Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585764

RESUMO

Cohesin is required for chromatin loop formation. However, its precise role in regulating gene transcription remains largely unknown. We investigated the relationship between cohesin and RNA Polymerase II (RNAPII) using single-molecule mapping and live-cell imaging methods in human cells. Cohesin-mediated transcriptional loops were highly correlated with those of RNAPII and followed the direction of gene transcription. Depleting RAD21, a subunit of cohesin, resulted in the loss of long-range (>100 kb) loops between distal (super-)enhancers and promoters of cell-type-specific genes. By contrast, the short-range (<50 kb) loops were insensitive to RAD21 depletion and connected genes that are mostly housekeeping. This result explains why only a small fraction of genes are affected by the loss of long-range chromatin interactions due to cohesin depletion. Remarkably, RAD21 depletion appeared to up-regulate genes located in early initiation zones (EIZ) of DNA replication, and the EIZ signals were amplified drastically without RAD21. Our results revealed new mechanistic insights of cohesin's multifaceted roles in establishing transcriptional loops, preserving long-range chromatin interactions for cell-specific genes, and maintaining timely order of DNA replication.

2.
Cell Rep Methods ; 4(5): 100759, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38626768

RESUMO

We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole-slide image (WSI), optimized for patient-derived xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genome input and stand-alone image analysis. We show the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of H&E imaging features reveal similar patterns arising from the two data modalities.


Assuntos
Xenoenxertos , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Amarelo de Eosina-(YS) , Hematoxilina , Transcriptoma , Processamento de Imagem Assistida por Computador/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Ther ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641411

RESUMO

Although patient-derived xenografts (PDXs) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and access to a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy.

4.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370717

RESUMO

Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. Using spatial transcriptomics in patient derived xenograft models, we capture clonal lineage evolution during treatment, finding the persister state to show increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identifies intrinsic- and acquired-resistance mechanisms (e.g. dual specific phosphatases, Reticulon-4, CDK2) and suggests specific temporal windows of potential therapeutic efficacy. Using deep learning to analyze histopathological slides, we find morphological features of specific cell states, demonstrating that juxtaposition of transcriptomics and histology data enables identification of phenotypically-distinct populations using imaging data alone. In summary, we define state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Statement of Significance: Tumor evolution is accelerated by application of anti-cancer therapy, resulting in clonal expansions leading to dormancy and subsequently resistance, but the dynamics of this process are incompletely understood. Tracking clonal progression during treatment, we identify conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance.

5.
EBioMedicine ; 99: 104908, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101298

RESUMO

BACKGROUND: Deep learning has revolutionized digital pathology, allowing automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. WSIs are broken into smaller images called tiles, and a neural network encodes each tile. Many recent works use supervised attention-based models to aggregate tile-level features into a slide-level representation, which is then used for downstream analysis. Training supervised attention-based models is computationally intensive, architecture optimization of the attention module is non-trivial, and labeled data are not always available. Therefore, we developed an unsupervised and fast approach called SAMPLER to generate slide-level representations. METHODS: Slide-level representations of SAMPLER are generated by encoding the cumulative distribution functions of multiscale tile-level features. To assess effectiveness of SAMPLER, slide-level representations of breast carcinoma (BRCA), non-small cell lung carcinoma (NSCLC), and renal cell carcinoma (RCC) WSIs of The Cancer Genome Atlas (TCGA) were used to train separate classifiers distinguishing tumor subtypes in FFPE and frozen WSIs. In addition, BRCA and NSCLC classifiers were externally validated on frozen WSIs. Moreover, SAMPLER's attention maps identify regions of interest, which were evaluated by a pathologist. To determine time efficiency of SAMPLER, we compared runtime of SAMPLER with two attention-based models. SAMPLER concepts were used to improve the design of a context-aware multi-head attention model (context-MHA). FINDINGS: SAMPLER-based classifiers were comparable to state-of-the-art attention deep learning models to distinguish subtypes of BRCA (AUC = 0.911 ± 0.029), NSCLC (AUC = 0.940 ± 0.018), and RCC (AUC = 0.987 ± 0.006) on FFPE WSIs (internal test sets). However, training SAMLER-based classifiers was >100 times faster. SAMPLER models successfully distinguished tumor subtypes on both internal and external test sets of frozen WSIs. Histopathological review confirmed that SAMPLER-identified high attention tiles contained subtype-specific morphological features. The improved context-MHA distinguished subtypes of BRCA and RCC (BRCA-AUC = 0.921 ± 0.027, RCC-AUC = 0.988 ± 0.010) with increased accuracy on internal test FFPE WSIs. INTERPRETATION: Our unsupervised statistical approach is fast and effective for analyzing WSIs, with greatly improved scalability over attention-based deep learning methods. The high accuracy of SAMPLER-based classifiers and interpretable attention maps suggest that SAMPLER successfully encodes the distinct morphologies within WSIs and will be applicable to general histology image analysis problems. FUNDING: This study was supported by the National Cancer Institute (Grant No. R01CA230031 and P30CA034196).


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Feminino
6.
Cancer Res ; 83(24): 4161-4178, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098449

RESUMO

Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases , Inibidores de Checkpoint Imunológico/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina , Células Endoteliais/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Anilidas/farmacologia , Anilidas/uso terapêutico , RNA Nuclear Pequeno/uso terapêutico
7.
Nat Commun ; 14(1): 8406, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114489

RESUMO

Three-dimensional (3D) organoid cultures are flexible systems to interrogate cellular growth, morphology, multicellular spatial architecture, and cellular interactions in response to treatment. However, computational methods for analysis of 3D organoids with sufficiently high-throughput and cellular resolution are needed. Here we report Cellos, an accurate, high-throughput pipeline for 3D organoid segmentation using classical algorithms and nuclear segmentation using a trained Stardist-3D convolutional neural network. To evaluate Cellos, we analyze ~100,000 organoids with ~2.35 million cells from multiple treatment experiments. Cellos segments dye-stained or fluorescently-labeled nuclei and accurately distinguishes distinct labeled cell populations within organoids. Cellos can recapitulate traditional luminescence-based drug response of cells with complex drug sensitivities, while also quantifying changes in organoid and nuclear morphologies caused by treatment as well as cell-cell spatial relationships that reflect ecological affinity. Cellos provides powerful tools to perform high-throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.


Assuntos
Neoplasias , Humanos , Organoides , Proliferação de Células , Redes Neurais de Computação
8.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961129

RESUMO

Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.

9.
bioRxiv ; 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37546876

RESUMO

Highlights: We have developed an automated data processing pipeline to quantify mouse and human data from patient-derived xenograft samples assayed by Visium spatial transcriptomics with matched hematoxylin and eosin (H&E) stained image. We enable deconvolution of reads with Xenome, quantification of spatial gene expression from host and graft species with Space Ranger, extraction of B-allele frequencies, and splicing quantification with Velocyto. In the H&E image processing sub-workflow, we generate morphometric and deep learning-derived feature quantifications complementary to the Visium spots, enabling multi-modal H&E/expression comparisons. We have wrapped the pipeline into Nextflow DSL2 in a scalable, portable, and easy-to-use framework. Summary: We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole slide image (WSI), optimized for Patient-Derived Xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genomes input and stand-alone image analysis. We showed the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of imaging features of H&E data reveal similar patterns arising from the two data modalities.

10.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577691

RESUMO

Deep learning has revolutionized digital pathology, allowing for automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. In such analyses, WSIs are typically broken into smaller images called tiles, and a neural network backbone encodes each tile in a feature space. Many recent works have applied attention based deep learning models to aggregate tile-level features into a slide-level representation, which is then used for slide-level prediction tasks. However, training attention models is computationally intensive, necessitating hyperparameter optimization and specialized training procedures. Here, we propose SAMPLER, a fully statistical approach to generate efficient and informative WSI representations by encoding the empirical cumulative distribution functions (CDFs) of multiscale tile features. We demonstrate that SAMPLER-based classifiers are as accurate or better than state-of-the-art fully deep learning attention models for classification tasks including distinction of: subtypes of breast carcinoma (BRCA: AUC=0.911 ± 0.029); subtypes of non-small cell lung carcinoma (NSCLC: AUC=0.940±0.018); and subtypes of renal cell carcinoma (RCC: AUC=0.987±0.006). A major advantage of the SAMPLER representation is that predictive models are >100X faster compared to attention models. Histopathological review confirms that SAMPLER-identified high attention tiles contain tumor morphological features specific to the tumor type, while low attention tiles contain fibrous stroma, blood, or tissue folding artifacts. We further apply SAMPLER concepts to improve the design of attention-based neural networks, yielding a context aware multi-head attention model with increased accuracy for subtype classification within BRCA and RCC (BRCA: AUC=0.921±0.027, and RCC: AUC=0.988±0.010). Finally, we provide theoretical results identifying sufficient conditions for which SAMPLER is optimal. SAMPLER is a fast and effective approach for analyzing WSIs, with greatly improved scalability over attention methods to benefit digital pathology analysis.

11.
EBioMedicine ; 94: 104726, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37499603

RESUMO

BACKGROUND: Colorectal cancers are the fourth most diagnosed cancer and the second leading cancer in number of deaths. Many clinical variables, pathological features, and genomic signatures are associated with patient risk, but reliable patient stratification in the clinic remains a challenging task. Here we assess how image, clinical, and genomic features can be combined to predict risk. METHODS: We developed and evaluated integrative deep learning models combining formalin-fixed, paraffin-embedded (FFPE) whole slide images (WSIs), clinical variables, and mutation signatures to stratify colon adenocarcinoma (COAD) patients based on their risk of mortality. Our models were trained using a dataset of 108 patients from The Cancer Genome Atlas (TCGA), and were externally validated on newly generated dataset from Wayne State University (WSU) of 123 COAD patients and rectal adenocarcinoma (READ) patients in TCGA (N = 52). FINDINGS: We first observe that deep learning models trained on FFPE WSIs of TCGA-COAD separate high-risk (OS < 3 years, N = 38) and low-risk (OS > 5 years, N = 25) patients (AUC = 0.81 ± 0.08, 5 year survival p < 0.0001, 5 year relative risk = 1.83 ± 0.04) though such models are less effective at predicting overall survival (OS) for moderate-risk (3 years < OS < 5 years, N = 45) patients (5 year survival p-value = 0.5, 5 year relative risk = 1.05 ± 0.09). We find that our integrative models combining WSIs, clinical variables, and mutation signatures can improve patient stratification for moderate-risk patients (5 year survival p < 0.0001, 5 year relative risk = 1.87 ± 0.07). Our integrative model combining image and clinical variables is also effective on an independent pathology dataset (WSU-COAD, N = 123) generated by our team (5 year survival p < 0.0001, 5 year relative risk = 1.52 ± 0.08), and the TCGA-READ data (5 year survival p < 0.0001, 5 year relative risk = 1.18 ± 0.17). Our multicenter integrative image and clinical model trained on combined TCGA-COAD and WSU-COAD is effective in predicting risk on TCGA-READ (5 year survival p < 0.0001, 5 year relative risk = 1.82 ± 0.13) data. Pathologist review of image-based heatmaps suggests that nuclear size pleomorphism, intense cellularity, and abnormal structures are associated with high-risk, while low-risk regions have more regular and small cells. Quantitative analysis shows high cellularity, high ratios of tumor cells, large tumor nuclei, and low immune infiltration are indicators of high-risk tiles. INTERPRETATION: The improved stratification of colorectal cancer patients from our computational methods can be beneficial for treatment plans and enrollment of patients in clinical trials. FUNDING: This study was supported by the National Cancer Institutes (Grant No. R01CA230031 and P30CA034196). The funders had no roles in study design, data collection and analysis or preparation of the manuscript.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Aprendizado Profundo , Humanos , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Adenocarcinoma/genética , Núcleo Celular , Genômica
12.
Nat Aging ; 3(7): 776-790, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37400722

RESUMO

Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.


Assuntos
Envelhecimento , Senescência Celular , Estados Unidos , Humanos , Animais , Camundongos , Longevidade
13.
Pediatr Blood Cancer ; : e30503, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339930

RESUMO

BACKGROUND: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.

14.
Endocr Relat Cancer ; 30(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279258

RESUMO

Standard-of-care treatment options provide an excellent prognosis for papillary thyroid cancers (PTCs); however, approximately 10% of cases are advanced PTCs, resulting in less than 50% 5-year survival rates. Understanding the tumor microenvironment is essential for understanding cancer progression and investigating potential biomarkers for treatment, such as immunotherapy. Our study focused on tumor-infiltrating lymphocytes (TILs), which are the main effectors of antitumor immunity and related to the mechanism of immunotherapy. Using an artificial intelligence model, we analyzed the density of intratumoral and peritumoral TILs in the pathologic slides of The Cancer Genome Atlas PTC cohort. Tumors were classified into three immune phenotypes (IPs) based on the spatial distribution of TILs: immune-desert (48%), immune-excluded (34%), and inflamed (18%). Immune-desert IP was mostly characterized by RAS mutations, high thyroid differentiation score, and low antitumor immune response. Immune-excluded IP predominantly consisted of BRAF V600E-mutated tumors and had a higher rate of lymph node metastasis. Inflamed IP was characterized by a high antitumor immune response, as demonstrated by a high cytolytic score, immune-related cell infiltrations, expression of immunomodulatory molecules (including immunotherapy target molecules), and enrichment of immune-related pathways. This study is the first to investigate IP classification using TILs in PTC through a tissue-based approach. Each IP had unique immune and genomic profiles. Further studies are warranted to assess the predictive value of IP classification in advanced PTC patients treated with immunotherapy.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Linfócitos do Interstício Tumoral , Inteligência Artificial , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Mutação , Microambiente Tumoral
15.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945601

RESUMO

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 µm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with ≤3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.

16.
Cancer Cell ; 41(4): 641-645, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001528

RESUMO

Age is among the main risk factors for cancer, and any cancer study in adults is faced with an aging tissue and organism. Yet, pre-clinical studies are carried out using young mice and are not able to address the impact of aging and associated comorbidities on disease biology and treatment outcomes. Here, we discuss the limitations of current mouse cancer models and suggest strategies for developing novel models to address these major gaps in knowledge and experimental approaches.


Assuntos
Envelhecimento , Neoplasias , Animais , Camundongos , Neoplasias/genética , Modelos Animais de Doenças , Fatores de Risco
17.
J Surg Oncol ; 127(3): 426-433, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36251352

RESUMO

BACKGROUND AND OBJECTIVES: Deep learning utilizing convolutional neural networks (CNNs) applied to hematoxylin & eosin (H&E)-stained slides numerically encodes histomorphological tumor features. Tumor heterogeneity is an emerging biomarker in colon cancer that is, captured by these features, whereas microsatellite instability (MSI) is an established biomarker traditionally assessed by immunohistochemistry or polymerase chain reaction. METHODS: H&E-stained slides from The Cancer Genome Atlas (TCGA) colon cohort are passed through the CNN. Resulting imaging features are used to cluster morphologically similar slide regions. Tile-level pairwise similarities are calculated and used to generate a tumor heterogeneity score (THS). Patient-level THS is then correlated with TCGA-reported biomarkers, including MSI-status. RESULTS: H&E-stained images from 313 patients generated 534 771 tiles. Deep learning automatically identified and annotated cells by type and clustered morphologically similar slide regions. MSI-high tumors demonstrated significantly higher THS than MSS/MSI-low (p < 0.001). THS was higher in MLH1-silent versus non-silent tumors (p < 0.001). The sequencing derived MSIsensor score also correlated with THS (r = 0.51, p < 0.0001). CONCLUSIONS: Deep learning provides spatially resolved visualization of imaging-derived biomarkers and automated quantification of tumor heterogeneity. Our novel THS correlates with MSI-status, indicating that with expanded training sets, translational tools could be developed that predict MSI-status using H&E-stained images alone.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Aprendizado Profundo , Humanos , Instabilidade de Microssatélites , Repetições de Microssatélites , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia
18.
Cancer Cell ; 40(12): 1448-1453, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270276

RESUMO

3D patient tumor avatars (3D-PTAs) hold promise for next-generation precision medicine. Here, we describe the benefits and challenges of 3D-PTA technologies and necessary future steps to realize their potential for clinical decision making. 3D-PTAs require standardization criteria and prospective trials to establish clinical benefits. Innovative trial designs that combine omics and 3D-PTA readouts may lead to more accurate clinical predictors, and an integrated platform that combines diagnostic and therapeutic development will accelerate new treatments for patients with refractory disease.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Medicina de Precisão , Estudos Prospectivos , Oncologia
19.
Dis Model Mech ; 15(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037073

RESUMO

The lack of genetically diverse preclinical animal models in basic biology and efficacy testing has been cited as a potential cause of failure in clinical trials. We developed and characterized five diverse RAG1 null mouse strains as models that allow xenografts to grow. In these strains, we characterized the growth of breast cancer, leukemia and glioma cell lines. We found a wide range of growth characteristics that were far more dependent on strain than tumor type. For the breast cancer cell line, we characterized the spectrum of xenograft/tumor growth at structural, histological, cellular and molecular levels across each strain, and found that each strain captures unique structural components of the stroma. Furthermore, we showed that the increase in tumor-infiltrating myeloid CD45+ cells and the amount of circulating cytokine IL-6 and chemokine KC (also known as CXCL1) is associated with a higher tumor size in different strains. This resource is available to study established human xenografts, as well as difficult-to-xenograft tumors and growth of hematopoietic stems cells, and to decipher the role of myeloid cells in the development of spontaneous cancers.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nucleic Acids Res ; 50(13): 7637-7654, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801921

RESUMO

Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.


Assuntos
MicroRNAs/genética , Ribonuclease III/metabolismo , Peixe-Zebra , Animais , Humanos , MicroRNAs/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA