RESUMO
Dark exciton states show great potential in condensed matter physics and optoelectronics because of their long lifetime and rich distribution in band structures. Therefore, they can theoretically serve as efficient energy reservoirs, providing a platform for future applications. However, their optical-transition-forbidden nature severely limits their experimental exploration and hinders their current application. Here, we demonstrate a universal dark state nonlinear energy transfer (ET) mechanism in monolayer WS2/CsPbBr3 van der Waals heterostructures under two-photon excitation, which successfully utilizes the enormous energy reserved in the dark exciton state of CsPbBr3 to significantly improve the photoelectric performance of monolayer WS2. We first propose the scenario of resonant ET between the dark state of CsPbBr3 and WS2, and then reveal that this is a typical Förster resonant ET and belongs to the 2D-2D category. Interestingly, the dark state ET in CsPbBr3 is identified as a long-range donor-bridge-acceptor hopping mode, with a potential distance exceeding 200 nm. Finally, we successfully achieve nearly an order of magnitude enhancement in the near-infrared detection performance of monolayer WS2. Our results enrich the theory of dark exciton states and ET, and they provide a way of using dark exciton states for future practical applications.
RESUMO
Micro/nano photonic barcoding has emerged as a promising technology for information security and anti-counterfeiting applications owing to its high security and robust tamper resistance. However, the practical application of conventional micro/nano photonic barcodes is constrained by limitations in encoding capacity and identification verification (e.g., broad emission bandwidth and the expense of pulsed lasers). Herein, we propose high-capacity photonic barcode labels by leveraging continuous-wave (CW) pumped monolayer tungsten disulfide (WS2) lasing. Large-area, high-quality monolayer WS2 films were grown via a vapor deposition method and coupled with external cavities to construct optically pumped microlasers, thus achieving an excellent CW-pumped lasing with a narrow linewidth (~0.39 nm) and a low threshold (~400 W cm-2) at room temperature. Each pixel within the photonic barcode labels consists of closely packed WS2 microlasers of varying sizes, demonstrating high-density and nonuniform multiple-mode lasing signals that facilitate barcode encoding. Notably, CW operation and narrow-linewidth lasing emission could significantly simplify detection. As proof of concept, a 20-pixel label exhibits a high encoding capacity (2.35 × 10108). This work may promote the advancement of two-dimensional materials micro/nanolasers and offer a promising platform for information encoding and security applications.
RESUMO
As p-type phase-change degenerate semiconductors, crystalline and amorphous germanium telluride (GeTe) exhibit metallic and semiconducting properties, respectively. However, the massive structural defects and strong interface scattering in amorphous GeTe films significantly reduce their performance. In this work, two-dimensional (2D) p-type GeTe nanosheets are synthesized via a specially designed space-confined chemical vapor deposition (CVD) method, with the thickness of the GeTe nanosheets reduced to 1.9 nm. The space-confined CVD method improves the crystallinity of ultrathin GeTe by lowering the partial pressure of the reactant gas, resulting in GeTe nanosheets with excellent p-type semiconductor properties, such as a satisfactory on/off ratio of 105. Temperature-dependent electrical measurements demonstrate that variable-range hopping and optical-phonon-assisted hopping mechanisms dominate transport behavior at low and high temperatures, respectively. GeTe devices exhibit significantly high responsivity (6589 and 2.2 A W-1 at 633 and 980 nm, respectively) and detectivity (1.67 × 1011 and 1.3 × 108 Jones at 633 and 980 nm, respectively), making them feasible for broadband photodetectors in the visible to near-infrared range. Furthermore, the fabricated GeTe/WS2 diode exhibits a rectification ratio of 103 at zero gate voltage. These satisfactory p-type semiconductor properties demonstrate that ultrathin GeTe exhibits enormous potential for applications in optoelectronic interconnection circuits.
RESUMO
2D transition metal dichalcogenides (TMDCs) are considered as promising materials in post-Moore technology. However, the low photoluminescence quantum yields (PLQY) and single carrier polarity due to the inevitable defects during material preparation are great obstacles to their practical applications. Here, an extraordinary defect engineering strategy is reported based on first-principles calculations and realize it experimentally on WS2 monolayers by doping with IIIA atoms. The doped samples with large sizes possess both giant PLQY enhancement and effective carrier polarity modulation. Surprisingly, the high PL emission maintained even after one year under ambient environment. Moreover, the constructed p-n homojunctions shows high rectification ratio (≈2200), ultrafast response times and excellent stability. Meanwhile, the doping strategy is universally applicable to other TMDCs and dopants. This smart defect engineering strategy not only provides a general scheme to eliminate the negative influence of defects, but also utilize them to achieve desired optoelectronic properties for multifunctional applications.
RESUMO
Low-dimensional group IV-VI metal chalcogenide-based semiconductors hold great promise for opto-electronic device applications owing to their diverse crystalline phases and intriguing properties related to thermoelectric and ferroelectric effects. Herein, we demonstrate a universal chemical vapor deposition (CVD) growth method to synthesize stable germanium chalcogenide-based (GeS, GeS2, GeSe, GeSe2) nanosheets, which increases the library of the p-type semiconductor. The phase transition between different crystalline polytypes can be deterministically controlled by hydrogen concentration in the reaction chamber. Structural characterization and synthesis experiments identify the behavior, where the higher hydrogen concentration promotes the transiton from germanium dichalcogenides to germanium monochalcogenides. The angle-polarized and temperature-dependent Raman spectra demonstrate the strong interlayer coupling and lattice orientation. Based on the optimized growth scheme and systematic comparison of electrical properties, GeSe nanosheet photodetectors were demonstrated, which exhibit superior device performance on SiO2/Si and HfO2/Si substrate with a high photoresponsivity up to 104 A W-1, fast response time less than 15 ms, and high mobility of 3.2 cm2 V-1 s-1, which is comparable to the mechanically exfoliated crystals. Our results manifest the hydrogen-mediated deposition strategy as a facile control knob to engineer crystalline phases of germanium chalcogenides for high performance optoelectronic devices.
RESUMO
Moiré superlattices in twisted van der Waals materials offer a powerful platform for exploring light-matter interactions. The periodic moiré potentials in moiré superlattices can induce strongly correlated quantum phenomena that depend on the moiré potential associated with interlayer coupling at the interface. However, moiré superlattices are primarily prepared by mechanical exfoliation and manual stacking, where the transfer methods easily cause interfacial contamination, and the preparation of high-quality bilayer 2D materials with small twist angles by growth methods remains a significant challenge. In this work, WSe2 /WSe2 homobilayers with different twist angles by chemical vapor deposition (CVD), using a heteroatom-assisted growth technique, are synthesized. Using low-frequency Raman scattering, the uniformity of the moiré superlattices is mapped to demonstrate the strong interfacial coupling of the CVD-fabricated twist-angle homobilayers. The moiré potential depths of the CVD-grown and artificially stacked homostructures with twist angles of 1.5° are 115 and 45 meV (an increase of 155%), indicating that the depth of moiré potential can be modulated by the interfacial coupling. These results open a new avenue to study the modulation of moiré potential by strong interlayer coupling and provide a foundation for the development of twistronics.
RESUMO
Recent advances in twisted van der Waals heterostructure superlattices have emerged as a powerful and attractive platform for exploring novel condensed matter physics due to the interplay between the moiré potential and Coulomb interactions. The moiré superlattices act as a periodic confinement potential in space to capture interlayer excitons (IXs), resulting in moiré exciton arrays, which provide opportunities for quantum emitters and many-body physics. The observation of moiré IXs in twisted transition-metal dichalcogenide (TMD) heterostructures has recently been widely reported. However, the capture and study of the moiré intralayer excitons based on TMD twisted homobilayer (T-HB) remain elusive. Here, we report the observation of moiré intralayer excitons in a WSe2/WSe2 T-HB with a small twist angle by measuring PL spectrum. The multiple split peaks with an energy range of 1.55-1.73 eV are different from that of the monolayer WSe2 exciton peaks. The split peaks were caused by the trapping of intralayer excitons via the moiré potential. The confinement effect of the moiré potential on the moiré intralayer excitons was further demonstrated by the changing of temperature, laser power, and valley polarization. Our findings provide a new avenue for exploring new correlated quantum phenomena and their applications.
RESUMO
Achieving facile control of the wavelength of light emitters is of great significance for many key applications in optoelectronics and photonics, including on-chip interconnection, super-resolution imaging, and optical communication. The Joule heating effect caused by electric current is widely applied in modulating the refractive index of silicon-based waveguides for reconfigurable nanophotonic circuits. Here, by utilizing localized Joule heating in the biased graphene device, we demonstrate electrically controlled wavelength-tunable photoluminescence (PL) from vertical van der Waals heterostructures combined by graphene and two-dimensional transition metal dichalcogenides (2D-TMDCs). By applying a moderate electric field of 6.5 kV·cm-1 to the graphene substrate, the PL wavelength of 2D-TMDCs exhibits a continuous tuning from 662 to 690 nm, corresponding to a bandgap reduction of 76 meV. The electric control is highly reversible during sweeping the bias back and forth. The temperature dependence of Raman and PL spectroscopy reveals that the current-induced local Joule heating effect plays a leading role in reducing the optical direct bandgap of TMDCs. The bias-dependent optical reflectivity and time-resolved photoluminescence measurements show a consistent reduction of the optical band gap of 2D-TMDCs and increased PL lifetimes with the electric field over the heterostructures. Moreover, we demonstrate the consistent device operation from 2D materials grown by chemical vapor deposition, showing great advantages for the scalability.
RESUMO
Transition metal dichalcogenides (TMDs) have emerged as two-dimensional (2D) building blocks to construct nanoscale light sources. To date, a wide array of TMD-based light-emitting devices (LEDs) have been successfully demonstrated. Yet, their atomically thin and planar nature entails an additional waveguide/microcavity for effective optical routing/confinement. In this sense, integration of TMDs with electronically active photonic nanostructures to form a functional heterojunction is of crucial importance for 2D optoelectronic chips with reduced footprint and higher integration capacity. Here, we report a room-temperature waveguide-integrated light-emitting device based on a p-type monolayer (ML) tungsten diselenide (WSe2) and n-type cadmium sulfide (CdS) nanoribbon (NR) heterojunction diode. The hybrid LED exhibited clear rectification under forward biasing, giving pronounced electroluminescence (EL) at 1.65 eV from exciton resonances in ML WSe2. The integrated EL intensity against the driving current shows a superlinear profile at a high current level, implying a facilitated carrier injection via intervalley scattering. By leveraging CdS NR waveguides, the WSe2 EL can be efficiently coupled and further routed for potential optical interconnect functionalities. Our results manifest the waveguided LEDs as a dual-role module for TMD-based optoelectronic circuitries.
RESUMO
Transition metal dichalcogenide monolayers exhibit ultrahigh surface sensitivity since they expose all atoms to the surface and thereby influence their optoelectronic properties. Here, we report an intriguing lightening of the photoluminescence (PL) from the edge to the interior over time in the WS2 monolayers grown by physical vapor deposition method, with the whole monolayer brightened eventually. Comprehensive optical studies reveal that the PL enhancement arises from the p doping induced by oxygen adsorption. First-principles calculations unveil that the dissociation of chemisorbed oxygen molecule plays a significant role; i.e., the dissociation at one site can largely promote the dissociation at a nearby site, facilitating the photoluminescence lightening. In addition, we further manipulate such PL brightening rate by controlling the oxygen concentration and the temperature. The presented results uncover the extraordinary surface chemistry and related mechanism in WS2 monolayers, which deepens our insight into their unique PL evolution behavior.
RESUMO
Visible light catalysis has been widely coupled with persulfate activation for refractory pollutants removal, while the exact role of persulfate played in such composite system is still questionable. In this work, the relation between peroxymonosulfate (PMS) induced structure change and visible light responsive activity of inverse spinel: i.e., Zn2SnO4, was deciphered. Under the visible light illumination (λ> 420nm) PMS addition would endow the composite system with pollutant removal performance. Batch test revealed that 60% of bisphenol-A (5 mg L-1) was mineralized within 3 h reaction time, by dosing 0.81 mM PMS and 0.1 g L-1 catalyst. The above oxidative system was also effective for other refractory pollutants elimination. Further analysis indicated that PMS could reduce the band gap of spinel from 2.75 to 2.52 eV and thereby enabling its visible light activity. Photogenerated h+ induced â¢OH and e- mediated â¢O2- contributed to the pollutant removal while h+ played a leading role. Density functional theory revealed that PMS would capture oxygen atom of spinel and induce surface oxygen vacancy defect structure formation. Also, three-oxygen atom coordinated Zn was identified as the possible catalyze site. This work is valuable for deep understanding the exact role of persulfate in photocatalytic system.
RESUMO
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted extensive attention due to their unique electronic and optical properties. In particular, TMDs can be flexibly combined to form diverse vertical van der Waals (vdWs) heterostructures without the limitation of lattice matching, which creates vast opportunities for fundamental investigation of novel optoelectronic applications. Here, we report an atomically thin vertical p-n junction WSe2/MoS2 produced by a chemical vapor deposition method. Transmission electron microscopy and steady-state photoluminescence experiments reveal its high quality and excellent optical properties. Back gate field effect transistor (FET) constructed using this p-n junction exhibits bipolar behaviors and a mobility of 9 cm2/(V·s). In addition, the photodetector based on MoS2/WSe2 heterostructures displays outstanding optoelectronic properties (R = 8 A/W, D* = 2.93 × 1011 Jones, on/off ratio of 104), which benefited from the built-in electric field across the interface. The direct growth of TMDs p-n vertical heterostructures may offer a novel platform for future optoelectronic applications.
RESUMO
High-index semiconductor nanoantennae represent a powerful platform for nonlinear photon generation. Devices with reduced footprints are pivotal for higher integration capacity and energy efficiency in photonic integrated circuitry (PIC). Here, we report on a deep subwavelength nonlinear antenna based on dilute nitride GaNP nanowires (NWs), whose second harmonic generation (SHG) shows a 5-fold increase by incorporating â¼0.45% of nitrogen (N), in comparison with GaP counterpart. Further integrating with a gold (Au) thin film-based hybrid cavity achieves a significantly boosted SHG output by a factor of â¼380, with a nonlinear conversion efficiency up to 9.4 × 10-6 W-1. In addition, high-density zinc blende (ZB) twin phases were found to tailor the nonlinear radiation profile via dipolar interference, resulting in a highly symmetric polarimetric pattern well-suited for coupling with polarization nano-optics. Our results manifest dilute nitride nanoantenna as promising building blocks for future chip-based nonlinear photonic technology.
RESUMO
Van der Waals (vdW) heterostructures based on transition metal dichalcogenides (TMDs) generally possess a type-II band alignment that facilitates the formation of interlayer excitons between constituent monolayers. Manipulation of the interlayer excitons in TMD vdW heterostructures holds great promise for the development of excitonic integrated circuits that serve as the counterpart of electronic integrated circuits, which allows the photons and excitons to transform into each other and thus bridges optical communication and signal processing at the integrated circuit. As a consequence, numerous studies have been carried out to obtain deep insight into the physical properties of interlayer excitons, including revealing their ultrafast formation, long population recombination lifetimes, and intriguing spin-valley dynamics. These outstanding properties ensure interlayer excitons with good transport characteristics, and may pave the way for their potential applications in efficient excitonic devices based on TMD vdW heterostructures. At present, a systematic and comprehensive overview of interlayer exciton formation, relaxation, transport, and potential applications is still lacking. In this review, we give a comprehensive description and discussion of these frontier topics for interlayer excitons in TMD vdW heterostructures to provide valuable guidance for researchers in this field.
RESUMO
Ruddlesden-Popper (RP) metal halide perovskites are considered as promising optoelectronic materials due to their good environmental stability and desirable optoelectronic properties. However, the phase composition and ordering in the deposited film, with a fixed ratio of large organic spacer cation in the precursor solution, are hard to be further tailored for specific optoelectronic applications. Herein, it is shown that even with a fixed spacer cation ratio, the phase composition and ordering can still be largely regulated by utilizing different crystallization kinetics of various cations with the inorganic octahedral lead halide. By using two different short cations to compete with the large spacer cation, the phase composition can be continuously tailored from thin multiple quantum wells (MQWs) dominated to 3D perovskite dominated. The phase ordering can be reversed from small n phases' prior to large n phases' prior near the substrate. Finally, with the same amount of large spacer cation protection, the perovskite can be tailored for both high-performance electroluminescence and photovoltaics with favorable energetic landscape for the corresponding desired first-order excitonic recombination and second-order free electron-hole recombination, respectively. This exploration substantially contributes to the understanding of precise phase engineering in RP perovskite and may provide a new insight into the design of multiple functional devices.
RESUMO
Single-atom catalysts (SACs) have attracted great attention due to their high atom-utilization and catalytic efficiency. However, a universal synthetic route is still lacking, which restricts the SAC-related investigation and application. Here, we report a simple and cost-effective method to fabricate transition metal SACs through ion exchange and annealing procedures. Benefiting from the "egg-box" structure property of alginate, the metal ion can be effectively anchored into the organic center. Using CuCl2 as a representative transition metal ion, the Cu SAC structure was synthesized and identified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy. Through optimizing CuCl2 concentration, the obtained Cu SAC exhibited a good oxygen reduction reaction activity, whose onset potential, half wave potential, and limiting current density are all comparable to those of 20 wt % Pt/C. Cu-N4 was identified as the responsible catalytic site. More importantly, other transition metal SACs can be easily synthesized via altering metallic solution, which proves the universality of our proposed method. This work may be valuable for the cost-effective and universal SAC synthetic method development.
RESUMO
The generation and manipulation of spin polarization at room temperature are essential for 2D van der Waals (vdW) materials-based spin-photonic and spintronic applications. However, most of the high degree polarization is achieved at cryogenic temperatures, where the spin-valley polarization lifetime is increased. Here, we report on room temperature high-spin polarization in 2D layers by reducing its carrier lifetime via the construction of vdW heterostructures. A near unity degree of polarization is observed in PbI2 layers with the formation of type-I and type-II band aligned vdW heterostructures with monolayer WS2 and WSe2. We demonstrate that the spin polarization is related to the carrier lifetime and can be manipulated by the layer thickness, temperature, and excitation wavelength. We further elucidate the carrier dynamics and measure the polarization lifetime in these heterostructures. Our work provides a promising approach to achieve room temperature high-spin polarizations, which contribute to spin-photonics applications.
RESUMO
With unique valley-dependent optical and optoelectronic properties, 2D transition metal dichalcogenides (2D TMDCs) are promising materials for valleytronics. Second-harmonic generation (SHG) in 2D TMDCs monolayers has shown valley-dependent optical selection rules. However, SHG in monolayer TMDCs is generally weak; it is important to obtain materials with both strong SHG signals and a large degree of polarization. In the work, a variety of inversion-symmetry-breaking (3R-like phase) TMDCs (WSe2 , WS2 , MoS2 ) atomic layers, spiral structures, and heterostructures are prepared, and their SHG polarization is studied. Through circular-polarization-resolved SHG experiments, it is demonstrated that the SHG intensity is enhanced in thicker samples by breaking inversion symmetry while maintaining the degree of polarization close to unity at room temperature. By studying TMDCs with different twist angles and the spiral structures, it is found that there is no significant effect of multilayer interlayer interaction on valley-dependent SHG. The realization of strong SHG with high degree of polarization may pave the way toward a new platform for nonlinear optical valleytronics devices based on 2D semiconductors.
RESUMO
Layered two-dimensional transition-metal dichalcogenides (2D-TMDs) are promising building blocks for ultracompact optoelectronic applications. Recently, a strong second harmonic generation (SHG) was observed in spiral stacked TMD nanostructures which was explained by its low crystal symmetry. However, the relationship between the efficiency of SHG signals and the electronic band structure remains unclear. Here, we show that the SHG signal in spiral WS2 nanostructures is strongly enhanced (â¼100 fold increase) not only when the second harmonic signal is in resonance with the exciton states but also when the excitation energy is slightly above the electronic band gap, which we attribute to a large interband Berry connection associated with certain optical transitions in spiral WS2. The giant SHG enhancement observed and explained in this study could promote the understanding and utility of TMDs as highly efficient nonlinear optical materials and potentially lead to a new pathway to fabricate more efficient optical energy conversion devices.
RESUMO
Van der Waals layered semiconductor materials own unique physical properties and have attracted intense interest in developing high-performance electronic and photonic devices. Among them, black phosphorus (BP) is distinct for its layer number-tuned direct band gap which spans from near- to mid-infrared (MIR) waveband. In addition, the puckered honey comb crystal lattice endows the material with highly linear-polarized emission and marked anisotropy in carrier transportation. These unique material properties render BP as an intriguing and promising building block for constructing mid-infrared-ranged coherent light sources. Here, a room temperature surface-emitting MIR laser based on single crystalline BP nanosheets coupled with a distributed Bragg reflector cavity is reported. MIR stimulated emission at 3611 nm is achieved with a near-unity linear polarization, which exhibits robust thermal stability up to 360 K. Most importantly, the lasing wavelength can be tuned from 3425 to 4068 nm by varying the cavity length via thickness control of BP layer. The demonstrated highly polarized lasing output and wavelength-tunable capacity of the proposed device scheme in MIR spectral range opens up promising opportunities for a broad array of applications in polarization-resolved IR imaging, range-finding, and free space quantum communications.