Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Control Release ; 366: 142-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145660

RESUMO

Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Fotoquimioterapia , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/uso terapêutico , Peróxido de Hidrogênio , Verde de Indocianina/uso terapêutico , Verde de Indocianina/química , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico
2.
Bioeng Transl Med ; 8(5): e10470, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693066

RESUMO

Indocyanine green (ICG), glucose oxidase (GOx), and copper(II) sulfate (Cu)-installed hybrid gel based on organic nanorod (cellulose nanocrystal [CNC]) and inorganic nanodisk (Laponite [LAP]) was developed to perform a combination of starvation therapy (ST), chemodynamic therapy (CDT), and photothermal therapy (PTT) for localized cancers. A hybrid CNC/LAP network with a nematic phase was designed to enable instant gelation, controlled viscoelasticity, syringe injectability, and longer in vivo retention. Moreover, ICG was introduced into the CNC/LAP gel system to induce hyperthermia of tumor tissue, amplifying the CDT effect; GOx was used for glucose deprivation (related to the Warburg effect); and Cu was introduced for hydroxyl radical generation (based on Fenton-like chemistry) and cellular glutathione (GSH) degradation in cancer cells. The ICG/GOx/Cu-installed CNC/LAP gel in combination with near-infrared (NIR) laser realized improved antiproliferation, cellular reactive oxygen species (ROS) generation, cellular GSH degradation, and apoptosis induction in colorectal cancer (CT-26) cells. In addition, local injection of the CNC/ICG/GOx/Cu/LAP gel into the implanted CT-26 tumor while irradiating it with NIR laser provided strong tumor growth suppression effects. In conclusion, the designed hybrid nanorod/nanodisk gel network can be efficiently applied to the local PTT/ST/CDT of cancer cells.

3.
J Control Release ; 362: 1-18, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595669

RESUMO

Alum-crosslinked hyaluronic acid-dopamine (HD) hydrogel containing indocyanine green (ICG) with anti-programmed cell death-1 (PD-1) antibody (Ab) administration was developed for immunophoto therapy of cancer. Alum modulates the rheological characteristics of hydrogel for enabling syringe injection, shear-thinning feature, and slower biodegradation. In addition, alum in HD-based hydrogel provided CD8+ T cell-mediated immune responses for cancer therapy. ICG in the hydrogel under near-infrared (NIR) light exposure may induce hyperthermia and generate singlet oxygen for selective cancer cell killing. HD/alum/ICG hydrogel injection with NIR laser irradiation elevated PD-1 level in CD8+ T cells. Administration of PD-1 Ab aiming at highly expressed PD-1 in T cells may amplify the anticancer efficacies of HD/alum/ICG hydrogel along with NIR laser. HD/alum/ICG hydrogel with NIR light may have both CD8+ T cell-linked immune responses and ICG-related photodynamic/photothermal effects. Additional injection of immune checkpoint inhibitor can ultimately suppress primary and distant tumor growth by combination with those therapeutic actions.

4.
Pharmaceutics ; 15(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37514021

RESUMO

The development of metal salts-based nanocomposites is highly desired for the Fenton or Fenton-like reaction-based chemodynamic therapy of cancer. Manganese sulfate (MnSO4)-dispersed nanoparticles (NPs) were fabricated with a hot-melt extrusion (HME) system for the chemodynamic therapy of colorectal cancer in this study. MnSO4 was homogeneously distributed in polyethylene glycol (PEG) 6000 (as a hydrophilic polymer) with the aid of surfactants (Span 80 and Tween 80) by HME processing. Nano-size distribution was achieved after dispersing the pulverized extrudate of MnSO4-based composite in the aqueous media. The distribution of MnSO4 in HME extrudate and the interactions between MnSO4 and pharmaceutical additives were elucidated by Fourier-transform infrared, X-ray diffractometry, X-ray photoelectron spectroscopy, and scanning electron microscopy analyses. Hydroxyl radical generation efficiency by the Fenton-like chemistry capability of Mn2+ ion was also confirmed by catalytic assays. By using the intrinsic H2O2 in cancer cells, MnSO4 NPs provided an elevated cellular reactive oxygen species level, apoptosis induction capability, and antiproliferation efficiency. The designed HME-processed MnSO4 formulation can be efficiently used for the chemodynamic therapy of colorectal cancer.

5.
Small ; 19(35): e2301402, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162448

RESUMO

Cascade hydroxyl radical generating hydrogel reactor structures including a chemotherapeutic agent are invented for multiple treatment of breast cancer. Glucose oxidase (GOx) and cupric sulfate (Cu) are introduced for transforming accumulated glucose (in cancer cells) to hydroxyl radicals for starvation/chemodynamic therapy. Cu may also suppress cancer cell growth via cuproptosis-mediated cell death. Berberine hydrochloride (BER) is engaged as a chemotherapeutic agent in the hydrogel reactor for combining with starvation/chemodynamic/cuproptosis therapeutic modalities. Moreover, Cu is participated as a gel crosslinker by coordinating with catechol groups in hyaluronic acid-dopamine (HD) polymer. Controlling viscoelasticity of hydrogel reactor can extend the retention time following local injection and provide sustained drug release patterns. Low biodegradation rate of designed HD/BER/GOx/Cu hydrogel can reduce dosing frequency in local cancer therapy and avoid invasiveness-related inconveniences. Especially, it is anticipated that HD/BER/GOx/Cu hydrogel system can be applied for reducing size of breast cancer prior to surgery as well as tumor growth suppression in clinical application.


Assuntos
Apoptose , Neoplasias da Mama , Neoplasias , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Catálise , Linhagem Celular Tumoral , Glucose Oxidase/metabolismo , Hidrogéis , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Neoplasias/terapia , Cobre
6.
Bioact Mater ; 25: 360-373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36879666

RESUMO

The tumor microenvironment consists of diverse, complex etiological factors. The matrix component of pancreatic ductal adenocarcinoma (PDAC) plays an important role not only in physical properties such as tissue rigidity but also in cancer progression and therapeutic responsiveness. Although significant efforts have been made to model desmoplastic PDAC, existing models could not fully recapitulate the etiology to mimic and understand the progression of PDAC. Here, two major components in desmoplastic pancreatic matrices, hyaluronic acid- and gelatin-based hydrogels, are engineered to provide matrices for tumor spheroids composed of PDAC and cancer-associated fibroblasts (CAF). Shape analysis profiles reveals that incorporating CAF contributes to a more compact tissue formation. Higher expression levels of markers associated with proliferation, epithelial to mesenchymal transition, mechanotransduction, and progression are observed for cancer-CAF spheroids cultured in hyper desmoplastic matrix-mimicking hydrogels, while the trend can be observed when those are cultured in desmoplastic matrix-mimicking hydrogels with the presence of transforming growth factor-ß1 (TGF-ß1). The proposed multicellular pancreatic tumor model, in combination with proper mechanical properties and TGF-ß1 supplement, makes strides in developing advanced pancreatic models for resembling and monitoring the progression of pancreatic tumors, which could be potentially applicable for realizing personalized medicine and drug testing applications.

7.
Int J Biol Macromol ; 223(Pt A): 77-86, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36336157

RESUMO

Efficient delivery of a photosensitizer (PS) and oxygen to tumor tissue is critical for successful photodynamic therapy (PDT). For this purpose, we developed a fucoidan (Fu)-chlorin e6 (Ce6) nanoparticle (NP) containing perfluorooctylbromide (PFOB). Fu, a biopolymer derived from seaweed, made up the hydrophilic shell of the NP and provided specific targeting to tumor cells by P-selectin binding. Conjugation with the hydrophobic Ce6 enabled self-assembly and Ce6-generated cytotoxic reactive oxygen species to kill tumor cells upon laser irradiation. PF supplied oxygen to the hypoxic tumor tissue and increased the efficacy of the PDT. The developed Fu-Ce6-PF-NPs bound specifically to SCC7 tumor cells and killed them via a photodynamic effect on laser irradiation. High accumulation of the NPs in tumor tissue and improved tumor suppression by PDT were observed in SCC7 tumor-bearing mice. The overall data demonstrated the potential of Fu-Ce6-PF-NP as a tumor-targeting drug carrier for effective PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Linhagem Celular Tumoral , Porfirinas/química , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Oxigênio
8.
Carbohydr Polym ; 296: 119887, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088017

RESUMO

A donepezil hydrochloride (DPZ)-reinforced cellulose nanocrystal (CNC) hydrogel structure with pH control was developed for sustained drug delivery through subcutaneous injection. In the present study, an aggregated CNC gel was fabricated by reducing the electrostatic repulsion between CNC particles by incorporating DPZ and adjusting the pH value to 7.7. The crosslinked CNC/DPZ (cCNC/DPZ) gel exhibited immediate gelation, injection capability through a single syringe, improved viscoelasticity, and shear-thinning properties. Interactions between the CNCs and DPZ and pH regulation were assessed using several solid-state studies, and a sustained release profile of the DPZ from the cCNC/DPZ gel was also observed. In the pharmacokinetic study, a higher half-life and mean residence time and lower maximum drug concentration values were obtained in the cCNC/DPZ group than in the DPZ solution and CNC/DPZ groups after subcutaneous injection. Drug salt form-incorporated and pH-controlled CNC hydrogel systems can be safely applied to the subcutaneous delivery of DPZ.


Assuntos
Nanopartículas , Celulose/química , Donepezila , Hidrogéis/química , Nanopartículas/química , Eletricidade Estática
9.
J Control Release ; 349: 617-633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868357

RESUMO

A hyaluronic acid (HA)-based one-pot hydrogel reactor with single syringe injection and immediate gelation was developed for starvation therapy (ST), chemodynamic therapy (CDT), ferroptosis, and photothermal therapy (PTT) against breast cancer. A rheologically tuned hydrogel network, composed of HA-phenylboronic acid (HP) and HA-dopamine (HD), was designed by introducing a boronate ester linkage (phenylboronic acid-dopamine interaction) and polydopamine bond (pH control). Ferrocene (Fc)-conjugated HP (Fc-HP) was synthesized to achieve ferroptosis, Fenton reaction-involved toxic hydroxyl radical (•OH) generation, and photothermal ablation in cancer therapy. Glucose oxidase (GOx) was entrapped in the pH-modulated Fc-HP (Fc-HP°)/HD hydrogel network for converting intracellular glucose to H2O2 to enable its own supply. The GOx/Fc combination-installed hydrogel reactor system can provide sustained ST/CDT/PTT functions along with ferroptosis. Injection of Fc-HP°/HD/GOx hydrogel with single-syringe injectability, shear-thinning feature, and self-healing capability offered a slow biodegradation rate and high safety profiles. Peritumorally injected Fc-HP°/HD/GOx hydrogel also efficiently suppressed the growth of breast cancer based on multifunctional therapeutic approaches with reduced dosing frequency. Hyperthermia induced by near-infrared (NIR) laser absorption may amplify the therapeutic effects of free radicals. It is expected that this Fc-HP°/HD/GOx hydrogel system can be applied to local cancer therapy with high efficacy and safety profiles.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias , Ácidos Borônicos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Dopamina/uso terapêutico , Ésteres/uso terapêutico , Feminino , Compostos Ferrosos , Glucose/metabolismo , Glucose Oxidase/química , Glucose Oxidase/uso terapêutico , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/uso terapêutico , Metalocenos/uso terapêutico , Neoplasias/tratamento farmacológico
10.
Sci Rep ; 12(1): 10086, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710563

RESUMO

The measured response of cell population is often delayed relative to drug injection, and individuals in a population have a specific age distribution. Common approaches for describing the delay are to apply transit compartment models (TCMs). This model reflects that all damaged cells caused by drugs suffer transition processes, resulting in death. In this study, we present an extended TCM using Coxian distribution, one of the phase-type distributions. The cell population attacked by a drug is described via age-structured models. The mortality rate of the damaged cells is expressed by a convolution of drug rate and age density. Then applying to Erlang and Coxian distribution, we derive Erlang TCM, representing the existing model, and Coxian TCMs, reflecting sudden death at all ages. From published data of drug and tumor, delays are compared after parameter estimations in both models. We investigate the dynamical changes according to the number of the compartments. Model robustness and equilibrium analysis are also performed for model validation. Coxian TCM is an extended model considering a realistic case and captures more diverse delays.


Assuntos
Neoplasias , Humanos , Modelos Biológicos
11.
Small ; 18(21): e2107714, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35487761

RESUMO

Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG). The mechanical properties of SG nanofibers can be flexibly modulated by varying the ratio of SF and GelMA. Compared to SF nanofibers, mesenchymal stem cells (MSCs) seeded on SG fibers with optimal composition (SG7) exhibit enhanced growth, proliferation, vascular endothelial growth factor production, and tenogenic gene expression behavior. Conditioned media from MSCs cultured on SG7 scaffolds can greatly promote the migration and proliferation of tenocytes. Histological analysis and tenogenesis-related immunofluorescence staining indicate SG7 scaffolds demonstrate enhanced in vivo tendon tissue regeneration compared to other groups. Therefore, rational combinations of SF and GelMA hybrid nanofibers may help to improve therapeutic outcomes and address the challenges of tissue-engineered scaffolds for tendon regeneration.


Assuntos
Fibroínas , Células-Tronco Mesenquimais , Nanofibras , Proliferação de Células , Gelatina , Células-Tronco Mesenquimais/metabolismo , Metacrilatos , Seda , Tendões , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Nanoscale ; 14(2): 350-360, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34908077

RESUMO

Injectable shear-thinning biomaterials (STBs) have attracted significant attention because of their efficient and localized delivery of cells as well as various molecules ranging from growth factors to drugs. Recently, electrostatic interaction-based STBs, including gelatin/LAPONITE® nanocomposites, have been developed through a simple assembly process and show outstanding shear-thinning properties and injectability. However, the ability of different compositions of gelatin and LAPONITE® to modulate doxorubicin (DOX) delivery at different pH values to enhance the effectiveness of topical skin cancer treatment is still unclear. Here, we fabricated injectable STBs using gelatin and LAPONITE® to investigate the influence of LAPONITE®/gelatin ratio on mechanical characteristics, capacity for DOX release in response to different pH values, and cytotoxicity toward malignant melanoma. The release profile analysis of various compositions of DOX-loaded STBs under different pH conditions revealed that lower amounts of LAPONITE® (6NC25) led to higher pH-responsiveness capable of achieving a localized, controlled, and sustained release of DOX in an acidic tumor microenvironment. Moreover, we showed that 6NC25 had a lower storage modulus and required lower injection forces compared to those with higher LAPONITE® ratios. Furthermore, DOX delivery analysis in vitro and in vivo demonstrated that DOX-loaded 6NC25 could efficiently target subcutaneous malignant tumors via DOX-induced cell death and growth restriction.


Assuntos
Melanoma , Nanopartículas , Materiais Biocompatíveis , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Gelatina , Humanos , Concentração de Íons de Hidrogênio , Melanoma/tratamento farmacológico , Microambiente Tumoral
13.
Biomed Pharmacother ; 146: 112520, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34902744

RESUMO

Entrectinib (Rozlytrek®) is an oral antineoplastic agent approved by the U.S. Food and Drug Administration in 2019 for the treatment of c-ros oncogene 1 (ROS1)-positive non-small cell lung cancer and neurotrophic tyrosine receptor kinase (NTRK) fusion-positive solid tumors. Although there have been a few studies on the pharmacokinetics of entrectinib, the relative contributions of several kinetic factors determining the oral bioavailability and systemic exposure of entrectinib are still worthy of investigation. Experimental data on the intestinal absorption and disposition of entrectinib in rats were acquired from studies on in vitro protein binding/tissue S9 metabolism, in situ intestinal perfusion, and in vivo dose-escalation/hepatic extraction. Using these datasets, an in-house whole-body physiologically based pharmacokinetic (PBPK) model incorporating the QGut model concepts and segregated blood flow in the gut was constructed and optimized with respect to drug-specific parameters. The established rat PBPK model was further extrapolated to humans through relevant physiological scale-up and parameter optimization processes. The optimized rat and human PBPK models adequately captured the impact of route-dependent gut metabolism on the systemic exposure to entrectinib and closely mirrored various preclinical and clinical observations. Our proposed PBPK model could be useful in optimizing dosage regimens and predicting drug interaction potential in various clinical conditions, after partial modification and validation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Benzamidas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Indazóis , Neoplasias Pulmonares/tratamento farmacológico , Modelos Biológicos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Ratos
14.
Mater Sci Eng C Mater Biol Appl ; 131: 112537, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857312

RESUMO

Fast disintegrating and dissolving nanofiber (NF) mat was devised to deliver roxithromycin for the treatment of the respiratory tract infection. NF membrane was made by an electrospinning process with poly(vinyl alcohol) (PVA), hydroxypropyl-ß-cyclodextrin (HP-ß-CD), and d-α-tocopheryl polyethylene glycol succinate (TPGS) for local application of roxithromycin. Roxithromycin has a poor water solubility thus HP-ß-CD is introduced for enhancing drug solubility by forming an inclusion complex in this study. The addition of TPGS provided multiple roles such as accelerating wetting, disintegration, and dissolution speed and overcoming bacterial resistance. Roxithromycin was successfully entrapped in NF structure and drug amorphization occurred during the electrospinning process. PVA/HP-ß-CD/TPGS/roxithromycin (PHTR) NF exhibited faster wetting, disintegration, and dissolution speed rather than the other NF mats. PHTR NF displayed higher antibacterial potentials in Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) compared to other NF mat formulations. The administration of PHTR NF to oral cavity in pneumococcal disease mouse model provided the most efficient therapeutic potentials in lung tissue. Designed multiple phase-based NF mat may be one of powerful local drug delivery systems for the therapy of respiratory tract infection.


Assuntos
Nanofibras , Roxitromicina , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Antibacterianos/farmacologia , Portadores de Fármacos , Escherichia coli , Camundongos , Boca , Roxitromicina/farmacologia , Solubilidade , Staphylococcus aureus
15.
Biofabrication ; 14(1)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34740205

RESUMO

Increasing evidence from cancer cell fusion with different cell types in the tumor microenvironment has suggested a probable mechanism for how metastasis-initiating cells could be generated in tumors. Although human mesenchymal stem cells (hMSCs) have been known as promising candidates to create hybrid cells with cancer cells, the role of hMSCs in fusion with cancer cells is still controversial. Here, we fabricated a liver-on-a-chip platform to monitor the fusion of liver hepatocellular cells (HepG2) with hMSCs and study their invasive potential. We demonstrated that hMSCs might play dual roles in HepG2 spheroids. The analysis of tumor growth with different fractions of hMSCs in HepG2 spheroids revealed hMSCs' role in preventing HepG2 growth and proliferation, while the hMSCs presented in the HepG2 spheroids led to the generation of HepG2-hMSC hybrid cells with much higher invasiveness compared to HepG2. These invasive HepG2-hMSC hybrid cells expressed high levels of markers associated with stemness, proliferation, epithelial to mesenchymal transition, and matrix deposition, which corresponded to the expression of these markers for hMSCs escaping from hMSC spheroids. In addition, these fused cells were responsible for collective invasion following HepG2 by depositing Collagen I and Fibronectin in their surrounding microenvironment. Furthermore, we showed that hepatic stellate cells (HSCs) could also be fused with HepG2, and the HepG2-HSC hybrid cells possessed similar features to those from HepG2-hMSC fusion. This fusion of HepG2 with liver-resident HSCs may propose a new potential mechanism of hepatic cancer metastasis.


Assuntos
Neoplasias Hepáticas , Células-Tronco Mesenquimais , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
16.
Int J Pharm ; 607: 120988, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34389420

RESUMO

CO2 gas generating poly(lactic-co-glycolic acid) (PLGA) microsphere (MS) was designed for rapid release of tanespimycin (17-AAG) in transarterial chemoembolization (TACE) treatment of hepatocellular carcinoma (HCC). As poorly water-soluble drug is generally released from PLGA MS in a sustained manner, the drug release profile should be controlled according to its clinical indications. In current study, responding to immediate increase in hypoxia inducible factor-1α (HIF-1α) level under hypoxia state followed by embolization of tumor feeding arteries, sodium bicarbonate (NaHCO3) was added to PLGA/17-AAG MS for fast drug release by CO2 gas generation in slightly acidic tumor microenvironment. With the aid of NaHCO3, initial burst release of 17-AAG was available without losing the micron-size and spherical shape of designed MS for embolization of artery. Acid-responsive CO2 gas generation and subsequent immediate release of 17-AAG from MS were successfully verified. PLGA/17-AAG/NaHCO3 MS-treated group exhibited higher antiproliferation and apoptosis induction efficacies in McA-RH7777 and SNU-761 cells. McA-RH7777 tumor-implanted rats treated by TACE using PLGA/17-AAG/NaHCO3 MS presented a complete therapeutic response. All these findings suggest that developed tumor microenvironment-responsive gas-generating MS can be efficiently applied to TACE therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Hipóxia , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Ratos , Microambiente Tumoral
17.
Pharmaceutics ; 13(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208289

RESUMO

The daily oral administration of acetylcholinesterase (AChE) inhibitors for Alzheimer's disease features low patient compliance and can lead to low efficacy or high toxicity owing to irregular intake. Herein, we developed a subcutaneously injectable hyaluronic acid hydrogel (MLC/HSA hydrogel) hybridized with microstructured lipid carriers (MLCs) and human serum albumin (HSA) for the sustained release of donepezil (DNP) with reduced initial burst release. The lipid carrier was designed to have a microsized mean diameter (32.6 ± 12.8 µm) to be well-localized in the hydrogel. The hybridization of MLCs and HSA enhanced the structural integrity of the HA hydrogel, as demonstrated by the measurements of storage modulus (G'), loss modulus (G″), and viscosity. In the pharmacokinetic study, subcutaneous administration of MLC/HSA hydrogel in rats prolonged the release of DNP for up to seven days and reduced the initial plasma concentration, where the Cmax value was 0.3-fold lower than that of the control hydrogel without a significant change in the AUClast value. Histological analyses of the hydrogels supported their biocompatibility for subcutaneous injection. These results suggest that a new hybrid MLC/HSA hydrogel could be promising as a subcutaneously injectable controlled drug delivery system for the treatment of Alzheimer's disease.

18.
Carbohydr Polym ; 266: 118104, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044922

RESUMO

Polypseudorotaxane structure and polydopamine bond-based crosslinked hyaluronic acid (HA) hydrogels including donepezil-loaded microspheres were developed for subcutaneous injection. Both dopamine and polyethylene glycol (PEG) were covalently bonded to the HA polymer for catechol polymerization and inclusion complexation with alpha-cyclodextrin (α-CD), respectively. A PEG chain of HA-dopamine-PEG (HD-PEG) conjugate was threaded with α-CD to make a polypseudorotaxane structure and its pH was adjusted to 8.5 for dopamine polymerization. Poly(lactic-co-glycolic acid) (PLGA)/donepezil microsphere (PDM) was embedded into the HD-PEG network for its sustained release. The HD-PEG/α-CD/PDM 8.5 hydrogel system exhibited an immediate gelation pattern, injectability through single syringe, self-healing ability, and shear-thinning behavior. Donepezil was released from the HD-PEG/α-CD/PDM 8.5 hydrogel in a sustained pattern. Following subcutaneous injection, the weight of excised HD-PEG/α-CD/PDM 8.5 hydrogel was higher than the other groups on day 14. These findings support the clinical feasibility of the HD-PEG/α-CD/PDM 8.5 hydrogel for subcutaneous injection.


Assuntos
Portadores de Fármacos/química , Ácido Hialurônico/análogos & derivados , Hidrogéis/química , Indóis/química , Polímeros/química , Animais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/toxicidade , Ciclodextrinas/síntese química , Ciclodextrinas/química , Ciclodextrinas/toxicidade , Donepezila/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Hialurônico/toxicidade , Hidrogéis/síntese química , Hidrogéis/toxicidade , Indóis/síntese química , Indóis/toxicidade , Masculino , Camundongos Endogâmicos ICR , Microesferas , Poloxâmero/síntese química , Poloxâmero/química , Poloxâmero/toxicidade , Polímeros/síntese química , Polímeros/toxicidade , Rotaxanos/síntese química , Rotaxanos/química , Rotaxanos/toxicidade , Substâncias Viscoelásticas/síntese química , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/toxicidade
19.
Small ; 17(14): e2007425, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33690979

RESUMO

Despite considerable efforts in modeling liver disease in vitro, it remains difficult to recapitulate the pathogenesis of the advanced phases of non-alcoholic fatty liver disease (NAFLD) with inflammation and fibrosis. Here, a liver-on-a-chip platform with bioengineered multicellular liver microtissues is developed, composed of four major types of liver cells (hepatocytes, endothelial cells, Kupffer cells, and stellate cells) to implement a human hepatic fibrosis model driven by NAFLD: i) lipid accumulation in hepatocytes (steatosis), ii) neovascularization by endothelial cells, iii) inflammation by activated Kupffer cells (steatohepatitis), and iv) extracellular matrix deposition by activated stellate cells (fibrosis). In this model, the presence of stellate cells in the liver-on-a-chip model with fat supplementation showed elevated inflammatory responses and fibrosis marker up-regulation. Compared to transforming growth factor-beta-induced hepatic fibrosis models, this model includes the native pathological and chronological steps of NAFLD which shows i) higher fibrotic phenotypes, ii) increased expression of fibrosis markers, and iii) efficient drug transport and metabolism. Taken together, the proposed platform will enable a better understanding of the mechanisms underlying fibrosis progression in NAFLD as well as the identification of new drugs for the different stages of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Células Endoteliais , Hepatócitos , Humanos , Fígado/patologia , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica/patologia
20.
ACS Appl Mater Interfaces ; 13(2): 2189-2203, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33416318

RESUMO

Elaborately and serially pH-modulated hydrogels possessing optimized viscoelastic natures for short gelation time and single syringe injection were designed for peritumoral injection of an anticancer agent. Boronate ester bonds between phenylboronic acid (PBA) (installed in HA-PBA (HP)) and dopamine (included in HA-dopamine (HD)) along with self-polymerization of dopamine (via interactions between HD conjugates) were introduced as the main cross-linking strategies of a hyaluronic acid (HA) hydrogel. Considering pKa values (8.0-9.5) of PBA and dopamine, the pH of each polymer dispersion was controlled elaborately for injection through a single syringe, and the final pH was tuned nearby the physiological pH (pH 7.8). The shear-thinning behavior, self-healing property, and single syringe injectability of a designed hydrogel cross-linked nearby physiological pH may provide its convenient application to peritumoral injection and prolonged retention in local cancer therapy. Erlotinib (ERT) was encapsulated in a microsphere (MS), and it was further embedded in an HP/HD-based hydrogel for sustained and locoregional delivery. A rheologically tuned hydrogel containing an ERT MS exhibited superior tumor-suppressive efficiencies compared to the other groups in A549 tumor-bearing mice. A designed injectable hydrogel through a single syringe system may be efficiently applied to local cancer therapy with lower toxicities to healthy organs.


Assuntos
Antineoplásicos/administração & dosagem , Boratos/química , Preparações de Ação Retardada/química , Cloridrato de Erlotinib/administração & dosagem , Hidrogéis/química , Células A549 , Animais , Antineoplásicos/uso terapêutico , Cloridrato de Erlotinib/uso terapêutico , Esterificação , Humanos , Concentração de Íons de Hidrogênio , Injeções , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA