Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Metab ; 12: 12-24, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29656110

RESUMO

OBJECTIVE: Mitochondrial pyruvate dehydrogenase kinases 1-4 (PDKs1-4) negatively regulate activity of the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation. PDKs play a pivotal role in maintaining energy homeostasis and contribute to metabolic flexibility by attenuating PDC activity in various mammalian tissues. Cumulative evidence has shown that the up-regulation of PDK4 expression is tightly associated with obesity and diabetes. In this investigation, we test the central hypothesis that PDKs1-4 are a pharmacological target for lowering glucose levels and restoring insulin sensitivity in obesity and type 2 diabetes (T2D). METHODS: Diet-induced obese (DIO) mice were treated with a liver-specific pan-PDK inhibitor 2-[(2,4-dihydroxyphenyl) sulfonyl]isoindoline-4,6-diol (PS10) for four weeks, and results compared with PDK2/PDK4 double knockout (DKO) mice on the same high fat diet (HFD). RESULTS: Both PS10-treated DIO mice and HFD-fed DKO mice showed significantly improved glucose, insulin and pyruvate tolerance, compared to DIO controls, with lower plasma insulin levels and increased insulin signaling in liver. In response to lower glucose levels, phosphorylated AMPK in PS10-treated DIO and HFD-fed DKO mice is upregulated, accompanied by decreased nuclear carbohydrate-responsive element binding protein (ChREBP). The reduced ChREBP signaling correlates with down-regulation of hepatic lipogenic enzymes (ACC1, FAS, and SCD1), leading to markedly diminished hepatic steatosis in both study groups, with lower circulating cholesterol and triacylglyceride levels as well as reduced fat mass. PS10-treated DIO as well as DKO mice showed predominant fatty acid over glucose oxidation. However, unlike systemic DKO mice, increased hepatic PDC activity alone in PS10-treated DIO mice does not raise the plasma total ketone body level. CONCLUSION: Our findings establish that specific targeting of hepatic PDKs with the PDK inhibitor PS10 is an effective therapeutic approach to maintaining glucose and lipid homeostasis in obesity and T2D, without the harmful ketoacidosis associated with systemic inhibition of PDKs.


Assuntos
Insulina/metabolismo , Lipogênese , Proteínas Nucleares/metabolismo , Obesidade/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Isoindóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Complexo Piruvato Desidrogenase/genética , Sulfonas/farmacologia
2.
J Med Chem ; 60(3): 1142-1150, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28085286

RESUMO

Pyruvate dehydrogenase kinases 1-4 (PDK1-4) negatively control activity of the pyruvate dehydrogenase complex (PDC) and are up-regulated in obesity, diabetes, heart failure, and cancer. We reported earlier two novel pan-PDK inhibitors PS8 [4-((5-hydroxyisoindolin-2-yl)sulfonyl)benzene-1,3-diol] (1) and PS10 [2-((2,4-dihydroxyphenyl)sulfonyl)isoindoline-4,6-diol] (2) that targeted the ATP-binding pocket in PDKs. Here, we developed a new generation of PDK inhibitors by extending the dihydroxyphenyl sulfonylisoindoline scaffold in 1 and 2 to the entrance region of the ATP-binding pocket in PDK2. The lead inhibitor (S)-3-amino-4-(4-((2-((2,4-dihydroxyphenyl)sulfonyl)isoindolin-5-yl)amino)piperidin-1-yl)-4-oxobutanamide (17) shows a ∼8-fold lower IC50 (58 nM) than 2 (456 nM). In the crystal structure, the asparagine moiety in 17 provides additional interactions with Glu-262 from PDK2. Treatment of diet-induced obese mice with 17 resulted in significant liver-specific augmentation of PDC activity, accompanied by improved glucose tolerance and drastically reduced hepatic steatosis. These findings support 17 as a potential glucose-lowering therapeutic targeting liver for obesity and type 2 diabetes.


Assuntos
Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Isoenzimas/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Cristalografia por Raios X , Feminino , Indóis/química , Concentração Inibidora 50 , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil
3.
J Biol Chem ; 289(30): 20583-93, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24895126

RESUMO

The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation.BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6- dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC(50) = 3.19 µM). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T(1/2) = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[ b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[ b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations.


Assuntos
Inibidores Enzimáticos/farmacologia , Hepatócitos/enzimologia , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Proteólise/efeitos dos fármacos , Tiofenos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Hepatócitos/patologia , Humanos , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Camundongos Knockout , Tiofenos/farmacocinética
4.
J Biol Chem ; 289(7): 4432-43, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24356970

RESUMO

Pyruvate dehydrogenase kinase isoforms (PDKs 1-4) negatively regulate activity of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation. PDK isoforms are up-regulated in obesity, diabetes, heart failure, and cancer and are potential therapeutic targets for these important human diseases. Here, we employed a structure-guided design to convert a known Hsp90 inhibitor to a series of highly specific PDK inhibitors, based on structural conservation in the ATP-binding pocket. The key step involved the substitution of a carbonyl group in the parent compound with a sulfonyl in the PDK inhibitors. The final compound of this series, 2-[(2,4-dihydroxyphenyl)sulfonyl]isoindoline-4,6-diol, designated PS10, inhibits all four PDK isoforms with IC50 = 0.8 µM for PDK2. The administration of PS10 (70 mg/kg) to diet-induced obese mice significantly augments pyruvate dehydrogenase complex activity with reduced phosphorylation in different tissues. Prolonged PS10 treatments result in improved glucose tolerance and notably lessened hepatic steatosis in the mouse model. The results support the pharmacological approach of targeting PDK to control both glucose and fat levels in obesity and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos , Fígado Gorduroso/tratamento farmacológico , Isoindóis/química , Isoindóis/farmacologia , Obesidade/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sulfonas/química , Sulfonas/farmacologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Proteínas de Choque Térmico HSP90 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/enzimologia , Obesidade/genética , Obesidade/patologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
5.
Proc Natl Acad Sci U S A ; 110(24): 9728-33, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716694

RESUMO

The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure.


Assuntos
Proteínas Mitocondriais/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Estrutura Terciária de Proteína , Regulação Alostérica , Animais , Sítios de Ligação/genética , Cromatografia Líquida , Cristalografia por Raios X , Isoleucina/sangue , Isoleucina/metabolismo , Cinética , Leucina/sangue , Leucina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Estrutura Molecular , Mutação , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/farmacologia , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Espectrometria de Massas em Tandem , Valina/sangue , Valina/metabolismo
6.
J Biol Chem ; 287(12): 9178-92, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22291014

RESUMO

The branched-chain α-ketoacid dehydrogenase phosphatase (BDP) component of the human branched-chain α-ketoacid dehydrogenase complex (BCKDC) has been expressed in Escherichia coli and purified in the soluble form. The monomeric BDP shows a strict dependence on Mn(2+) ions for phosphatase activity, whereas Mg(2+) and Ca(2+) ions do not support catalysis. Metal binding constants for BDP, determined by competition isothermal titration calorimetry, are 2.4 nm and 10 µm for Mn(2+) and Mg(2+) ions, respectively. Using the phosphorylated decarboxylase component (p-E1b) of BCKDC as a substrate, BDP shows a specific activity of 68 nmol/min/mg. The Ca(2+)-independent binding of BDP to the 24-meric transacylase (dihydrolipoyl transacylase; E2b) core of BCKDC results in a 3-fold increase in the dephosphorylation rate of p-E1b. However, the lipoyl prosthetic group on E2b is not essential for BDP binding or E2b-stimulated phosphatase activity. Acidic residues in the C-terminal linker of the E2b lipoyl domain are essential for the interaction between BDP and E2b. The BDP structure was determined by x-ray crystallography to 2.4 Å resolution. The BDP structure is dominated by a central ß-sandwich. There are two protrusions forming a narrow cleft ∼10 Å wide, which constitutes the active site. The carboxylate moieties of acidic residues Asp-109, Asp-207, Asp-298, and Asp-337 in the active-site cleft participate in binding two metal ions. Substitutions of these residues with alanine nullify BDP phosphatase activity. Alteration of the nearby Arg-104 increases the K(m) for p-E1b peptide by 60-fold, suggesting that this residue is critical for the recognition of the native p-E1b protein.


Assuntos
Mitocôndrias/enzimologia , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Magnésio/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Modelos Moleculares , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2C
7.
J Biol Chem ; 286(26): 23476-88, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21543315

RESUMO

The purified mammalian branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the oxidative decarboxylation of branched-chain α-keto acids, is essentially devoid of the constituent dihydrolipoamide dehydrogenase component (E3). The absence of E3 is associated with the low affinity of the subunit-binding domain of human BCKDC (hSBDb) for hE3. In this work, sequence alignments of hSBDb with the E3-binding domain (E3BD) of the mammalian pyruvate dehydrogenase complex show that hSBDb has an arginine at position 118, where E3BD features an asparagine. Substitution of Arg-118 with an asparagine increases the binding affinity of the R118N hSBDb variant (designated hSBDb*) for hE3 by nearly 2 orders of magnitude. The enthalpy of the binding reaction changes from endothermic with the wild-type hSBDb to exothermic with the hSBDb* variant. This higher affinity interaction allowed the determination of the crystal structure of the hE3/hSBDb* complex to 2.4-Å resolution. The structure showed that the presence of Arg-118 poses a unique, possibly steric and/or electrostatic incompatibility that could impede E3 interactions with the wild-type hSBDb. Compared with the E3/E3BD structure, the hE3/hSBDb* structure has a smaller interfacial area. Solution NMR data corroborated the interactions of hE3 with Arg-118 and Asn-118 in wild-type hSBDb and mutant hSBDb*, respectively. The NMR results also showed that the interface between hSBDb and hE3 does not change significantly from hSBDb to hSBDb*. Taken together, our results represent a starting point for explaining the long standing enigma that the E2b core of the BCKDC binds E3 far more weakly relative to other α-ketoacid dehydrogenase complexes.


Assuntos
Di-Hidrolipoamida Desidrogenase/química , Substituição de Aminoácidos , Cristalografia por Raios X , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Humanos , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
8.
Anal Biochem ; 407(1): 89-103, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667444

RESUMO

Determination of the stoichiometry of macromolecular assemblies is fundamental to an understanding of how they function. Many different biophysical methodologies may be used to determine stoichiometry. In the past, both sedimentation equilibrium and sedimentation velocity analytical ultracentrifugation have been employed to determine component stoichiometries. Recently, a method of globally analyzing multisignal sedimentation velocity data was introduced by Schuck and coworkers. This global analysis removes some of the experimental inconveniences and inaccuracies that could occur in the previously used strategies. This method uses spectral differences between the macromolecular components to decompose the well-known c(s) distribution into component distributions c(k)(s); that is, each component k has its own c(k)(s) distribution. Integration of these distributions allows the calculation of the populations of each component in cosedimenting complexes, yielding their stoichiometry. In our laboratories, we have used this method extensively to determine the component stoichiometries of several protein-protein complexes involved in cytoskeletal remodeling, sugar metabolism, and host-pathogen interactions. The overall method is described in detail in this work, as are experimental examples and caveats.


Assuntos
Complexos Multiproteicos/química , Ultracentrifugação/métodos , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Humanos , Lactoferrina/química , Ligação Proteica , Complexo Piruvato Desidrogenase/química
9.
Genet Test Mol Biomarkers ; 13(5): 657-64, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19715473

RESUMO

We report five mutations, three of them novel, responsible for maple syrup urine disease in four unrelated Cypriot families. The five children studied are the first cases of classic maple syrup urine disease to be reported among Cypriots. The first novel mutation identified is a single-base deletion in exon 6 of the Elalpha gene (c.718delG), which leads to a frameshift after Ala240 and to a stop codon 89 residues further downstream. The other two novel mutations identified are in the Elbeta subunit: a two-base deletion in exon 6, c.662_663delCC, which leads to a frameshift after Ala221 and creates a stop codon 17 residues further downstream, as well as a splice mutation, IVS3[+3]delA, which results in the skipping of exon 3. The two known mutations identified are in the Elalpha gene: the G > C transversion at the 3'-splice acceptor site, (IVS5-1G > C), which results in the deletion of the entire exon 6, and the missense mutation in exon 5 (c.632C > T), which corresponds to a p.Thr211Met substitution. The p.Thr211Met substitution is located in a potassium-ion pocket in the E1 component required for stability of the bound cofactor thiamine diphosphate. The mutant E1 protein harboring the p.Thr211Met substitution was shown unable to bind thiamine diphosphate, leading to undetectable E1 activity.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Mutação da Fase de Leitura , Doença da Urina de Xarope de Bordo/genética , Western Blotting , Linhagem Celular , Chipre , Éxons , Humanos
10.
J Biol Chem ; 284(19): 13086-98, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19240034

RESUMO

The human pyruvate dehydrogenase complex (PDC) is a 9.5-megadalton catalytic machine that employs three catalytic components, i.e. pyruvate dehydrogenase (E1p), dihydrolipoyl transacetylase (E2p), and dihydrolipoamide dehydrogenase (E3), to carry out the oxidative decarboxylation of pyruvate. The human PDC is organized around a 60-meric dodecahedral core comprising the C-terminal domains of E2p and a noncatalytic component, E3-binding protein (E3BP), which specifically tethers E3 dimers to the PDC. A central issue concerning the PDC structure is the subunit stoichiometry of the E2p/E3BP core; recent studies have suggested that the core is composed of 48 copies of E2p and 12 copies of E3BP. Here, using an in vitro reconstituted PDC, we provide densitometry, isothermal titration calorimetry, and analytical ultracentrifugation evidence that there are 40 copies of E2p and 20 copies of E3BP in the E2p/E3BP core. Reconstitution with saturating concentrations of E1p and E3 demonstrated 40 copies of E1p heterotetramers and 20 copies of E3 dimers associated with the E2p/E3BP core. To corroborate the 40/20 model of this core, the stoichiometries of E3 and E1p binding to their respective binding domains were reexamined. In these binding studies, the stoichiometries were found to be 1:1, supporting the 40/20 model of the core. The overall maximal stoichiometry of this in vitro assembled PDC for E2p:E3BP:E1p:E3 is 40:20:40:20. These findings contrast a previous report that implicated that two E3-binding domains of E3BP bind simultaneously to a single E3 dimer (Smolle, M., Prior, A. E., Brown, A. E., Cooper, A., Byron, O., and Lindsay, J. G. (2006) J. Biol. Chem. 281, 19772-19780).


Assuntos
Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Piruvato Desidrogenase (Lipoamida)/química , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Proteínas Recombinantes/química , Sítios de Ligação , Catálise , Di-Hidrolipoamida Desidrogenase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Humanos , Técnicas In Vitro , Cinética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ultracentrifugação
11.
Structure ; 16(12): 1849-59, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19081061

RESUMO

We report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-alpha (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-alpha prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites. The disordering of these phosphorylation loops is caused by a previously unrecognized steric clash between the phosphoryl group at site 1 and a nearby Ser266-alpha, which nullifies a hydrogen-bonding network essential for maintaining the loop conformations. The disordered phosphorylation loops impede the binding of lipoyl domains of the PDC core to E1p, negating the reductive acetylation step. This results in the disruption of the substrate channeling in the PDC, leading to the inactivation of this catalytic machine.


Assuntos
Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Acetilação , Alanina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Descarboxilação , Humanos , Ligação de Hidrogênio , Cinética , Modelos Biológicos , Modelos Moleculares , Fosforilação , Ligação Proteica/genética , Conformação Proteica , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína/genética , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/genética , Especificidade por Substrato/genética , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
12.
J Biol Chem ; 283(37): 25305-25315, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18658136

RESUMO

Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.


Assuntos
Proteínas Quinases/fisiologia , Difosfato de Adenosina/química , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Dimerização , Humanos , Conformação Molecular , Dados de Sequência Molecular , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Proteínas Quinases/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
13.
Structure ; 15(8): 992-1004, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17683942

RESUMO

Pyruvate dehydrogenase kinase (PDK) isoforms are molecular switches that downregulate the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation in mitochondria. We have determined structures of human PDK1 or PDK3 bound to the inhibitors AZD7545, dichloroacetate (DCA), and radicicol. We show that the trifluoromethylpropanamide end of AZD7545 projects into the lipoyl-binding pocket of PDK1. This interaction results in inhibition of PDK1 and PDK3 activities by aborting kinase binding to the PDC scaffold. Paradoxically, AZD7545 at saturating concentrations robustly increases scaffold-free PDK3 activity, similar to the inner lipoyl domain. Good DCA density is present in the helix bundle in the N-terminal domain of PDK1. Bound DCA promotes local conformational changes that are communicated to both nucleotide-binding and lipoyl-binding pockets of PDK1, leading to the inactivation of kinase activity. Finally, radicicol inhibits kinase activity by binding directly to the ATP-binding pocket of PDK3, similar to Hsp90 and Topo VI from the same ATPase/kinase superfamily.


Assuntos
Ácido Dicloroacético/farmacologia , Macrolídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Motivos de Aminoácidos , Sequência de Aminoácidos , Anilidas , Sítios de Ligação , Cristalografia por Raios X , Ácido Dicloroacético/química , Dimerização , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Macrolídeos/química , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil , Solubilidade , Análise Espectral Raman
14.
J Biol Chem ; 282(16): 11904-13, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17329260

RESUMO

A long standing controversy is whether an alternating activesite mechanism occurs during catalysis in thiamine diphosphate (ThDP)-dependent enzymes. We address this question by investigating the ThDP-dependent decarboxylase/dehydrogenase (E1b) component of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC). Our crystal structure reveals that conformations of the two active sites in the human E1b heterotetramer harboring the reaction intermediate are identical. Acidic residues in the core of the E1b heterotetramer, which align with the proton-wire residues proposed to participate in active-site communication in the related pyruvate dehydrogenase from Bacillus stearothermophilus, are mutated. Enzyme kinetic data show that, except in a few cases because of protein misfolding, these alterations are largely without effect on overall activity of BCKDC, ruling out the requirement of a proton-relay mechanism in E1b. BCKDC overall activity is nullified at 50% phosphorylation of E1b, but it is restored to nearly half of the pre-phosphorylation level after dissociation and reconstitution of BCKDC with the same phosphorylated E1b. The results suggest that the abolition of overall activity likely results from the specific geometry of the half-phosphorylated E1b in the BCKDC assembly and not due to a disruption of the alternating active-site mechanism. Finally, we show that a mutant E1b containing only one functional active site exhibits half of the wild-type BCKDC activity, which directly argues against the obligatory communication between active sites. The above results provide evidence that the two active sites in the E1b heterotetramer operate independently during the ThDP-dependent decarboxylation reaction.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Geobacillus stearothermophilus/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Prótons , Homologia de Sequência de Aminoácidos
15.
EMBO J ; 25(24): 5983-94, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17124494

RESUMO

The dihydrolipoamide acyltransferase (E2b) component of the branched-chain alpha-ketoacid dehydrogenase complex forms a cubic scaffold that catalyzes acyltransfer from S-acyldihydrolipoamide to CoA to produce acyl-CoA. We have determined the first crystal structures of a mammalian (bovine) E2b core domain with and without a bound CoA or acyl-CoA. These structures reveal both hydrophobic and the previously unreported ionic interactions between two-fold-related trimers that build up the cubic core. The entrance of the dihydrolipoamide-binding site in a 30-A long active-site channel is closed in the apo and acyl-CoA-bound structures. CoA binding to one entrance of the channel promotes a conformational change in the channel, resulting in the opening of the opposite dihydrolipoamide gate. Binding experiments show that the affinity of the E2b core for dihydrolipoamide is markedly increased in the presence of CoA. The result buttresses the model that CoA binding is responsible for the opening of the dihydrolipoamide gate. We suggest that this gating mechanism synchronizes the binding of the two substrates to the active-site channel, which serves as a feed-forward switch to coordinate the E2b-catalyzed acyltransfer reaction.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Bovinos , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Ácido Tióctico/metabolismo
16.
J Biol Chem ; 281(38): 28345-53, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16861235

RESUMO

The homo-24-meric dihydrolipoyl transacylase (E2) scaffold of the human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) contains the lipoyl-bearing domain (hbLBD), the subunit-binding domain (hbSBD) and the inner core domain that are linked to carry out E2 functions in substrate channeling and recognition. In this study, we employed NMR techniques to determine the structure of hbSBD and dynamics of several truncated constructs from the E2 component of the human BCKDC, including hbLBD (residues 1-84), hbSBD (residues 111-149), and a di-domain (hbDD) (residues 1-166) comprising hbLBD, hbSBD and the interdomain linker. The solution structure of hbSBD consists of two nearly parallel helices separated by a long loop, similar to the structures of the SBD isolated from other species, but it lacks the short 3(10) helix. The NMR results show that the structures of hbLBD and hbSBD in isolated forms are not altered by the presence of the interdomain linker in hbDD. The linker region is not entirely exposed to solvent, where amide resonances associated with approximately 50% of the residues are observable. However, the tethering of these two domains in hbDD significantly retards the overall rotational correlation times of hbLBD and hbSBD, changing from 5.54 ns and 5.73 ns in isolated forms to 8.37 ns and 8.85 ns in the linked hbDD, respectively. We conclude that the presence of the interdomain linker restricts the motional freedom of the hbSBD more significantly than hbLBD, and that the linker region likely exists as a soft rod rather than a flexible string in solution.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas
17.
J Biol Chem ; 281(37): 27197-204, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16849321

RESUMO

Pyruvate dehydrogenase kinase isoforms (PDK1-4) are the molecular switch that down-regulates activity of the human pyruvate dehydrogenase complex through reversible phosphorylation. We showed previously that binding of the lipoyl domain 2 (L2) of the pyruvate dehydrogenase complex to PDK3 induces a "cross-tail" conformation in PDK3, resulting in an opening of the active site cleft and the stimulation of kinase activity. In the present study, we report that alanine substitutions of Leu-140, Glu-170, and Glu-179 in L2 markedly reduce binding affinities of these L2 mutants for PDK3. Unlike wildtype L2, binding of these L2 mutants to PDK3 does not preferentially reduce the affinity of PDK3 for ADP over ATP. The inefficient removal of product inhibition associated with ADP accounts for the decreased stimulation of PDK3 activity by these L2 variants. Serial truncations of the PDK3 C-terminal tail region either impede or abolish the binding of wild-type L2 to the PDK3 mutants, resulting in the reduction or absence of L2-enhanced kinase activity. Alanine substitutions of residues Leu-27, Phe-32, Phe-35, and Phe-48 in the lipoyl-binding pocket of PDK3 similarly nullify L2 binding and L2-stimulated PDK3 activity. Our results indicate that the above residues in L2 and residues in the C-terminal region and the lipoyl-binding pocket of PDK3 are critical determinants for the cross-talk between L2 and PDK3, which up-regulates PDK3 activity.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas Quinases/química , Complexo Piruvato Desidrogenase/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil
18.
Structure ; 14(2): 287-98, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16472748

RESUMO

The dehydrogenase/decarboxylase (E1b) component of the 4 MD human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is a thiamin diphosphate (ThDP)-dependent enzyme. We have determined the crystal structures of E1b with ThDP bound intermediates after decarboxylation of alpha-ketoacids. We show that a key tyrosine residue in the E1b active site functions as a conformational switch to reduce the reactivity of the ThDP cofactor through interactions with its thiazolium ring. The intermediates do not assume the often-postulated enamine state, but likely a carbanion state. The carbanion presumably facilitates the second E1b-catalyzed reaction, involving the transfer of an acyl moiety from the intermediate to a lipoic acid prosthetic group in the transacylase (E2b) component of the BCKDC. The tyrosine switch further remodels an E1b loop region to promote E1b binding to E2b. Our results illustrate the versatility of the tyrosine switch in coordinating the catalytic events in E1b by modulating the reactivity of reaction intermediates.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , Modelos Moleculares , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Mutação , Conformação Proteica , Piruvato Desidrogenase (Lipoamida)/química , Alinhamento de Sequência , Tiamina Pirofosfato/química , Tirosina/química
19.
Structure ; 14(3): 611-21, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16442803

RESUMO

The 9.5 MDa human pyruvate dehydrogenase complex (PDC) utilizes the specific dihydrolipoamide dehydrogenase (E3) binding protein (E3BP) to tether the essential E3 component to the 60-meric core of the complex. Here, we report crystal structures of the binding domain (E3BD) of human E3BP alone and in complex with human E3 at 1.6 angstroms and 2.2 angstroms, respectively. The latter structure shows that residues from E3BD contact E3 across its 2-fold axis, resulting in one E3BD binding site on the E3 homodimer. Negligible conformational changes occur in E3BD upon its high-affinity binding to E3. Modifications of E3BD residues at the center of the E3BD/E3 interface impede E3 binding far more severely than those of residues on the periphery, validating the "hot spot" paradigm for protein interactions. A cluster of disease-causing E3 mutations located near the center of the E3BD/E3 interface prevents the efficient recruitment of these E3 variants by E3BP into the PDC, leading to the dysfunction of the PDC catalytic machine.


Assuntos
Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoamida Desidrogenase/metabolismo , Predisposição Genética para Doença , Complexo Piruvato Desidrogenase/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Di-Hidrolipoamida Desidrogenase/genética , Dimerização , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Relação Estrutura-Atividade
20.
J Nutr ; 136(1 Suppl): 243S-9S, 2006 01.
Artigo em Inglês | MEDLINE | ID: mdl-16365091

RESUMO

Genetic disorders of BCAA metabolism produce amino acidopathies and various forms of organic aciduria with severe clinical consequences. A metabolic block in the oxidative decarboxylation of BCAA caused by mutations in the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC) results in Maple Syrup Urine Disease (MSUD) or branched-chain ketoaciduria. There are presently five known clinical phenotypes for MSUD, i.e., classic, intermediate, intermittent, thiamin-responsive, and dihydrolipoamide dehydrogenase (E3)-deficient, based on severity of the disease, response to thiamin therapy, and the gene locus affected. Reduced glutamate, glutamine, and gamma-aminobutyrate concentrations induced by the accumulation of branched-chain alpha-ketoacids in the brain cortex of affected children and neonatal polled Hereford calves are considered the cause of MSUD encephalopathies. The long-term restriction of BCAA intake in diets and orthotopic liver transplantation have proven effective in controlling plasma BCAA levels and mitigating some of the above neurological manifestations. To date, approximately 100 mutations have been identified in four (branched-chain alpha-ketoacid decarboxylase/dehydrogenasealpha [E1alpha], E1beta, dihydrolipoyl transacylase [E2], and E3) of the six genes that encode the human BCKDC catalytic machine. We have documented a strong correlation between the presence of mutant E2 proteins and the thiamin-responsive MSUD phenotype. We show that the normal E1 component possesses residual decarboxylase activity, which is augmented by the binding to a mutant E2 protein in the presence of the E1 cofactor thiamin diphosphate. Our results provide a biochemical model for the effectiveness of thiamin therapy to thiamin-responsive MSUD patients.


Assuntos
Doença da Urina de Xarope de Bordo/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Aciltransferases/genética , Aciltransferases/fisiologia , Animais , Humanos , Doença da Urina de Xarope de Bordo/diagnóstico , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Doença da Urina de Xarope de Bordo/etiologia , Mutação , Fenótipo , Tiamina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA