increased in the 20 Hz group compared to the sham group (P < 0.05). This study suggested that low- (2 Hz) to medium-frequency (20 Hz) electrical stimulation could ameliorate local inflammatory conditions to augment recovery of regenerating nerves by accelerating their regrowth and improving electrophysiological function in taxol-treated peripheral nerve injury repaired with the silicone rubber conduit.

5.
J Biol Eng ; 13: 86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754373

RESUMO

BACKGROUND: Large gap healing is a difficult issue in the recovery of peripheral nerve injury. The present study provides in vivo trials of silicone rubber chambers filled with collagen containing IFN-γ or IL-4 to bridge a 15 mm sciatic nerve defect in rats. Fillings of NGF and normal saline were used as the positive and negative controls. Neuronal electrophysiology, neuronal connectivity, macrophage infiltration, location and expression levels of calcitonin gene-related peptide and histology of the regenerated nerves were evaluated. RESULTS: At the end of 6 weeks, animals from the groups of NGF and IL-4 had dramatic higher rates of successful regeneration (100 and 80%) across the wide gap as compared to the groups of IFN-γ and saline controls (30 and 40%). In addition, the NGF group had significantly higher NCV and shorter latency compared to IFN-γ group (P < 0.05). The IL-4 group recruited significantly more macrophages in the nerves as compared to the saline controls and the NGF-treated animals (P < 0.05). CONCLUSIONS: The current study demonstrated that NGF and IL-4 show potential growth-promoting capability for peripheral nerve regeneration. These fillings in the bridging conduits may modulate local inflammatory conditions affecting recovery of the nerves.

6.
Adv Sci (Weinh) ; 5(10): 1800467, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30356985

RESUMO

Despite stringent power consumption requirements in many applications, over years organic light-emitting diode (OLED) displays still suffer unsatisfactory energy efficiency due to poor light extraction. Approaches have been reported for OLED light out-coupling, but they in general are not applicable for OLED displays due to difficulties in display image quality and fabrication complexity and compatibility. Thus to date, an effective and feasible light extraction technique that can boost efficiencies and yet keep image quality is still lacking and remains a great challenge. Here, a highly effective and scalable extraction-enhancing OLED display pixel structure is proposed based on embedding the OLED inside a three-dimensional reflective concave structure covered with a patterned high-index filler. It can couple as much internal emission as possible into the filler region and then redirect otherwise confined light for out-coupling. Comprehensive multi-scale optical simulation validates that ultimately high light extraction efficiency approaching ≈80% and excellent viewing characteristics are simultaneously achievable with optimized structures using highly transparent top electrodes. This scheme is scalable and wavelength insensitive, and generally applicable to all red, green, and blue pixels in high-resolution full-color displays. Results of this work are believed to shed light on the development of future generations of advanced OLED displays.

7.
Materials (Basel) ; 11(9)2018 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-30205596

RESUMO

Although autologous nerve grafting remains the gold standard treatment for peripheral nerve injuries, alternative methods such as development of nerve guidance conduits have since emerged and evolved to counter the many disadvantages of nerve grafting. However, the efficacy and viability of current nerve conduits remain unclear in clinical trials. Here, we focused on a novel decellularized extracellular matrix (dECM) and polydopamine (PDA)-coated 3D-printed poly(ε-caprolactone) (PCL)-based conduits, whereby the PDA surface modification acts as an attachment platform for further dECM attachment. We demonstrated that dECM/PDA-coated PCL conduits possessed higher mechanical properties when compared to human or animal nerves. Such modifications were proved to affect cell behaviors. Cellular behaviors and neuronal differentiation of Schwann cells were assessed to determine for the efficacies of the conduits. There were some cell-specific neuronal markers, such as Nestin, neuron-specific class III beta-tubulin (TUJ-1), and microtubule-associated protein 2 (MAP2) analyzed by enzyme-linked immunosorbent assay, and Nestin expressions were found to be 0.65-fold up-regulated, while TUJ1 expressions were 2.3-fold up-regulated and MAP2 expressions were 2.5-fold up-regulated when compared to Ctl. The methodology of PDA coating employed in this study can be used as a simple model to immobilize dECM onto PCL conduits, and the results showed that dECM/PDA-coated PCL conduits can as a practical and clinically viable tool for promoting regenerative outcomes in larger peripheral nerve defects.

8.
Am J Chin Med ; 46(1): 69-86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298514

RESUMO

Astragalus membranaceus (AM) is one of 50 fundamental herbs in traditional Chinese medicine. Previous studies have shown that AM extract can be a potential nerve growth-promoting factor, being beneficial for the growth of peripheral nerve axons. We further investigated the effects of AM extract on regeneration in a rat sciatic nerve transection model. Rats were divided into three groups ([Formula: see text]): normal saline (intraperitoneal) as the control, and 1.5[Formula: see text]g/kg or 3.0[Formula: see text]g/kg of AM extract (every other day for four weeks), respectively. We evaluated neuronal electrophysiology, neuronal connectivity, macrophage infiltration, expression levels and location of calcitonin gene-related peptide (CGRP), and expression levels of both nerve growth factors (NGFs) and immunoregulatory factors. In the high-dose AM group, neuronal electrophysiological function (measured by nerve conductive velocity and its latency) was significantly improved ([Formula: see text]). Expression levels of CGRP and macrophage density were also drastically enhanced ([Formula: see text]). Expression levels of fibroblast growth factor (FGF), NGF, platelet-derived growth factor (PDGF), transforming growth factor-[Formula: see text], interleukin-1 (IL-1), and interferon (IFN)-[Formula: see text] were reduced in the high-dose AM group ([Formula: see text]), while FGF, NGF, PDGF, IL-1, and IFN-[Formula: see text] were increased in the low-dose AM group ([Formula: see text]). These results suggest that AM can modulate local inflammatory conditions, enhance nerve regeneration, and potentially increase recovery of a severe peripheral nerve injury.


Assuntos
Astragalus propinquus/química , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Macrófagos/imunologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/imunologia , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/fisiologia , Extratos Vegetais/farmacologia , Animais , Axônios/fisiologia , Relação Dose-Resposta a Droga , Fatores de Crescimento de Fibroblastos/metabolismo , Interferon gama/metabolismo , Interleucina-1/metabolismo , Fator de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Condução Nervosa , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos Sprague-Dawley , Estimulação Química
9.
Molecules ; 20(7): 13005-30, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26193252

RESUMO

Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.


Assuntos
Iluminação , Compostos Orgânicos/química , Desenho de Equipamento/instrumentação , Semicondutores
10.
Chem Commun (Camb) ; 51(71): 13662-5, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26226072

RESUMO

A thermally activated delayed fluorescent (TADF) emitter (DMAC-TRZ) was reported either as the emitting dopant in a host or as the non-doped (neat) emitting layer to achieve high EL EQEs of up to 26.5% and 20% in OLEDs, respectively.

11.
PLoS One ; 10(2): e0116711, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25689049

RESUMO

BACKGROUND: Electrical stimulation (ES) has been shown to promote nerve regeneration in rats with experimental diabetes induced using streptozotocin (STZ). However, the time-course effect of ES on nerve regeneration of diabetic animals has not been reported in previous studies. The present study attempted to examine the effect of different timing of ES after peripheral nerve transection in diabetic rats. METHODOLOGY/FINDINGS: Fifty Sprague-Dawley rats were used in the study. They were classified into five groups. STZ-induced diabetes was created in groups A to D. Normal animals in group E were used as the non-diabetic controls. The sciatic nerve was transected and repaired using a silicone rubber conduit across a 10-mm gap in all groups. Groups A to C received ES for 15 minutes every other day for 2 weeks. Stimulation was initiated on day 1 following the nerve repair for group A, day 8 for group B, and day 15 for group C. The diabetic control group D and the normal control group E received no ES. At 30 days after surgery in group A, histological evaluations showed a higher success percentage of regeneration across the 10-mm nerve gap, and the electrophysiological results showed significantly larger mean values of evoked muscle action potential area and amplitude of the reinnervated gastrocnemius muscle compared with group D. CONCLUSIONS/SIGNIFICANCE: It is concluded that an immediate onset of ES may improve the functional recovery of large nerve defect in diabetic animals.


Assuntos
Diabetes Mellitus Experimental , Estimulação Elétrica , Regeneração Nervosa , Animais , Biomarcadores , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Imuno-Histoquímica , Masculino , Ratos , Nervo Isquiático/fisiologia , Nervo Isquiático/fisiopatologia , Corno Dorsal da Medula Espinal/metabolismo , Fatores de Tempo
12.
Fitoterapia ; 82(8): 1249-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21907768

RESUMO

Intestinal α-glucosidase performs a physiologically vital function in the digestive process of dietary carbohydrates. Administration of an α-glucosidase inhibitor may retard the digestion and absorption of carbohydrates. Consequently, the rise in postprandial blood glucose could be suppressed. This study developed a novel technology, called "after flowing through immobilized receptor (AFTIR)," for targeting components in herbal medicines with α-glucosidase-suppressing capability. As a result, we reveal that the AFTIR system is a highly-efficient drug screening platform, capable of purifying and identifying active components with α-glucosidase-suppressing capability in herbal medicines.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Carboidratos da Dieta/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes/isolamento & purificação , Extratos Vegetais/química , Glicemia/metabolismo , Inibidores Enzimáticos/farmacologia , Medicina Herbária , Hipoglicemiantes/farmacologia , Plantas Medicinais/química , Período Pós-Prandial
13.
Chemistry ; 16(14): 4315-27, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20229532

RESUMO

Treatment of the metal reagent IrCl(3)nH(2)O with two equivalents of 2-pyridyl pyrazole (N;N)H (3-tert-butyl-5-(2-pyridyl) pyrazole, (bppz)H and 3-trifluoromethyl-5-(2-pyridyl) pyrazole, (fppz)H), afforded the isomeric Ir(III) metal complexes with a general formula cis-[Ir(bppz)(2)Cl(2)]H (2 a), trans-[Ir(bppz)(2)Cl(2)]H (3 a), cis-[Ir(fppz)(2)Cl(2)]H (2 b), and trans-[Ir(fppz)(2)Cl(2)]H (3 b). Single-crystal X-ray diffraction studies on 2 b and 3 a revealed the coexistence of two pyrazolate chelates and two terminal chloride ligands on the coordination sphere. Subsequent reactivity studies confirmed their intermediacy to the preparation of homoleptic mer-[Ir(bppz)(3)] (1 a) and mer-[Ir(fppz)(3)] (1 b) that showed dual intraligand and ligand-to-ligand charge-transfer phosphorescence at room temperature. To attain bright, room-temperature phosphorescence further, we then synthesized two isoquinolinyl pyrazolate complexes, mer-[Ir(bipz)(3)] (4 a) and mer-[Ir(fipz)(3)] (4 b) ((bipz)H=3-tert-butyl-5-(1-isoquinolyl) pyrazole and (fipz)H=3-trifluoromethyl-5-(1-isoquinolyl) pyrazole). Their orange luminescence is mainly attributed to the mixed MLCT/pipi* transition, and the quantum yields were as high as 86 (4 a) and 50 % (4 b) in degassed CH(2)Cl(2) solution at RT. The organic light-emitting diodes (OLEDs) were then fabricated by using 4 a as a dopant, giving orange luminescence with CIE(x,y)=0.55, 0.45 (CIE(x,y)=the 1931 Commission Internationale de L'Eclairage (x,y) coordinates) and peak efficiencies of 14.6 % photon/electron, 34.8 cd A(-1), 26.1 lm W(-1). The device data were then compared with the previously reported heteroleptic complex [Ir(dfpz)(2)(bipz)] (5) ((dfpz)H=1-(2,4-difluorophenyl) pyrazole), revealing the possible effect of the bipz chelate and phosphor design on the overall electrophosphorescent performance, which can be understood by the differences in the carrier-transport properties.

14.
Dalton Trans ; (33): 6472-5, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19672490

RESUMO

Treatment of difluorobenzyldiphenylphosphine with the Ir(III) dimer [(dfppy)2Ir(mu-Cl)]2 gives (N,N)-trans-[Ir(dfppy)2(dfbdpH)Cl], followed by skeletal isomerization to form its (N,N)-cis analogue, and then the fully cyclometalated complex [Ir(dfppy)2(dfbdp)]; the last complex and its derivative are suitable for fabrication of true-blue phosphorescent OLEDs.

15.
ACS Appl Mater Interfaces ; 1(2): 433-42, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20353234

RESUMO

We report the design and synthesis of Ir(III) complexes functionalized with substituted pyridyl cyclometalate or azolate chromophores, plus one newly designed nonconjugated phosphine chelate, which not only greatly restricts its participation in the lowest-lying electronic transition but also enhances the coordination strength. These two key factors lead to fine-tuning of the phosphorescence chromaticity toward authentic blue and simultaneously suppress, in part, the nonradiative deactivation. This conceptual design presents a novel strategy in achieving heretofore uncommon, high-efficiency blue and true-blue phosphorescence. The fabrication of the organic light-emitting devices (OLEDs) employing phosphorescent dopants [Ir(dfpbpy)(2)(P(wedge)N)] (1b) and [Ir(fppz)(2)(P(wedge)N)] (3) was successfully made, for which the abbreviations (dfpbpy)H, (fppz)H, and (P(wedge)N)H represent 2-(4,6-difluorophenyl)-4-tert-butylpyridine, 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, and 5-(diphenylphosphinomethyl)-3-(trifluoromethyl)pyrazole, respectively. Of particular interest is the 3-doped OLEDs, which exhibit remarkable maximum efficiencies of 6.9%, 8.1 cd A(-1), and 4.9 lm W(-1), together with a true-blue chromaticity CIE(x,y) = 0.163, with 0.145 recorded at 100 cd m(-2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA