Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Elife ; 122023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010273

RESUMO

The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.


Assuntos
Conectoma , Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão , Feto , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Encéfalo
2.
Transl Psychiatry ; 12(1): 323, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945202

RESUMO

Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Substância Branca , Encéfalo/patologia , Pré-Escolar , Depressão/diagnóstico por imagem , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mães/psicologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Substância Branca/patologia
3.
Neuroimage Clin ; 36: 103153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35987179

RESUMO

Children with Congenital Heart Disease (CHD) are at increased risk of neurodevelopmental impairments. The neonatal antecedents of impaired behavioural development are unknown. 43 infants with CHD underwent presurgical brain diffusion-weighted MRI [postmenstrual age at scan median (IQR) = 39.29 (38.71-39.71) weeks] and a follow-up assessment at median age of 22.1 (IQR 22.0-22.7) months in which parents reported internalizing and externalizing problem scores on the Child Behaviour Checklist. We constructed structural brain networks from diffusion-weighted MRI and calculated edge-wise structural connectivity as well as global and local brain network features. We also calculated presurgical cerebral oxygen delivery, and extracted perioperative variables, socioeconomic status at birth and a measure of cognitively stimulating parenting. Lower degree in the right inferior frontal gyrus (partial ρ = -0.687, p < 0.001) and reduced connectivity in a frontal-limbic sub-network including the right inferior frontal gyrus were associated with higher externalizing problem scores. Externalizing problem scores were unrelated to neonatal clinical course or home environment. However, higher internalizing problem scores were associated with earlier surgery in the neonatal period (partial ρ = -0.538, p = 0.014). Our results highlight the importance of frontal-limbic networks to the development of externalizing behaviours and provide new insights into early antecedents of behavioural impairments in CHD.


Assuntos
Encéfalo , Cardiopatias Congênitas , Lactente , Recém-Nascido , Humanos , Criança , Cardiopatias Congênitas/diagnóstico por imagem , Comportamento Infantil , Córtex Pré-Frontal , Imagem de Difusão por Ressonância Magnética
4.
Dev Cogn Neurosci ; 55: 101117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662682

RESUMO

In the mature brain, structural and functional 'fingerprints' of brain connectivity can be used to identify the uniqueness of an individual. However, whether the characteristics that make a given brain distinguishable from others already exist at birth remains unknown. Here, we used neuroimaging data from the developing Human Connectome Project (dHCP) of preterm born neonates who were scanned twice during the perinatal period to assess the developing brain fingerprint. We found that 62% of the participants could be identified based on the congruence of the later structural connectome to the initial connectivity matrix derived from the earlier timepoint. In contrast, similarity between functional connectomes of the same subject at different time points was low. Only 10% of the participants showed greater self-similarity in comparison to self-to-other-similarity for the functional connectome. These results suggest that structural connectivity is more stable in early life and can represent a potential connectome fingerprint of the individual: a relatively stable structural connectome appears to support a changing functional connectome at a time when neonates must rapidly acquire new skills to adapt to their new environment.


Assuntos
Conectoma , Encéfalo , Conectoma/métodos , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética
5.
Front Neurosci ; 16: 886772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677357

RESUMO

The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.

6.
Neuroimage ; 257: 119319, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35589001

RESUMO

The development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. Diffusion MRI allows the characterisation of subtle inter-individual differences in structural brain connectivity. Individual brain connectivity maps (connectomes) are by nature high in dimensionality and complex to interpret. Machine learning methods are a powerful tool to uncover properties of the connectome which are not readily visible and can give us clues as to how and why individual developmental trajectories differ. In this manuscript we used Deep Neural Networks and Random Forests to predict demographic and neurodevelopmental characteristics from neonatal structural connectomes in a large sample of babies (n = 524) from the developing Human Connectome Project. We achieved an accurate prediction of post menstrual age (PMA) at scan in term-born infants (mean absolute error (MAE) = 0.72 weeks, r = 0.83 and p < 0.001). We also achieved good accuracy when predicting gestational age at birth in a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p < 0.001). We subsequently used sensitivity analysis to obtain feature relevance from our prediction models, with the most important connections for prediction of PMA and GA found to predominantly involve frontal and temporal regions, thalami, and basal ganglia. From our models of PMA at scan for infants born at term, we computed a brain maturation index (predicted age minus actual age) of individual preterm neonates and found a significant correlation between this index and motor outcome at 18 months corrected age. Our results demonstrate the applicability of machine learning techniques in analyses of the neonatal connectome and suggest that a neural substrate of brain maturation with implications for future neurodevelopment is detectable at term equivalent age from the neonatal connectome.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Gravidez
7.
Dev Cogn Neurosci ; 54: 101103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35364447

RESUMO

Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for the individual and community. By examining the developing brain and its relation to developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix derived from morphological and microstructural features was computed for each subject (morphometric similarity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance. Predictive edges were distributed between and within known functional cortical divisions with a specific important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical profiles showing coordinated maturation are related to developmental outcomes and that network organization at birth provides an early infrastructure for future functional skills.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Encéfalo , Conectoma/métodos , Humanos , Lactente , Comportamento do Lactente , Recém-Nascido
8.
Hum Brain Mapp ; 43(5): 1577-1589, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897872

RESUMO

Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Substância Branca/diagnóstico por imagem
9.
Med Image Anal ; 74: 102255, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634644

RESUMO

MRI scanner and sequence imperfections and advances in reconstruction and imaging techniques to increase motion robustness can lead to inter-slice intensity variations in Echo Planar Imaging. Leveraging deep convolutional neural networks as universal image filters, we present a data-driven method for the correction of acquisition artefacts that manifest as inter-slice inconsistencies, regardless of their origin. This technique can be applied to motion- and dropout-artefacted data by embedding it in a reconstruction pipeline. The network is trained in the absence of ground-truth data on, and finally applied to, the reconstructed multi-shell high angular resolution diffusion imaging signal to produce a corrective slice intensity modulation field. This correction can be performed in either motion-corrected or scattered source-space. We focus on gaining control over the learned filter and the image data consistency via built-in spatial frequency and intensity constraints. The end product is a corrected image reconstructed from the original raw data, modulated by a multiplicative field that can be inspected and verified to match the expected features of the artefact. In-plane, the correction approximately preserves the contrast of the diffusion signal and throughout the image series, it reduces inter-slice inconsistencies within and across subjects without biasing the data. We apply our pipeline to enhance the super-resolution reconstruction of neonatal multi-shell high angular resolution data as acquired in the developing Human Connectome Project.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Recém-Nascido , Redes Neurais de Computação
10.
Neuroimage ; 243: 118488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419595

RESUMO

INTRODUCTION: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS: We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS: In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION: We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Nascimento Prematuro/diagnóstico por imagem , Anisotropia , Encéfalo/crescimento & desenvolvimento , Espessura Cortical do Cérebro , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Terceiro Trimestre da Gravidez
11.
Front Neurosci ; 15: 661704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220423

RESUMO

Structural (also known as anatomical) and diffusion MRI provide complimentary anatomical and microstructural characterization of early brain maturation. However, the existing models of the developing brain in time include only either structural or diffusion MRI channels. Furthermore, there is a lack of tools for combined analysis of structural and diffusion MRI in the same reference space. In this work, we propose a methodology to generate a multi-channel (MC) continuous spatio-temporal parametrized atlas of the brain development that combines multiple MRI-derived parameters in the same anatomical space during 37-44 weeks of postmenstrual age range. We co-align structural and diffusion MRI of 170 normal term subjects from the developing Human Connectomme Project using MC registration driven by both T2-weighted and orientation distribution functions channels and fit the Gompertz model to the signals and spatial transformations in time. The resulting atlas consists of 14 spatio-temporal microstructural indices and two parcellation maps delineating white matter tracts and neonatal transient structures. In order to demonstrate applicability of the atlas for quantitative region-specific studies, a comparison analysis of 140 term and 40 preterm subjects scanned at the term-equivalent age is performed using different MRI-derived microstructural indices in the atlas reference space for multiple white matter regions, including the transient compartments. The atlas and software will be available after publication of the article.

12.
Radiother Oncol ; 161: 118-125, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102233

RESUMO

BACKGROUND: Childhood infratentorial tumor patients frequently suffer from long-term cognitive deficits. As each constituent of their treatment can lead to neurotoxicity, cascade effects can lead to profound reorganization of the underlying brain network, the so-called 'connectome'. However, to date, few studies have assessed the relationship between brain network topology, the functional role of network hubs (i.e. highly connected regions), and neurocognitive outcomes in adult survivors of childhood infratentorial tumors. METHODS: In this cross-sectional study, childhood infratentorial tumor survivors (n = 21: pilocytic astrocytoma (n = 8), ependymoma (n = 1) and medulloblastoma (n = 12)) and healthy controls (n = 21) were recruited. Using multishell diffusion-weighted MRI, microstructural organization and topology of supratentorial white matter was investigated; using a voxel-based approach, a fixel-based analysis, and a graph theoretical approach. In addition, neurocognitive subscales of the WAIS-IV intelligence test, and their relationship with nodal strength and network efficiency metrics were assessed. RESULTS: Similar to earlier studies, we observed widespread decreases in fractional anisotropy (FA) in patients compared to controls, based on voxel-based analyses. In addition, the fixel-based analyses dissociated macro- from microstructural changes, which were encountered in in infratentorial versus supratentorial brain areas, respectively. Finally, regional reorganization (i.e. differences in local efficiency) occurred mainly in hubs, which suggests a specific vulnerability of these areas. These hubs were not only mostly affected, but also most strongly correlated with the intelligence subscales. CONCLUSION: This study suggests that network hubs are functionally important for intellectual outcomes in infratentorial tumor survivors. Furthermore, these regions could be the primary targets of treatment toxicity. Validation of this specific hypothesis in larger samples is required.


Assuntos
Neoplasias Cerebelares , Neoplasias Infratentoriais , Adulto , Encéfalo , Neoplasias Cerebelares/diagnóstico por imagem , Cognição , Estudos Transversais , Humanos , Neoplasias Infratentoriais/diagnóstico por imagem , Sobreviventes
13.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972435

RESUMO

During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.


Assuntos
Córtex Cerebral/fisiologia , Corpo Caloso/fisiologia , Desenvolvimento Fetal/fisiologia , Tálamo/fisiologia , Substância Branca/fisiologia , Anisotropia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Conectoma , Corpo Caloso/anatomia & histologia , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Feto , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Tálamo/anatomia & histologia , Tálamo/diagnóstico por imagem , Útero/diagnóstico por imagem , Útero/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
14.
Neuroimage ; 225: 117437, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068713

RESUMO

Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need to be aligned within and across diffusion-weighted contrasts. Here, we develop a reconstruction method for scattered slice multi-shell high angular resolution diffusion imaging (HARDI) data, jointly estimating an uncorrupted data representation and motion parameters at the slice or multiband excitation level. The reconstruction relies on data-driven representation of multi-shell HARDI data using a bespoke spherical harmonics and radial decomposition (SHARD), which avoids imposing model assumptions, thus facilitating to compare various microstructure imaging methods in the reconstructed output. Furthermore, the proposed framework integrates slice-level outlier rejection, distortion correction, and slice profile correction. We evaluate the method in the neonatal cohort of the developing Human Connectome Project (650 scans). Validation experiments demonstrate accurate slice-level motion correction across the age range and across the range of motion in the population. Results in the neonatal data show successful reconstruction even in severely motion-corrupted subjects. In addition, we illustrate how local tissue modelling can extract advanced microstructure features such as orientation distribution functions from the motion-corrected reconstructions.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento , Conectoma , Humanos , Recém-Nascido
15.
PLoS Biol ; 18(11): e3000976, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33226978

RESUMO

Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Feto/anatomia & histologia , Feto/metabolismo , Encéfalo/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Feminino , Maturidade dos Órgãos Fetais/genética , Feto/diagnóstico por imagem , Neuroimagem Funcional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Imageamento por Ressonância Magnética Multiparamétrica , Neurogênese/genética , Gravidez , Nascimento Prematuro , Análise Espaço-Temporal
16.
Neuroimage Clin ; 28: 102423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32987301

RESUMO

Impaired brain development has been observed in newborns with congenital heart disease (CHD). We performed graph theoretical analyses and network-based statistics (NBS) to assess global brain network topology and identify subnetworks of altered connectivity in infants with CHD prior to cardiac surgery. Fifty-eight infants with critical/serious CHD prior to surgery and 116 matched healthy controls as part of the developing Human Connectome Project (dHCP) underwent MRI on a 3T system and high angular resolution diffusion MRI (HARDI) was obtained. Multi-tissue constrained spherical deconvolution, anatomically constrained probabilistic tractography (ACT) and spherical-deconvolution informed filtering of tractograms (SIFT2) was used to construct weighted structural networks. Network topology was assessed and NBS was used to identify structural connectivity differences between CHD and control groups. Structural networks were partitioned into core and peripheral nodes, and edges classed as core, peripheral, or feeder. NBS identified one subnetwork with reduced structural connectivity in CHD infants involving basal ganglia, amygdala, hippocampus, cerebellum, vermis, and temporal and parieto-occipital lobe, primarily affecting core nodes and edges. However, we did not find significantly different global network characteristics in CHD neonates. This locally affected sub-network with reduced connectivity could explain, at least in part, the neurodevelopmental impairments associated with CHD.


Assuntos
Conectoma , Cardiopatias Congênitas , Encéfalo , Imagem de Difusão por Ressonância Magnética , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética
17.
Neuroimage ; 221: 117128, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673745

RESUMO

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 â€‹mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Adulto , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Neuroimagem/instrumentação , Neuroimagem/normas , Análise de Regressão
18.
NMR Biomed ; 33(9): e4348, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632961

RESUMO

Diffusion MRI has the potential to provide important information about the connectivity and microstructure of the human brain during normal and abnormal development, noninvasively and in vivo. Recent developments in MRI hardware and reconstruction methods now permit the acquisition of large amounts of data within relatively short scan times. This makes it possible to acquire more informative multi-shell data, with diffusion sensitisation applied along many directions over multiple b-value shells. Such schemes are characterised by the number of shells acquired, and the specific b-value and number of directions sampled for each shell. However, there is currently no clear consensus as to how to optimise these parameters. In this work, we propose a means of optimising multi-shell acquisition schemes by estimating the information content of the diffusion MRI signal, and optimising the acquisition parameters for sensitivity to the observed effects, in a manner agnostic to any particular diffusion analysis method that might subsequently be applied to the data. This method was used to design the acquisition scheme for the neonatal diffusion MRI sequence used in the developing Human Connectome Project (dHCP), which aims to acquire high quality data and make it freely available to the research community. The final protocol selected by the algorithm, and currently in use within the dHCP, consists of 20 b=0 images and diffusion-weighted images at b = 400, 1000 and 2600 s/mm2 with 64, 88 and 128 directions per shell, respectively.


Assuntos
Imagem de Difusão por Ressonância Magnética , Algoritmos , Anisotropia , Meios de Contraste/química , Humanos , Recém-Nascido , Processamento de Sinais Assistido por Computador
19.
Cereb Cortex ; 30(11): 5767-5779, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32537627

RESUMO

Interruptions to neurodevelopment during the perinatal period may have long-lasting consequences. However, to be able to investigate deviations in the foundation of proper connectivity and functional circuits, we need a measure of how this architecture evolves in the typically developing brain. To this end, in a cohort of 241 term-born infants, we used magnetic resonance imaging to estimate cortical profiles based on morphometry and microstructure over the perinatal period (37-44 weeks postmenstrual age, PMA). Using the covariance of these profiles as a measure of inter-areal network similarity (morphometric similarity networks; MSN), we clustered these networks into distinct modules. The resulting modules were consistent and symmetric, and corresponded to known functional distinctions, including sensory-motor, limbic, and association regions, and were spatially mapped onto known cytoarchitectonic tissue classes. Posterior regions became more morphometrically similar with increasing age, while peri-cingulate and medial temporal regions became more dissimilar. Network strength was associated with age: Within-network similarity increased over age suggesting emerging network distinction. These changes in cortical network architecture over an 8-week period are consistent with, and likely underpin, the highly dynamic processes occurring during this critical period. The resulting cortical profiles might provide normative reference to investigate atypical early brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Neurogênese/fisiologia , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino
20.
Neuroimage Clin ; 27: 102283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32526683

RESUMO

OBJECTIVE: Advanced paternal age is associated with poor offspring developmental outcome. Though an increase in paternal age-related germline mutations may affect offspring white matter development, outcome differences could also be due to psychosocial factors. Here we investigate possible cerebral changes prior to strong environmental influences using brain MRI in a cohort of healthy term-born neonates. METHODS: We used structural and diffusion MRI images acquired soon after birth from a cohort (n = 275) of healthy term-born neonates. Images were analysed using a customised tract based spatial statistics (TBSS) processing pipeline. Neurodevelopmental assessment using the Bayley-III scales was offered to all participants at age 18 months. For statistical analysis neonates were compared in two groups, representing the upper quartile (paternal age ≥38 years) and lower three quartiles. The same method was used to assess associations with maternal age. RESULTS: In infants with older fathers (≥38 years), fractional anisotropy, a marker of white matter organisation, was significantly reduced in three early maturing anatomical locations (the corticospinal tract, the corpus callosum, and the optic radiation). Fractional anisotropy in these locations correlated positively with Bayley-III cognitive composite score at 18 months in the advanced paternal age group. A small but significant reduction in total brain volume was also observed in in the infants of older fathers. No significant associations were found between advanced maternal age and neonatal imaging. CONCLUSIONS: The epidemiological association between advanced paternal age and offspring outcome is extremely robust. We have for the first time demonstrated a neuroimaging phenotype of advanced paternal age before sustained parental interaction that correlates with later outcome.


Assuntos
Desenvolvimento Infantil/fisiologia , Recém-Nascido Prematuro/crescimento & desenvolvimento , Tratos Piramidais/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Pais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA