Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
EBioMedicine ; 103: 105137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703606

RESUMO

BACKGROUND: Coronary artery disease (CAD) is a prevalent cardiovascular condition, and numerous studies have linked gut bacterial imbalance to CAD. However, the relationship of gut fungi, another essential component of the intestinal microbiota, with CAD remains poorly understood. METHODS: In this cross-sectional study, we analyzed fecal samples from 132 participants, split into 31 healthy controls and 101 CAD patients, further categorized into stable CAD (38), unstable angina (41), and acute myocardial infarction (22) groups. We conducted internal transcribed spacer 1 (ITS1) and 16S sequencing to examine gut fungal and bacterial communities. FINDINGS: Based on ITS1 analyses, Ascomycota and Basidiomycota were the dominant fungal phyla in all the groups. The α diversity of gut mycobiome remained unaltered among the control group and CAD subgroups; however, the structure and composition of the mycobiota differed significantly with the progression of CAD. The abundances of 15 taxa gradually changed with the occurrence and progression of the disease and were significantly correlated with major CAD risk factor indicators. The mycobiome changes were closely linked to gut microbiome dysbiosis in patients with CAD. Furthermore, disease classifiers based on gut fungi effectively identified subgroups with different degrees of CAD. Finally, the FUNGuild analysis further categorized these fungi into distinct ecological guilds. INTERPRETATION: In conclusion, the structure and composition of the gut fungal community differed from healthy controls to various subtypes of CAD, revealing key fungi taxa alterations linked to the onset and progression of CAD. Our study highlights the potential role of gut fungi in CAD and may facilitate the development of novel biomarkers and therapeutic targets for CAD. FUNDING: This work was supported by the grants from the National Natural Science Foundation of China (No. 82170302, 92168117, 82370432), National clinical key specialty construction project- Cardiovascular Surgery, the Reform and Development Program of Beijing Institute of Respiratory Medicine (No. Ggyfz202417, Ggyfz202308), the Beijing Natural Science Foundation (No. 7222068); and the Clinical Research Incubation Program of Beijing Chaoyang Hospital Affiliated to Capital Medical University (No. CYFH202209).


Assuntos
Doença da Artéria Coronariana , Microbioma Gastrointestinal , Micobioma , Humanos , Doença da Artéria Coronariana/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Fezes/microbiologia , Metagenômica/métodos , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Índice de Gravidade de Doença , Disbiose/microbiologia , Estudos de Casos e Controles , RNA Ribossômico 16S/genética , Adulto
2.
ACS Appl Mater Interfaces ; 16(19): 24908-24919, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706177

RESUMO

Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.

3.
Toxicology ; : 153831, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768701

RESUMO

Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5µM, 10µM, or 20µM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.

4.
Phys Chem Chem Phys ; 26(12): 9568-9577, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456630

RESUMO

Electronically induced transparency (EIT) is a coherent optical phenomenon that induces interference within atoms, allowing certain specific frequencies of light to pass through atomic media without being absorbed. However, EIT systems face challenges related to narrow transparency windows and precise control of slow light. We propose an interference structure based on a coupled dual bound states in the continuum (BIC) system to emulate the EIT-like effect. By integrating quasi-BIC (bright mode) with BIC (dark mode), our design successfully achieves an EIT-like effect in a narrow bright mode with a full width at half maximum (FWHM) of less than 1 nm. Its notable features are the bright mode's wide tunability achieved through structural parameter adjustment and a significant group delay of up to 14.43 ps. Additionally, integrating graphene into the BIC structure introduced a form of active tunability akin to the EIT-like effect. We numerically calculate the coupling structure, and its intrinsic mechanism is analyzed. Analysis based on coupled-mode theory confirms that this active modulation primarily stems from changes in the BIC structure's loss. Due to its special frequency selectivity and insensitivity to the polarization of the light source, this narrow-band EIT-like structure is particularly suitable for high-precision optical sensing and spectroscopy. The significant group delay of this structure enhances the interaction between light and matter, improving the accuracy and efficiency of optical signal control and data transmission, opening up new avenues for slow light applications and making significant progress in the development of active tunable optical switches and modulators.

5.
Discov Nano ; 19(1): 44, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472539

RESUMO

Thanks to high performance above room temperature, antimonide laser diodes have shown great potential for broad application in the mid-infrared spectral region. However, the laser`s performance noticeably deteriorates due to the reduction of carrier confinement with increased emission wavelength. In this paper, a novel active region with higher carrier confinements both of electron and hole, by the usage of an indirect bandgap material of Al0.5GaAs0.04Sb as the quantum barrier, was put up to address the poor carrier confinement of GaSb-based type-I multi-quantum-well (MQW) diode lasers emission wavelength above 2.5 µm. The carrier confinement and the differential gain in the designed active region are enhanced as a result of the first proposed usage of an indirect-gap semiconductor as the quantum barrier with larger band offsets in conduction and valence bands, leading to high internal quantum efficiency and low threshold current density of our lasers. More importantly, the watt-level output optical power is obtained at a low injection current compared to the state of the art. Our work demonstrates a direct and cost-effective solution to address the poor carrier confinement of the GaSb-based MQW lasers, thereby achieving high-power mid-infrared lasers.

6.
Int J Biol Macromol ; 262(Pt 2): 130130, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354921

RESUMO

Poly (L-lactic acid) (PLLA) composite materials with both excellent antibacterial properties and mechanical properties are highly desirable for both food packaging and biomedical applications. However, a facile method to prepare transparent PLLA composite films with both excellent antibacterial and mechanical properties is still lacking. In this work, blend films based on PLLA, tea polyphenols (TP) and poly (styrene-co-glycidyl methacrylate) (SG) copolymers (PLLA/TP/SG) were prepared by melt blending using twin screw extruder. The blend films showed high transparency with a brownish color originated from tea polyphenols. Both SEM and DSC analyses confirmed that the blends are thermodynamically compatible. GPC and mechanical assessments demonstrated that the PLLA/TP binary blends exhibit reduced molecular weight and compromised mechanical properties, compared to neat PLLA. However, incorporating SG copolymer resulted in increased molecular weight and improved mechanical properties for the PLLA/TP/SG blends. The FT-IR spectra exhibited a shift to lower wavenumber for the absorption peak associated with the benzene ring on TPs after blending with PLLA and SG, indicating the occurrence of transesterification between PLLA and TP. Plate coating studies revealed that the PLLA/TP/SG blends with TP incorporation at 5 wt% exhibited a bacteriostatic rate of 99.99 % against Staphylococcus aureus and Escherichia coli. Overall, our study reveals that the PLLA/TP/SG blend films exhibit excellent antibacterial properties coupled with good mechanical properties, rendering them a promising candidate for antibacterial packaging materials.


Assuntos
Antibacterianos , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Ácido Láctico , Chá
7.
Nano Lett ; 24(12): 3661-3669, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408021

RESUMO

The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 µm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.

8.
Biomedicines ; 12(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397900

RESUMO

The gut microbiome's imbalance has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), yet the contribution of the gut mycobiome remains largely unclear. This study delineates the gut mycobiome profile in PAH and examines its interplay with the bacterial microbiome alterations. Fecal samples from monocrotaline-induced PAH rats and matched controls were subjected to internal transcribed spacer 1 (ITS1) sequencing for fungal community assessment and 16S ribosomal RNA (rRNA) gene sequencing for bacterial community characterization. Comparative analysis revealed no significant disparities in the overall mycobiome diversity between the PAH and control groups. However, taxonomic profiling identified differential mycobiome compositions, with the PAH group exhibiting a significant enrichment of genera such as Wallemia, unidentified_Branch02, Postia, Malassezia, Epicoccum, Cercospora, and Alternaria. Conversely, genera Xeromyces, unidentified_Plectosphaerellaceae, and Monilia were more abundant in the controls. Correlations of Malassezia and Wallemia abundance with hemodynamic parameters were observed. Indications of bidirectional fungal-bacterial community interactions were also noted. This investigation reveals distinct gut mycobiome alterations in PAH, which are intricately associated with concurrent bacterial microbiome changes, suggesting a possible contributory role of gut fungi in PAH pathophysiology. These findings underscore the potential for novel gut mycobiome-targeted therapeutic interventions in PAH management.

9.
J Cardiovasc Transl Res ; 17(1): 183-196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37603208

RESUMO

Ferroptosis plays a critical role in pulmonary arterial hypertension (PAH)-induced right ventricular (RV) dysfunction, but key genes remain largely unclear. We here identified HMOX1 as an essential ferroptosis-related differentially expressed gene in PAH by bioinformatic analysis using FerrDb, GSE119754, and GSE3675 datasets, respectively. Notably, there were marked increases in HMOX1 and iron levels in RV of monocrotaline-induced PAH rats with reduced TAPSE levels. More importantly, treatment with ferrostatin-1 effectively attenuated RV hypertrophy, remodeling, myocardial fibrosis, and dysfunction in PAH rats. In cultured H9C2 cells and primary neonatal rat cardiomyocytes, pretreatment with ferrostatin-1 and knockdown HMOX1 by siRNA strikingly blunted hypoxia-induced promotion of lipid peroxidation, ferroptosis, and cardiomyocyte injury by potentiating glutathione (GSH) and nitric oxide signaling, respectively. In summary, ferrostatin-1 attenuates RV hypertrophy, fibrosis, and dysfunction in PAH by suppressing the HMOX1/GSH signaling. Targeting HMOX1 ferroptosis signaling functions as a potential therapeutic strategy for patients with PAH.


Assuntos
Cicloexilaminas , Hipertensão Pulmonar , Fenilenodiaminas , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Humanos , Ratos , Animais , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/genética , Miócitos Cardíacos , Remodelação Ventricular , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Heme Oxigenase-1/farmacologia , Heme Oxigenase-1/uso terapêutico
10.
ACS Nano ; 17(21): 22046-22059, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37918441

RESUMO

Despite exciting advances in gene editing, the efficient delivery of genetic tools to extrahepatic tissues remains challenging. This holds particularly true for the skin, which poses a highly restrictive delivery barrier. In this study, we ran a head-to-head comparison between Cas9 mRNA or ribonucleoprotein (RNP)-loaded lipid nanoparticles (LNPs) to deliver gene editing tools into epidermal layers of human skin, aiming for in situ gene editing. We observed distinct LNP composition and cell-specific effects such as an extended presence of RNP in slow-cycling epithelial cells for up to 72 h. While obtaining similar gene editing rates using Cas9 RNP and mRNA with MC3-based LNPs (10-16%), mRNA-loaded LNPs proved to be more cytotoxic. Interestingly, ionizable lipids with a pKa ∼ 7.1 yielded superior gene editing rates (55%-72%) in two-dimensional (2D) epithelial cells while no single guide RNA-dependent off-target effects were detectable. Unexpectedly, these high 2D editing efficacies did not translate to actual skin tissue where overall gene editing rates between 5%-12% were achieved after a single application and irrespective of the LNP composition. Finally, we successfully base-corrected a disease-causing mutation with an efficacy of ∼5% in autosomal recessive congenital ichthyosis patient cells, showcasing the potential of this strategy for the treatment of monogenic skin diseases. Taken together, this study demonstrates the feasibility of an in situ correction of disease-causing mutations in the skin that could provide effective treatment and potentially even a cure for rare, monogenic, and common skin diseases.


Assuntos
Nanopartículas , Dermatopatias , Humanos , Edição de Genes/métodos , Lipossomos , Ribonucleoproteínas/genética , RNA Mensageiro
11.
Phys Chem Chem Phys ; 25(42): 29358-29364, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877334

RESUMO

We demonstrate that wide-angle narrowband absorption can be achieved from a microcavity where a hyperbolic metamaterial and a dielectric layer are sandwiched between two metal reflectors. As the incident angle changes, the phase-shift variation in the hyperbolic metamaterial can compensate that in the dielectric layer and, consequently, result in the angle-insensitive Fabry-Perot resonance in the proposed cavity. Silicon, indium tin oxide (ITO), and gold layers are used to construct the microcavity to produce a narrow absorption band in the near-infrared region. Our device exhibits good absorption stability over a wide angle range of incidence from 0° to 70°. Moreover, the absorption wavelength can be tuned by changing the thickness of the resonator. The presented absorber may find potential applications in the design of narrowband thermophotovoltaic emitters, sensitive detectors, filters, etc.

12.
Opt Express ; 31(21): 34011-34020, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859166

RESUMO

In this paper, we put up a robust design of a stable single-mode-operated GaSb-based laser diode emitting around 1950nm. This novel design structure with socketed ridge-waveguide enables a simple fabrication and batch production of mid-infrared laser diodes on account of the mere usage of standard photolithography. By introducing micron-level index perturbations distributed along the ridge waveguide, the threshold gains of different FP modes are modulated. Four geometrical parameters of the perturbations are systematically optimized by analyzing the reflection spectrum to get a robust single-mode characteristic. Based on the optimized geometrical parameters, 1-mm long uncoated lasers are carried out and exhibit a stable single longitudinal mode from 10 °C to 40 °C with a maximum output power of more than 10 mW. Thus, we prove the feasibility of the standard photolithography to manufacture the monolithic single-mode infrared laser source without regrowth process or nanoscale lithography.

13.
Opt Express ; 31(14): 22554-22568, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475363

RESUMO

Active optical metasurfaces promise compact, lightweight, and energy-efficient optical systems with unprecedented performance. Chalcogenide phase-change material Ge2Sb2Se4Te1 (GSST) has shown tremendous advantages in the design of mid-infrared active metasurfaces. However, most of the GSST-based active metasurfaces can only work efficiently within a narrow frequency range. Furthermore, their design flexibility and reversible switching capability are severely restricted by the melting of GSST during re-amorphization. Here, we propose broadband, reversibly tunable, GSST-based transmissive metasurfaces operating in the long-wave infrared spectrum, where the GSST micro-rods are cladded by refractory materials. To accurately evaluate the performance of the proposed metasurfaces, two figures of merits are defined: FOMΦ for the evaluation of wavefront matching, and FOMop for the assessment of the overall performance incorporating both wavefront modulation efficiency and switching contrast ratio. For the proof of concept, two meta-devices are numerically presented: a multifunctional deflector that offers continuous beam steering and long-wave pass filtering simultaneously, and a large-area (1 cm × 1 cm) broadband (11-14 µm) varifocal metalens with the ability of achromatic imaging (12.5-13.5 µm). In particular, the metalens features high FOMop values over 16 dB in the achromatic band, with the average focusing efficiency approximating 70% (60%) in amorphous (crystalline) state and a spectral switching contrast ratio surpassing 25 dB. Our design scheme provides an additional degree of freedom for dynamic modulation and offers a novel approach for achieving high-efficiency mid-infrared compact optical devices.

14.
Adv Mater ; 35(31): e2303370, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172950

RESUMO

The transfection potency of lipid nanoparticle (LNP) mRNA systems is critically dependent on the ionizable cationic lipid component. LNP mRNA systems composed of optimized ionizable lipids often display distinctive mRNA-rich "bleb" structures. Here, it is shown that such structures can also be induced for LNPs containing nominally less active ionizable lipids by formulating them in the presence of high concentrations of pH 4 buffers such as sodium citrate, leading to improved transfection potencies both in vitro and in vivo. Induction of bleb structure and improved potency is dependent on the type of pH 4 buffer employed, with LNP mRNA systems prepared using 300 mm sodium citrate buffer displaying maximum transfection. The improved transfection potencies of LNP mRNA systems displaying bleb structure can be attributed, at least in part, to enhanced integrity of the encapsulated mRNA. It is concluded that enhanced transfection can be achieved by optimizing formulation parameters to improve mRNA stability and that optimization of ionizable lipids to achieve enhanced potency may well lead to improvements in mRNA integrity through formation of the bleb structure rather than enhanced intracellular delivery.


Assuntos
Lipídeos , Nanopartículas , RNA Mensageiro , Citrato de Sódio , Lipídeos/química , Transfecção , Nanopartículas/química , RNA Interferente Pequeno/química
15.
Adv Mater ; 35(30): e2300834, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080636

RESUMO

Lead halide perovskite quantum dots (PQDs) are making their way toward next-generation display applications, such as serving as color conversion layers in micro-light-emitting-diode (micro-LED) arrays. Red PQDs containing iodine exhibit weaker brightness compared with their green counterpart when employed as color conversion layers. Therefore, PQDs with enhanced brightness are highly favorable for micro/mini-LED displays. A universal strategy of bicomponent perovskite nanocomposite (BPNC) with significantly enhanced photoluminescence (PL) intensity is proposed through the built-in Förster resonance energy transfer (FRET) from the core CsPbBr3 to the shell γ-CsPbI3 , and it is confirmed that it is through a pair of combined quasi-degenerate energy levels in the blue spectra region that the FRET is conducted, resulting in a high excitation wavelength selectivity. Owing to the highly efficient energy transition route from blue excitation to red emission established by the FRET, the BPNC exhibits the brightest single-peak red photoluminescence with near 100% quantum yield. The BPNC with FRET is further proven to be adaptable to a wide range of emission wavelengths. The BPNCs in a blue micro-LED array are employed as color downconversion layers, and excellent color conversion properties and high color gamut are demonstrated. This strategy of BPNC paves a road to the full-color micro-LED displays.

16.
Phys Chem Chem Phys ; 25(16): 11350-11355, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013687

RESUMO

Materials with large optical nonlinearity are highly desired for various applications such as all-optical signal processing and storage. Recently, indium tin oxide (ITO) has been found to possess strong optical nonlinearity in the spectral region where its permittivity vanishes. Here, we demonstrate that ITO/Ag/ITO trilayer coatings, deposited by magnetron sputtering with high-temperature heat treatment, can significantly enhance the nonlinear response in their effective epsilon-near-zero (ENZ) regions. The obtained results show that the carrier concentrations of our trilayer samples can reach 7.25 × 1021 cm-3, and the ENZ region can shift to the spectrum close to the visible range. In the ENZ spectral region, the ITO/Ag/ITO samples exhibit enhanced nonlinear refractive indices as large as 2.397 × 10-15 m2 W-1, over 27 times larger than that of an individual ITO layer. Such a nonlinear optical response is well described using a two-temperature model. Our findings provide a new paradigm for developing nonlinear optical devices for applications requiring low power.

17.
Adv Funct Mater ; 33(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36819738

RESUMO

Electrochemical biosensors based on structure-switching aptamers offer many advantages because they can operate directly in complex samples and offer the potential to integrate with miniaturized electronics. Unfortunately, these biosensors often suffer from cross-reactivity problems when measuring a target in samples containing other chemically similar molecules, such as precursors or metabolites. While some progress has been made in selecting highly specific aptamers, the discovery of these reagents remains slow and costly. In this work, we demonstrate a novel strategy to distinguish molecules with miniscule difference in chemical composition (such as a single hydroxyl group) - with cross reactive aptamer probes - by tuning the charge state of the surface on which the aptamer probes are immobilized. As an exemplar, we show that our strategy can distinguish between DOX and many structurally similar analytes, including its primary metabolite doxorubicinol (DOXol). We then demonstrate the ability to accurately quantify mixtures of these two molecules based on their differential response to sensors with different surface-charge properties. We believe this methodology is general and can be extended to a broad range of applications.

18.
Angew Chem Int Ed Engl ; 62(14): e202218491, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36759322

RESUMO

Materials with tunable emission colors has attracted increasing interest in both fundamental research and applications. As a key member of light-emitting materials family, lanthanide doped upconversion nanoparticles (UCNPs) have been intensively demonstrated to emit light in any color upon near-infrared excitation. However, realizing the trichromatic emission in UCNPs with a fixed composition remains a great challenge. Here, without excitation pulsed modulation and three different near-infrared pumping, we report an experimental design to fine-control emission in the full color gamut from core-shell-structured UCNPs by manipulating the energy migration through dual-channel pump scheme. We also demonstrate their potential application in full-color display. These findings may benefit the future development of convenient and versatile optical methos for multicolor tuning and open up the possibility of constructing full-color volumetric display systems with high spatiotemporal resolution.

19.
Food Chem X ; 17: 100542, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36824146

RESUMO

This study investigated the impact of baking, boiling, and steaming on the taste, flavor, and chemical profile of yellow-fleshed sweetpotatoes (YFSP). Baked YFSP were sweeter, more palatable, and more flavorful than both steamed and boiled YFSP. Baking increased the YFSP soluble sugar content from 9.12% to 36.65%. Specifically, maltose increased by 200-fold and this possibly accounted for the sweetness of baked YFSP. From the Gas Chromatography-Mass Spectrometry analysis, the contents of furans and terpenes increased with baking, endowing baked YFSP with an aroma. On the contrary, boiling retained more carotenoids than the other cooking methods. Although cooking clearly altered YFSP, bioactive substances were predominantly preserved as only 72 out of 706 metabolites were identified as differentially accumulated metabolites between cooked and raw samples. Taken together, baked YFSP had high levels of sugars and volatile compounds, and the three cooking methods had little effect on chemical compounds. This comprehensive evaluation of cooked YFSP is a basis for sweetpotato processing and consumer choice.

20.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674420

RESUMO

Nitrogen-fixing bacteria execute biological nitrogen fixation through nitrogenase, converting inert dinitrogen (N2) in the atmosphere into bioavailable nitrogen. Elaborating the molecular mechanisms of orderly and efficient biological nitrogen fixation and applying them to agricultural production can alleviate the "nitrogen problem". Azotobacter vinelandii is a well-established model bacterium for studying nitrogen fixation, utilizing nitrogenase encoded by the nif gene cluster to fix nitrogen. In Azotobacter vinelandii, the NifA-NifL system fine-tunes the nif gene cluster transcription by sensing the redox signals and energy status, then modulating nitrogen fixation. In this manuscript, we investigate the transcriptional regulation mechanism of the nif gene in autogenous nitrogen-fixing bacteria. We discuss how autogenous nitrogen fixation can better be integrated into agriculture, providing preliminary comprehensive data for the study of autogenous nitrogen-fixing regulation.


Assuntos
Azotobacter vinelandii , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Genes Bacterianos , Nitrogênio/metabolismo , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA