Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Environ Res ; 252(Pt 3): 119033, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685300

RESUMO

Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals.


Assuntos
Antibacterianos , Cefalosporinas , Compostagem , Esterco , Animais , Esterco/microbiologia , Esterco/análise , Suínos , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Bactérias/genética , Bactérias/efeitos dos fármacos
3.
Microbiol Spectr ; 12(4): e0300023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411972

RESUMO

The prevalence and dissemination of the plasmid-mediated fluoroquinolone (FQ) resistance gene qnr in Salmonella are considered serious public health concerns worldwide. So far, no comprehensive large-scale studies have focused on the prevalence and genetic characteristics of the qnr gene in Salmonella isolated from chickens. Herein, this study aimed to investigate the prevalence, antimicrobial resistance (AMR) patterns, and molecular characteristics of chicken-originated qnr-positive Salmonella strains from chicken farms, slaughterhouses, and markets in 12 provinces of China in 2020-2021. The overall prevalence of the qnr gene was 21.13% (56/265), with the highest prevalence in markets (36.11%, 26/72), followed in farms (17.95%, 21/117), and slaughterhouses (10.53%, 9/76). Only the qnrS and qnrB genes were detected, and the prevalence rate of the qnrS gene (19.25%, 51/265) was higher than that of the qnrB gene (1.89%, 5/265). Whole genome sequencing identified 37 distinct AMR genes and 15 plasmid replicons, and the most frequent mutation in quinolone resistance determining regions was parC (T57S; 91.49%, 43/47). Meanwhile, four different qnrS and two qnrB genetic environments were discovered among 47 qnr-positive Salmonella strains. In total, 21.28% (10/47) of the strains were capable of conjugative transfer, and all were qnrS1-positive strains, with the majority of transferable plasmids being IncHI2 types (n = 4). Overall, the prevalence of qnr-positive Salmonella strains from chickens in China and their carriage of multiple resistance and virulence genes and transferable plasmids is a major concern, which calls for continuous surveillance of qnr-positive Salmonella and the development of measures to control its prevalence and transmission.IMPORTANCESalmonella is a common foodborne pathogen responsible for 155,000 deaths annually worldwide. Fluoroquinolones (FQs) are used as first-line drugs for the treatment of Salmonella infections in several countries and regions. However, the emergence and increasing prevalence of the FQ-resistant gene qnr in Salmonella isolated from chickens have been widely reported. Gaining insight into the genetic mechanisms of AMR genes in chicken could lead to the development of preventive measures to control and reduce the risk of drug resistance. In this study, we identified qnr-positive Salmonellae isolated from chickens in different regions of China and their AMR patterns and genome-wide characteristics, providing a theoretical basis for further control of their prevalence and transmission.


Assuntos
Galinhas , Fluoroquinolonas , Animais , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Salmonella/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana
4.
Foods ; 13(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275686

RESUMO

In this study, a highly sensitive monoclonal antibody (mAb) was developed for the detection of aflatoxin B1 (AFB1) in maize and feed. Additionally, indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and time-resolved fluorescence immunoassay assay (TRFICA) were established. Firstly, the hapten AFB1-CMO was synthesized and conjugated with carrier proteins to prepare the immunogen for mouse immunization. Subsequently, mAb was generated using the classical hybridoma technique. The lowest half-maximal inhibitory concentration (IC50) of ic-ELISA was 38.6 ng/kg with a linear range of 6.25-100 ng/kg. The limits of detections (LODs) were 6.58 ng/kg and 5.54 ng/kg in maize and feed, respectively, with the recoveries ranging from 72% to 94%. The TRFICA was developed with a significantly reduced detection time of only 21 min, from sample processing to reading. Additionally, the limits of detection (LODs) for maize and feed were determined to be 62.7 ng/kg and 121 ng/kg, respectively. The linear ranges were 100-4000 ng/kg, with the recoveries ranging from 90% to 98%. In conclusion, the development of AFB1 mAb and the establishment of ic-ELISA for high-throughput sample detection, as well as TRFICA for rapid detection presented robust tools for versatile AFB1 detection in different scenarios.

5.
Sci Total Environ ; 912: 169223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101638

RESUMO

Bacterial resistance is an emerging global public health problem, posing a significant threat to animal and human health. Chemical pollutants present in the environment exert selective pressure on bacteria, which acquire resistance through co-resistance, cross-resistance, co-regulation, and biofilm resistance. Resistance genes are horizontally transmitted in the environment through four mechanisms including conjugation transfer, bacterial transformation, bacteriophage transduction, and membrane vesicle transport, and even enter human bodies through the food chain, endangering human health. Although the co-selection effects of bacterial resistance to chemical pollutants has attracted widespread attention, the co-screening mechanism and co-transmission mechanisms remain unclear. Therefore, this article summarises the current research status of the co-selection effects and mechanism of environmental pollutants resistance, emphasising the necessity of studying the co-selection mechanism of bacteria against major chemical pollutants, and lays a solid theoretical foundation for conducting risk assessment of bacterial resistance.


Assuntos
Infecções Bacterianas , Poluentes Ambientais , Animais , Humanos , Antibacterianos/farmacologia , Poluentes Ambientais/toxicidade , Bactérias/genética , Genes Bacterianos
6.
Sci Total Environ ; 839: 156243, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643147

RESUMO

Livestock manure is an important source of antibiotic resistance genes (ARGs) spreading to the environment, posing a potential threat to human health. Here, we investigated the dissipation of florfenicol (FF) and thiamphenicol (TAP), and their effects on the bacterial community, mobile genetic elements (MGEs), and ARGs during composting. The results indicated that FF and TAP dissipated rapidly in compost, with half-life values of 5.1 and 1.6 d, respectively. However, FF could not be completely removed during composting. The FF and TAP residues in manure could reduce the elimination of ARGs and MGEs during composting, and had a negative effect on the physicochemical factors of the compost. Significant correlations were found between floR and intI1, indicating that floR in manure may more easily diffuse to the soil environment. Meanwhile, the presence of FF in manure could increase the abundance of floR. Network analysis showed that Proteobacteria and Firmicutes were the dominant bacterial communities and important potential pathogen hosts carrying ARGs. The predicted environmental concentration of FF in the soil was over 100 µg kg-1, which indicates that FF poses a potential risk to the natural environment, and we verified this result through field experiments. The results showed that FF dissipated in the soil after it migrated from manure to soil. In contrast, TAP in manure posed lower environmental risk. This study highlights that changed in composting conditions may control the rate of removal of ARGs. Further studies are needed to investigate the best environmental conditions to achieve a faster degradation of FF and a more comprehensive elimination of ARGs during composting.


Assuntos
Compostagem , Tianfenicol , Animais , Antibacterianos/farmacologia , Bactérias/genética , Compostagem/métodos , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco/microbiologia , Solo/química , Suínos , Tianfenicol/análogos & derivados
7.
Front Microbiol ; 13: 858799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602033

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen, which causes serious infections in humans and animals. To investigate the antimicrobial resistance pattern and virulence profile of K. pneumoniae, a total of 887 samples were collected from both the healthy and mastitis cows and the bedding, feed, feces, air, drinking water, spraying water, washing water, and milk cup swabs from five dairy farms in Hubei, China, during 2019 and 2020. K. pneumoniae was isolated and identified using PCR of the khe and 16S rDNA sequencing. A genotypic characterization was performed for K. pneumoniae isolates using wzi typing and multilocus sequence typing (MLST). Antimicrobial resistances were confirmed using broth microdilution against 17 antimicrobial agents and resistance and virulence genes were determined by PCR. The prevalence of K. pneumoniae was 26.94% (239/887) distributed in 101 wzi allele types (199/239, 83.26%) and 100 sequence types (STs) (209/239, 87.45%), including 5 new wzi allele type and 25 new STs. Phylogenetic analysis showed that K. pneumoniae isolated from milk, nipple swab, feed, and feces is classified in the same clone complex. By comparing with the PubMLST database, at least 67 STs have the risk of spreading in different species and regions. Interestingly, 60 STs have been isolated from humans. The isolates were highly sensitive to meropenem and colistin, but resistant to ampicillin (100%), sulfisoxazole (94.56%), cephalothin (47.28%), streptomycin (30.13%), and so on. Noteworthy, multidrug-resistant (MDR) rate was found to be 43.93% in this study. By PCR, 30 of 68 antimicrobial resistance (AMR) genes were identified; the prevalence rate of blaTEM, blaSHV, strA, strB, aadA1, and aac(6')-Ib-cr was more than 50%. Eleven CTX-M-producing K. pneumoniae were found. The detection rate of fimH, mrkD, uge, wabG, entB, iutA, iroN, and ureA was over 85%. This study reinforces the epidemiological importance of K. pneumoniae in food-producing animals in Hubei. The emergence and spread of environmental MDR K. pneumoniae may pose a potential threat to food safety and public health.

8.
Antibiotics (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453271

RESUMO

Multidrug efflux pumps function at the frontline to protect bacteria against antimicrobials by decreasing the intracellular concentration of drugs. This protective barrier consists of a series of transporter proteins, which are located in the bacterial cell membrane and periplasm and remove diverse extraneous substrates, including antimicrobials, organic solvents, toxic heavy metals, etc., from bacterial cells. This review systematically and comprehensively summarizes the functions of multiple efflux pumps families and discusses their potential applications. The biological functions of efflux pumps including their promotion of multidrug resistance, biofilm formation, quorum sensing, and survival and pathogenicity of bacteria are elucidated. The potential applications of efflux pump-related genes/proteins for the detection of antibiotic residues and antimicrobial resistance are also analyzed. Last but not least, efflux pump inhibitors, especially those of plant origin, are discussed.

9.
Sci Total Environ ; 832: 155039, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390382

RESUMO

Aerobic composting is an economical and effective technology that is widely used to treat animal manure. To study the fate of doxycycline (DOX), the microbial community, and antibiotic resistance genes (ARGs) during composting, aerobic composting of broiler manure and swine manure was carried out under natural environmental conditions. Aerobic composting effectively removed DOX (with a removal rate > 97%) and most ARGs from animal manure. The microbial diversity and the numbers of ARGs were higher in composted swine manure compared with composted broiler manure. The microbial community structure changed during composting, and the dominant phyla of broiler manure and swine manure changed from Firmicutes to Bacteroidetes and Proteobacteria, respectively. DOX changed the structure and relative abundance of the microbial community during composting, and the relative abundance of multidrug resistance genes and mobile genetic elements (MGEs) increased, which might lead to the risk of transmission of resistance in the environment. The C / N ratio, DOX concentration, Firmicutes, intl1, and intl2 were the key factors driving the change in ARGs during composting. These results help to reveal the effects of DOX on microbial communities, ARGs, and MGEs during composting and clarify the possible ways to reduce the risk of resistance gene transmission in the environment.


Assuntos
Compostagem , Microbiota , Animais , Antibacterianos/farmacologia , Galinhas/genética , Doxiciclina , Resistência Microbiana a Medicamentos/genética , Firmicutes/genética , Genes Bacterianos , Esterco/microbiologia , Suínos
10.
Antibiotics (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203885

RESUMO

Streptococcus suis (S. suis) causes severe respiratory diseases in pigs and is also an important pathogen causing hidden dangers to public health and safety. Acetylkitasamycin is a new macrolide agent that has shown good activity to Gram-positive cocci such as Streptococcus. The purpose of this study was to perform pharmacokinetic-pharmacodynamic (PK-PD) modeling to formulate a dosing regimen of acetylkitasamycin for treatment of S. suis and to decrease the emergence of acetylkitasamycin-resistant S. suis. The minimal inhibitory concentration (MIC) of 110 S. suis isolates was determined by broth micro dilution method. The MIC50 of the 55 sensitive S. suis isolates was 1.21 µg/mL. The strain HB1607 with MIC close to MIC50 and high pathogenicity was used for the PK-PD experiments. The MIC and MBC of HB1607 in both MH broth and pulmonary epithelial lining fluid (PELF) was 1 and 2 µg/mL, respectively. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration change of acetylkitasamycin in piglet plasma and PELF after intragastric administration of a single dose of 50 mg/kg b.w. acetylkitasamycin. The PK parameters were calculated by WinNolin software. The PK data showed that the maximum concentration (Cmax), peak time (Tmax), and area under the concentration-time curve (AUC) were 9.84 ± 0.39 µg/mL, 4.27 ± 0.19 h and 248.58 ± 21.17 h·µg/mL, respectively. Integration of the in vivo PK data and ex vivo PD data, an inhibition sigmoid Emax equation was established. The dosing regimen of acetylkitasamycin for the treatment S. suis infection established as 33.12 mg/kg b.w. every 12 h for 3 days. This study provided a reasonable dosing regimen for a new drug used in clinical treatment, which can effectively be used to treat S. suis infection and slow down the generation of drug resistance.

11.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163350

RESUMO

The purpose of this study was to establish the clinical breakpoint (CBP) of apramycin (APR) against Salmonella in swine and evaluate its effect on intestinal microbiota. The CBP was established based on three cutoff values of wild-type cutoff value (COWT), pharmacokinetic-pharmadynamic (PK/PD) cutoff value (COPD) and clinical cutoff value (COCL). The effect of the optimized dose regimen based on ex vivo PK/PD study. The evolution of the ileum flora was determined by the 16rRNA gene sequencing and bioinformatics. This study firstly established the COWT, COPD in ileum, and COCL of APR against swine Salmonella, the value of these cutoffs were 32 µg/mL, 32 µg/mL and 8 µg/mL, respectively. According to the guiding principle of the Clinical Laboratory Standards Institute (CLSI), the final CBP in ileum was 32 µg/mL. Our results revealed the main evolution route in the composition of ileum microbiota of diarrheic piglets treated by APR. The change of the abundances of Bacteroidetes and Euryarchaeota was the most obvious during the evolution process. Methanobrevibacter, Prevotella, S24-7 and Ruminococcaceae were obtained as the highest abundance genus. The abundance of Methanobrevibacter increased significantly when APR treatment carried and decreased in cure and withdrawal period groups. The abundance of Prevotella in the tested groups was significantly lower than that in the healthy group. A decreased of abundance in S24-7 was observed after Salmonella infection and increased slightly after cure. Ruminococcaceae increased significantly after Salmonella infection and decreased significantly after APR treatment. In addition, the genera of Methanobrevibacter and Prevotella were defined as the key node. Valine, leucine and isoleucine biosynthesis, D-Glutamine and D-glutamate metabolism, D-Alanine metabolism, Peptidoglycan and amino acids biosynthesis were the top five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the ileum microbiota of piglets during the Salmonella infection and APR treatment process. Our study extended the understanding of dynamic shift of gut microbes during diarrheic piglets treated by APR.


Assuntos
Microbioma Gastrointestinal , Nebramicina , Animais , Íleo , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Prevotella , Salmonella , Suínos
12.
Metabolites ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36676982

RESUMO

Sulfamethoxazole (SMZ), as a sulfa antibiotic, is often used in the treatment of various infectious diseases in animal husbandry. At present, SMZ still has many unresolved problems in the material balance, metabolic pathways, and residual target tissues in food animals. Therefore, in order to solve these problems, the metabolism, distribution, and elimination of SMZ is investigated in pigs, chickens, and rats by radioactive tracing methods, and the residue marker and target tissue of SMZ in food animals were determined, providing a reliable basis for food safety. After a single administration of [3H]-SMZ (rats and pigs by intramuscular injection and chickens by oral gavage), the total radioactivity was rapidly excreted, with more than 93% of the dose excreted within 14 days in the three species. Pigs and rats had more than 75% of the administered volume recovered by urine. After 7 days of continuous administration, within the first 6 h, radioactivity was found in almost all tissues. The highest radioactivity and longest persistence in pigs was in the liver, while in chickens it was in the liver and kidneys, most of which was removed within 14 days. A total of six, three and three metabolites were found in chickens, rats and pigs, respectively. N4-acetyl-sulfamethoxazole (S1) was the main metabolite of SMZ in rats, pigs and chickens. The radioactive substance with the longest elimination half-life is sulfamethoxazole (S0), so S0 was suggested to be the marker residue in pigs and chickens.

13.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830098

RESUMO

The evolution of resistance in Salmonella to fluoroquinolones (FQs) under a broad range of sub-inhibitory concentrations (sub-MICs) has not been systematically studied. This study investigated the mechanism of resistance development in Salmonella enterica serovar Enteritidis (S. Enteritidis) under sub-MICs of 1/128×MIC to 1/2×MIC of enrofloxacin (ENR), a widely used veterinary FQ. It was shown that the resistance rate and resistance level of S. Enteritidis varied with the increase in ENR concentration and duration of selection. qRT-PCR results demonstrated that the expression of outer membrane porin (OMP) genes, ompC, ompD and ompF, were down-regulated first to rapidly adapt and develop the resistance of 4×MIC, and as the resistance level increased (≥8×MIC), the up-regulated expression of efflux pump genes, acrB, emrB amd mdfA, along with mutations in quinolone resistance-determining region (QRDR) gradually played a decisive role. Cytohubba analysis based on transcriptomic profiles demonstrated that purB, purC, purD, purF, purH, purK, purL, purM, purN and purT were the hub genes for the FQs resistance. The 'de novo' IMP biosynthetic process, purine ribonucleoside monophosphate biosynthetic process and purine ribonucleotide biosynthetic process were the top three biological processes screened by MCODE. This study first described the dynamics of FQ resistance evolution in Salmonella under a long-term selection of sub-MICs of ENR in vitro. In addition, this work offers greater insight into the transcriptome changes of S. Enteritidis under the selection of ENR and provides a framework for FQs resistance of Salmonella for further studies.


Assuntos
Proteínas de Bactérias , Farmacorresistência Bacteriana , Enrofloxacina/farmacologia , Evolução Molecular , Salmonella enteritidis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo
14.
Ecotoxicol Environ Saf ; 224: 112675, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34438273

RESUMO

Veterinary antibiotics are widely used in animal agriculture. Owing to its good absorption in the gastrointestinal tract, strong tissue permeability, and long biological half-life, doxycycline (DOX) is widely used to treat bacterial infections; however, this use can pose an environmental risk. The adsorption/desorption and degradation of DOX in three agricultural soils were investigated. DOX rapidly adsorbed to the soils, with an adsorption equilibrium time of 12 h for the three soils. The Freundlich equation was used to fit the adsorption and desorption of DOX in soils. A high Freundlich affinity coefficient (KF) was obtained from Freundlich isotherms, indicating strong sorption of DOX to agricultural soils and weak mobility to aquatic environment. Soil organic matter, the clay ratio and the cation exchange capacity were significantly positively correlated with KF (P < 0.05). The half-life (DT50) of DOX degradation in the soils ranged from 2.51 to 25.52 d. Soil microorganisms, soil moisture, temperature, the initial concentration, illumination and soil texture all significantly affected the degradation of DOX in soil (P < 0.05). When 8% (w/w) manure was added, DOX degradation was significantly accelerated (P < 0.05). Biotic and abiotic factors affected the degradation of DOX in soils. These results indicated that soil properties and environmental conditions greatly affected the fate and transport of DOX into agricultural soils.

15.
Ecotoxicol Environ Saf ; 222: 112503, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273851

RESUMO

Cephalosporins are one of the most widely used antibiotics. When cephalosporins are discharged into the environment, they not only induce the production of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARBs) but also cause toxic effects on animals and plants. Due to their complicated environmental behavior and lack of relevant data, the environmental behavior remains unclear. In this study, the adsorption-desorption and degradation characteristics of the third-generation cephalosporin drug ceftiofur (CEF) were investigated in three agricultural soils (sandy loam, loam and clay). According to the relevant parameters of the Freundlich adsorption isotherm (the Kf range was 57.63-122.44 µg1-1/n L1/n kg-1), CEF was adsorbed moderately in the soils and had the potential to migrate into groundwater. CEF exhibited low persistence in the soils and faster degradation than other antibiotics, such as tetracyclines and fluoroquinolones. The degradation half-lives (DT50) of CEF in soils ranged from 0.76 days to 4.31 days. Adding feces, increasing the water content, providing light and increasing the temperature significantly accelerated the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged when the soils were sterilized, indicating that both physical degradation and biodegradation played important roles in the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged at high concentrations, indicating that the degradability of CEF in soils was affected by the initial concentration. No significant differences were observed in the DT50 values for the different soil types (p > 0.05). This study provides useful information about the environmental behavior of CEF and improves the environmental risk assessment of CEF.


Assuntos
Poluentes do Solo , Solo , Adsorção , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Cefalosporinas , Cinética , Poluentes do Solo/análise
16.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299552

RESUMO

Due to the extensive application of antibiotics in medical and farming practices, the continued diversification and development of antimicrobial resistance (AMR) has attracted serious public concern. With the emergence of AMR and the failure to treat bacterial infections, it has led to an increased interest in searching for novel antibacterial substances such as natural antimicrobial substances, including microbial volatile compounds (MVCs), plant-derived compounds, and antimicrobial peptides. However, increasing observations have revealed that AMR is associated not only with the use of antibacterial substances but also with tolerance to heavy metals existing in nature and being used in agriculture practice. Additionally, bacteria respond to environmental stresses, e.g., nutrients, oxidative stress, envelope stress, by employing various adaptive strategies that contribute to the development of AMR and the survival of bacteria. Therefore, we need to elucidate thoroughly the factors and conditions affecting AMR to take comprehensive measures to control the development of AMR.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Animais , Humanos
17.
J Environ Manage ; 297: 113366, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314962

RESUMO

The widespread usage of veterinary antibiotics results in antibiotic contamination and increases environmental risks. This study was evaluated the single and ternary competitive adsorption-desorption and degradation of three amphenicol antibiotics (AMs): chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FF) in three agricultural soils. The adsorption capacity of amphenicol antibiotics in the soil was weak, and the Kf value was in the range of 0.15-3.59 µg1-1/nL1/n kg-1. In the single adsorption-desorption experiment, the ranked order of adsorption capacity was TAP > FF > CAP. However, in the ternary competitive adsorption experiment, the order was changed to be CAP > FF > TAP. The degradation of AMs in soils was performed at various conditions. All AMs were vulnerable to microbial degradation in soils. A higher initial concentration would reduce the degradation rate and enhance the persistence of AMs in soil. The degradation of AMs was positively influenced by changes in soil moisture content and culture temperatures up to 30 °C and decreased at higher temperatures. An equation was used to predict the leachability of AMs in soils and assess their risk to the water environment. The weak adsorption capacity and poor persistence of FF indicated that it may have a strong effect on groundwater based on the equation. It is imperative to further assess the biological impacts of FF at environmentally relevant concentrations given its mobility and extensive use in the livestock industry.


Assuntos
Poluentes do Solo , Solo , Adsorção , Antibacterianos , Cloranfenicol/análise , Poluentes do Solo/análise
18.
Antibiotics (Basel) ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546407

RESUMO

Cyadox has potential use as an antimicrobial agent in animals. However, its pharmacodynamic properties have not been systematically studied yet. In this study, the in vitro antibacterial activities of cyadox were assayed, and the antibacterial efficacy of cyadox against facultative anaerobes was also determined under anaerobic conditions. It was shown that Clostridium perfringens and Pasteurella multocida (MIC = 0.25 and 1 µg/mL) from pigs, Campylobacter jejuni and Pasteurella multocida from poultry, E. coli, Streptococcus spp., and Flavobacterium columnare from fish were highly susceptible to cyadox (MIC= 1 and 8 µg/mL). However, F. columnare has no killing effect for drug tolerance. Under in vitro anaerobic conditions, the antibacterial activity of cyadox against most facultative anaerobes was considerably enhanced Under anaerobic conditions for the facultative anaerobes, susceptible bacteria were P. multocida, Aeromonas spp. (including A. hydrophila, A. veronii, A. jandaei, A. caviae, and A. sobria, excluding A. punctata), E. coli, Salmonella spp. (including S. choleraesui, S. typhimurium, and S. pullorum), Proteus mirabilis, Vibrio fluvialis, Yersinia ruckeri, Erysipelothrix, Acinetobacter baumannii, and Streptococcus agalactiae (MICs were 0.25~8 µg/mL, MBCs were 1-64 µg/mL). Intermediate bacteria were Enterococcus spp. (including E. faecalis and E. faecium), Yersinia enterocolitica, and Streptococcus spp. (MICs mainly were 8~32 µg/mL, MBCs were 16~128 µg/mL). This study firstly showed that cyadox had strong antibacterial activity and had the potential to be used as a single drug in the treatment of bacterial infectious diseases.

19.
Antibiotics (Basel) ; 9(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182563

RESUMO

Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76-4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations.

20.
Sheng Wu Gong Cheng Xue Bao ; 36(11): 2287-2297, 2020 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-33244924

RESUMO

Overuse of antibiotics in medical care and animal husbandry has led to the development of bacterial antimicrobial resistance, causing increasingly more health concern. In addition to genetic mutations and the formation of resistance, the various stresses bacteria encountered in the natural environment trigger their stress responses, which not only protect them from these stresses, but also change their tolerance to antimicrobials. The emergence of antimicrobial tolerance will inevitably affect the physiological metabolism of bacteria. However, bacteria can restore their sensitivity to drugs by regulating their own metabolism. This article reviews recent studies on the relationship between bacterial stress responses or the physiological metabolism and antimicrobial tolerance, intending to take more effective measures to control the occurrence and spread of antimicrobial resistance.


Assuntos
Anti-Infecciosos , Farmacorresistência Bacteriana , Animais , Antibacterianos/farmacologia , Bactérias/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA