Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
Chem Sci ; 15(21): 7811-7823, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817563

RESUMO

Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.

2.
Small ; : e2400603, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659175

RESUMO

Solar-driven interfacial evaporation is recognized as a sustainable and effective strategy for desalination to mitigate the freshwater scarcity issue. Nevertheless, the challenges of oil contamination, salt accumulation, and poor long-term stability of the solar desalination process limit its applications. Herein, a 3D biomass-based multifunctional solar aerogel evaporator is developed for water production with fabricated chitosan/lignin (CSL) aerogel as the skeleton, encapsulated with carbonized lignin (CL) particles and Ti3C2TiX (MXene) nanosheets as light-absorbing materials. Benefitting from its super-hydrophilic wettability, interconnected macropore structure, and high broadband light absorption (ca. 95.50%), the prepared CSL-C@MXene-20 mg evaporator exhibited a high and stable water evaporation flux of 2.351 kg m-2 h-1 with an energy conversion efficiency of 88.22% under 1 Sun (1 kW m-2) illumination. The CSL-C@MXene-20 mg evaporator performed excellent salt tolerance and long-term solar vapor generation in a 3.5 wt.% NaCl solution. Also, its super-hydrophilicity and oleophobicity resulted in superior salt resistance and anti-fouling performance in high salinity brine (20 wt.% NaCl) and oily wastewater. This work offers new insight into the manufacture of porous and eco-friendly biomass-based photothermal aerogels for advanced solar-powered seawater desalination and wastewater purification.

3.
Anal Chim Acta ; 1304: 342579, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637044

RESUMO

Plasmon enhanced fluorescent (PEF) with more "hot spots" play a critical role in signal amplified technology to avoid the intrinsic limitation of fluorophore which ascribed to a strong electromagnetic field at the tip structure. However, application of PEF technique to obtain a highly sensitive analysis of medicine was still at a very early stage. Herein, a simple but versatile Ag nanocubes (Agcubes)-based PEF sensor combined with aptamer (Agcubes@SiO2-QDs-Apt) was proposed for highly sensitive detection of berberine hydrochloride (BH). The distance between the plasma Agcubes and the red-emitted CdTe quantum dots (QDs) were regulated by the thickness of silica spacer. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that Agcubes have a higher electromagnetic field than Ag nanospheres. Compared with PEF sensor, signal QDs-modified aptamer without Agcubes (QDs-Apt) showed a 10-fold higher detection limit. The linear range and detection limit of the Agcubes@SiO2-QDs-Apt were 0.1-100 µM, 87.3 nM, respectively. Furthermore, the PEF sensor was applied to analysis BH in the berberine hydrochloride tablets, compound berberine tablet and urine with good recoveries of 98.25-102.05%. These results demonstrated that the prepared PEF sensor has great potential for drug quality control and clinical analysis.


Assuntos
Aptâmeros de Nucleotídeos , Berberina , Compostos de Cádmio , Pontos Quânticos , Fluorescência , Pontos Quânticos/química , Compostos de Cádmio/química , Dióxido de Silício , Telúrio/química , Espectrometria de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Limite de Detecção
4.
Food Chem ; 449: 139183, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604028

RESUMO

Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development. Metabolic profiles including 17 phenolic acids and 83 flavonoids are influenced by both varietal distinctions and developmental intricacies. Notably, flavonols, as major flavonoids, accumulated with achene ripening and showed a tissue-specific distribution. Specifically, flavonol glycosides and aglycones concentrated in the embryo, while methylated flavonols and procyanidins in the hull. Black achenes at the green achene stage have higher bioactive compounds and enhanced antioxidant capacity. These findings provide insights into spatial and temporal characteristics of metabolites in Tartary buckwheat achenes and serve as a theoretical guide for selecting optimal resources for food production.


Assuntos
Fagopyrum , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fagopyrum/química , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/análise , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massa com Cromatografia Líquida
5.
Food Chem X ; 22: 101287, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524782

RESUMO

The potential hazards of chlorfenapyr warrant attention owing to its widespread application on vegetables. A comprehensive investigation of the fate of chlorfenapyr in the ecosystem is imperative. This paper presents a method for detecting chlorfenapyr and tralopyril in cabbages, which exhibits good linearity (determination coefficients > 0.99) and satisfactory recoveries (82.50 %-108.03 %). Chlorfenapyr residues in cabbages demonstrate a positive correlation with its application dose and time. Tralopyril can inhibit the dissipation of chlorfenapyr, as evidenced by the half-lives of 5.67-11.14 d (chlorfenapyr) and 6.91-14.77 d (total chlorfenapyr). The results of terminal residues (<2.0 mg/kg) and dietary risk assessment (<100 %) suggest preharvest intervals of 14 d (greenhouse) and 10 d (open-field). Additionally, the uptake of chlorfenapyr in cabbages is limited (translocation factor < 1), while the downward translocation predominantly occurs through phloem transport. The findings provide valuable insights for understanding the fate and potential risks of chlorfenapyr in cabbages.

6.
Adv Sci (Weinh) ; 11(19): e2309990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477432

RESUMO

Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.


Assuntos
Benzilisoquinolinas , Sistema Enzimático do Citocromo P-450 , Menispermaceae , Benzilisoquinolinas/metabolismo , Benzilisoquinolinas/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Menispermaceae/genética , Menispermaceae/metabolismo , Menispermaceae/química , Alcaloides/metabolismo , Filogenia , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Hortic Res ; 11(3): uhae022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469381

RESUMO

Mentha is a commonly used spice worldwide, which possesses medicinal properties and fragrance. These characteristics are conferred, at least partially, by essential oils such as menthol. In this study, a gap-free assembly with a genome size of 414.3 Mb and 31,251 coding genes was obtained for Mentha suaveolens 'Variegata'. Based on its high heterozygosity (1.5%), two complete haplotypic assemblies were resolved, with genome sizes of 401.9 and 405.7 Mb, respectively. The telomeres and centromeres of each haplotype were almost fully annotated. In addition, we detected a total of 41,135 structural variations. Enrichment analysis demonstrated that genes involved in terpenoid biosynthesis were affected by these structural variations. Analysis of volatile metabolites showed that M. suaveolens mainly produces piperitenone oxide rather than menthol. We identified three genes in the M. suaveolens genome which encode isopiperitenone reductase (ISPR), a key rate-limiting enzyme in menthol biosynthesis. However, the transcription levels of ISPR were low. Given that other terpenoid biosynthesis genes were expressed, M. suaveolens ISPRs may account for the accumulation of piperitenone oxide in this species. The findings of this study may provide a valuable resource for improving the detection rate and accuracy of genetic variants, thereby enhancing our understanding of their impact on gene function and expression. Moreover, our haplotype-resolved gap-free genome assembly offers novel insights into molecular marker-assisted breeding of Mentha.

8.
Nat Commun ; 15(1): 1537, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378731

RESUMO

Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.


Assuntos
Alphacoronavirus , Benzodioxóis , Benzilisoquinolinas , Stephania , Animais , Suínos , China/epidemiologia , SARS-CoV-2 , Antivirais/farmacologia
9.
Chin Herb Med ; 16(1): 13-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375043

RESUMO

Medicinal plants are a valuable source of essential medicines and herbal products for healthcare and disease therapy. Compared with chemical synthesis and extraction, the biosynthesis of natural products is a very promising alternative for the successful conservation of medicinal plants, and its rapid development will greatly facilitate the conservation and sustainable utilization of medicinal plants. Here, we summarize the advances in strategies and methods concerning the biosynthesis and production of natural products of medicinal plants. The strategies and methods mainly include genetic engineering, plant cell culture engineering, metabolic engineering, and synthetic biology based on multiple "OMICS" technologies, with paradigms for the biosynthesis of terpenoids and alkaloids. We also highlight the biosynthetic approaches and discuss progress in the production of some valuable natural products, exemplifying compounds such as vindoline (alkaloid), artemisinin and paclitaxel (terpenoids), to illustrate the power of biotechnology in medicinal plants.

11.
Vector Borne Zoonotic Dis ; 24(4): 214-218, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38422215

RESUMO

Background: Chlamydia is a Gram-negative obligate intracellular bacterium that is pathogenic for humans and a large variety of veterinary animal species. However, there is no continuous monitoring of chlamydia infection data in pigs in Hunan province, southern China. Therefore, in order to evaluate the seroprevalence and identify risk factors associated with Chlamydia infection in pigs within this region, a comprehensive study was conducted. Methods: A total of 3848 serum samples were collected from pigs (from farmers and companies) between May 2017 and August 2018. The presence of specific antibodies against Chlamydia was determined through the employment of the indirect hemagglutination assay (IHA). Results: The overall seroprevalence of Chlamydia was determined to be 26.90% (1038/3848, 95% confidence interval: 25.60-28.40). By employing statistical analysis using SPSS software (p < 0.05), factors such as altitude, sampling regions, and rearing systems of pigs were identified as potential risk factors for Chlamydia infection. Conclusion: These findings elucidate a substantial prevalence of Chlamydia in pigs within the mountainous region of Hunan province, southern China, thereby highlighting a potential risk to human health. These results underscore the need for proactive measures and targeted interventions to mitigate the transmission of Chlamydia in porcine populations, safeguarding both animal welfare and public health.


Assuntos
Infecções por Chlamydia , Chlamydia , Doenças dos Suínos , Animais , Suínos , Humanos , Estudos Soroepidemiológicos , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/veterinária , Infecções por Chlamydia/microbiologia , Fatores de Risco , China/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia
12.
J Asian Nat Prod Res ; 26(1): 26-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38196236

RESUMO

Eight new caffeoyl derivatives, elephantomentosides A-H (1 - 8), together with ten known ones (9 - 18), were isolated from the whole plant of Elephantopos tomentosus L. Their structures were elucidated using detailed spectroscopic analysis. Structurally, compounds 1 - 8 are composed of ß-D-glucopyranose, and almost all of the substituent positions are at the C-1' and C-4' of glucopyranose. The anti-inflammatory and antioxidant activities of all isolated compounds were evaluated in vitro. Compounds 9-10, 13-15, and 17-18 exhibited significant DPPH scavenging capacity with IC50 values in the range of 10.01-25.07 µM, in comparison with Vc (IC50, 17.98 µM).


Assuntos
Antioxidantes , Asteraceae , Estrutura Molecular , Antioxidantes/farmacologia , Antioxidantes/química , Asteraceae/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
13.
Neural Netw ; 169: 597-606, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956576

RESUMO

In this research paper, we aim to investigate and address the limitations of recursive feature elimination (RFE) and its variants in high-dimensional feature selection tasks. We identify two main challenges associated with these methods. Firstly, the feature ranking criterion utilized in these approaches is inconsistent with the maximum-margin theory. Secondly, the computation of the criterion is performed locally, lacking the ability to measure the importance of features globally. To overcome these challenges, we propose a novel feature ranking criterion called Maximum Margin and Global (MMG) criterion. This criterion utilizes the classification margin to determine the importance of features and computes it globally, enabling a more accurate assessment of feature importance. Moreover, we introduce an optimal feature subset evaluation algorithm that leverages the MMG criterion to determine the best subset of features. To enhance the efficiency of the proposed algorithms, we provide two alpha seeding strategies that significantly reduce computational costs while maintaining high accuracy. These strategies offer a practical means to expedite the feature selection process. Through extensive experiments conducted on ten benchmark datasets, we demonstrate that our proposed algorithms outperform current state-of-the-art methods. Additionally, the alpha seeding strategies yield significant speedups, further enhancing the efficiency of the feature selection process.


Assuntos
Perfilação da Expressão Gênica , Máquina de Vetores de Suporte , Perfilação da Expressão Gênica/métodos , Algoritmos
14.
Sci China Life Sci ; 67(2): 258-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837531

RESUMO

Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.


Assuntos
Plantas Medicinais , Plantas Medicinais/genética , Melhoramento Vegetal , Genômica/métodos , Sequenciamento Completo do Genoma , Produtos Agrícolas/genética , Genoma de Planta/genética
15.
Int J Food Microbiol ; 410: 110442, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37984213

RESUMO

The raw and processed roots of Polygonum multiflorum Thunb is a popular traditional Chinese medicine. However, Polygoni Multiflori Radix is easily contaminated by toxigenic fungi and mycotoxins during harvesting, processing, and transportation, thereby posing a health risk for consumers. This study aims to investigate the presence of fungi on the surface of raw and processed Polygoni Multiflori Radix collected from four producing areas using high-throughput sequencing. Results showed that the phyla Ascomycota and Basidiomycota, the genera Xeromyces, Cystofilobasidium, Eurotium, and Aspergillus were the dominant fungus, and significant differences are presented in four areas and two processed products. Three potential mycotoxin-producing fungi were detected, namely Trichosporon cutaneum, Aspergillus restrictus, and Fusarium oxysporum. The α-diversity and network complexity showed significant differences in four areas. Chao 1 and Shannon were highest in Yunnan (YN), then incrementally decreased from SC (Sichuan) to AH (Anhui) and GD (Guangdong) areas. Meanwhile, α-diversity was also strongly influenced by processing. Chao 1 and Shannon indices were higher in the raw group, however, the network complexity and connectivity were higher in the processed group. In conclusion, the assembly and network of the surface microbiome on Polygoni Multiflori Radix were influenced by sampling location and processing. This work provides details on the surface microbiome of Polygoni Multiflori Radix samples, which could ensure the drug and consumers' safety.


Assuntos
Medicamentos de Ervas Chinesas , Micotoxinas , Polygonum , China , Medicina Tradicional Chinesa , Raízes de Plantas
16.
J Adv Res ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38092299

RESUMO

BACKGROUND: The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW: Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.

17.
Hortic Res ; 10(11): uhad197, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023481

RESUMO

Safflower (Carthamus tinctorius) is widely cultivated around the world for its seeds and flowers. The presence of linoleic acid (LA) in its seeds and hydroxysafflor yellow A (HSYA) in its flowers are the crucial traits that enable safflower to be used for industrial and medicinal purposes. Understanding the genetic control of these traits is essential for optimizing the quality of safflower and its breeding. To further this research, we present a chromosome-scale assembly of the genome of the safflower variety 'Chuanhonghua 1', which was achieved using an integrated strategy combining Illumina, Oxford Nanopore, and Hi-C sequencing. We obtained a 1.17-Gb assembly with a contig N50 of 1.08 Mb, and all assembled sequences were assigned to 12 pseudochromosomes. Safflower's evolution involved the core eudicot γ-triplication event and a whole-genome duplication event, which led to large-scale genomic rearrangements. Extensive genomic shuffling has occurred since the divergence of the ancestor of dicotyledons. We conducted metabolite and transcriptome profiles with time- and part-dependent changes and screened candidate genes that significantly contribute to seed lipid biosynthesis. We also analyzed key gene families that participate in LA and HSYA biosynthesis. Additionally, we re-sequenced 220 safflower lines and carried out a genome-wide association study using high-quality SNP data for eight agronomic traits. We identified SNPs related to important traits in safflower. Besides, the candidate gene HH_034464 (CtCGT1) was shown to be involved in the biosynthesis of HSYA. Overall, we provide a high-quality reference genome and elucidate the genetic basis of LA and HSYA biosynthesis in safflower. This vast amount of data will benefit further research for functional gene mining and breeding in safflower.

18.
Nat Commun ; 14(1): 6470, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833361

RESUMO

Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.


Assuntos
Aesculus , Escina , Aesculus/genética , Esculina , Escherichia coli
19.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4959-4966, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802837

RESUMO

The suitable habitat for the endangered and valuable medicinal herb Panax ginseng is gradually decreasing. It is crucial to investigate its suitable growing areas in China for global protection and sustainable utilization of P. ginseng. In this study, 371 distribution points of P. ginseng were collected, and 21 environmental factors were used as ecological indicators. The geographic information system for global medicinal plants(GMPGIS) system, MaxEnt model, and Thiessen polygon method were used to analyze the potential suitable areas for P. ginseng globally. The results showed that the key environmental variables affecting P. ginseng were precipitation in the hottest quarter(Bio18) and the coefficient of temperature seasonality(Bio4). The suitable habitats for P. ginseng were mostly located in the "One Belt, One Road" countries such as China, Japan, South Korea, North Korea, and Russia. The highly suitable habitats were mainly distributed along mountain ranges in southeastern Shandong, southern Shanxi and Shaanxi, northern Jiangsu, and northwestern Henan of China. Data analysis indicated that the current P. ginseng planting sites were all in high suitability zones, and the Thiessen polygon results showed that the geographic locations of P. ginseng production companies were unbalanced and urgently needed optimization. This study provides data support for P. ginseng planting site selection, scientific introduction, production layout, and long-term development planning.


Assuntos
Panax , Plantas Medicinais , Ecossistema , China , Sistemas de Informação Geográfica , Temperatura
20.
Heliyon ; 9(9): e19796, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810035

RESUMO

Medicinal and edible seed Semen Persicae is susceptible to mycotoxin and fungal contamination. However, the occurrence of mycotoxin contamination and fungal infection is still unclear. In this paper, ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry and high-throughput sequencing were conducted to determine the mycotoxin contents and fungal abundances of Semen Persicae. 42.86% of samples were positive for aflatoxin B1 (26.48-48.37 µg/kg) and 28.57% of samples were positive for aflatoxin B2 (1.47-4.82 µg/kg). Ochratoxin A and fumonisin B1 were only detected in one sample (91.02 and 34.61 µg/kg, respectively). Chao 1 and Shannon indices were significantly higher in the Dalian of Liaoning, Baotou of Innermongolia and Langfang of Hebei regions than in other groups. Ascomycota, Basidiomycota, Wallemia, Candica, Saccharomyces and Aspergillus were the predominant fungi and they were significantly region-specific. Simultaneously, the diversity, composition and co-occurrence network complexity in the mycotoxin-free group were significantly higher than those in the mycotoxin-contaminated group. Spearman correlation analysis showed aflatoxins, ochratoxin A and fumonisins contents were positively and significantly correlated with the abundances of Aspergillus, Rhodotorula, Wallemia and Candida. In conclusion, this study reported the prevalence of mycotoxin contamination and the great diversity of fungi associated with Semen Persicae for the first time, providing an early warning for subsequent potential mycotoxin biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA