Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Methods Mol Biol ; 1428: 177-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236800

RESUMO

Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.


Assuntos
Eletroporação/métodos , Monócitos/citologia , RNA/genética , Separação Celular , Células Cultivadas , Fenômenos Eletromagnéticos , Humanos , Monócitos/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transfecção
2.
J Immunol Res ; 2015: 789136, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605345

RESUMO

BACKGROUND: Dendritic cell- (DC-) tumor fusion cells stimulate effective in vivo antitumor responses. However, therapeutic approaches are dependent upon the coadministration of exogenous 3rd signals. The purpose of this study was to determine the mechanisms for inadequate 3rd signaling by electrofused DC-tumor cell hybrids. METHODS: Murine melanoma cells were fused with DCs derived from C57BL/6 mice. Quantitative real-time PCR (qPCR) was used to determine relative changes in Th (T helper) 1 and Th2 cytokine gene expression. In addition, changes in gene expression of fusion cells were determined by microarray. Last, cytokine secretion by fusion cells upon inhibition of signaling pathways was analyzed by ELISA. RESULTS: qPCR analyses revealed that fusion cells exhibited a downregulation of Th1 associated cytokines IL-12 and IL-15 and an upregulation of the Th2 cytokine IL-4. Microarray studies further showed that the expression of chemokines, costimulatory molecules, and matrix-metalloproteinases was deregulated in fusion cells. Lastly, inhibitor studies demonstrate that inhibition of the PI3K/Akt/mTOR signaling pathway could restore the secretion of bioactive IL-12p70 by fusion cells. CONCLUSION: Our results suggest that combining fusion cell-based vaccination with administration of inhibitors of the PI3K/Akt/mTOR signaling pathway may enhance antitumor responses in patients.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Híbridas/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma , Animais , Fusão Celular , Linhagem Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Imunoterapia/métodos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Melanoma Experimental , Camundongos , Neoplasias/terapia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transdução de Sinais
3.
Sci Rep ; 4: 4632, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24755960

RESUMO

Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19.


Assuntos
Células Dendríticas/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito T/imunologia , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe I/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Camundongos , Camundongos Transgênicos , Mycobacterium tuberculosis/genética , Peptídeos/imunologia , Ligação Proteica/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia
4.
Adv Healthc Mater ; 3(6): 837-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24339387

RESUMO

The use of a cell-based vaccine composed of autologous whole blood cells loaded with mRNA is described. Mice immunized with whole blood cells loaded with mRNA encoding antigen develop anti-tumor immunity comparable to DC-RNA immunization. This approach offers a simple and affordable alternative to RNA-based cellular therapy by circumventing complex, laborious and expensive ex vivo manipulations required for DC-based immunizations.


Assuntos
Células Sanguíneas/metabolismo , Vacinas Anticâncer/imunologia , RNA Mensageiro/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Células Sanguíneas/citologia , Células Sanguíneas/transplante , Vacinas Anticâncer/genética , Vacinas Anticâncer/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células Dendríticas/transplante , Modelos Animais de Doenças , Eletroporação , Feminino , Imunoterapia , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/química , Taxa de Sobrevida
5.
J Clin Invest ; 123(7): 3135-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23934126

RESUMO

BACKGROUND: Many cancers, including melanoma, exclusively express constitutive proteasomes (cPs) and are unable to express immunoproteasomes (iPs). In contrast, mature DCs used for immunotherapy exclusively express iPs. Since proteasomes generate peptides presented by HLA class I molecules, we hypothesized that mature melanoma antigen-loaded DCs engineered to process antigens through cPs would be superior inducers of antimelanoma immunity in vivo. METHODS: Subjects with metastatic melanoma were vaccinated with mature DCs transfected with RNAs encoding melanoma antigens MART1, MAGE-3, gp100, and tyrosinase. These DCs were derived from monocytes that were untransfected (Arm A; n = 4), transfected with control siRNA (Arm B; n = 3), or transfected with siRNAs targeting the 3 inducible iP subunits (Arm C; n = 5). RESULTS: Vaccination stimulated antigen-specific T cell responses in all subjects, which peaked after 3-4 vaccinations, but remained elevated in Arm C subjects. Also in Arm C, circulating melanoma cell levels (as detected by quantitative PCR) fell, and T cell lytic activity against autologous melanoma was induced. In HLA-A2⁺ subjects, CD8⁺ T cells that bound tetramers loaded with cP-derived melanoma antigenic peptides were found in the peripheral blood only in Arm C subjects. Of 2 subjects with active disease (both in Arm C), one had a partial clinical response, while the other, who exhibited diffuse dermal and soft tissue metastases, had a complete response. CONCLUSION: These results suggest that the efficacy of melanoma DC-based immunotherapy is enhanced when tumor antigen-loaded DCs used for vaccination express cPs. TRIAL REGISTRATION: Clinicaltrials.gov NCT00672542. FUNDING: Duke Clinical Research Institute/Duke Translational Medicine Institute, Duke Melanoma Consortium, and Duke University Department of Surgery.


Assuntos
Células Dendríticas/transplante , Melanoma/terapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer , Células Dendríticas/enzimologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imunoterapia , Metástase Linfática , Masculino , Melanoma/imunologia , Melanoma/secundário , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , Resultado do Tratamento , Células Tumorais Cultivadas
6.
J Surg Res ; 185(2): 904-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891424

RESUMO

BACKGROUND: The development of dendritic cell (DC)-tumor fusion vaccines is a promising approach in cancer immunotherapy. Using fusion vaccines allows a broad spectrum of known and unidentified tumor-associated antigens to be presented in the context of MHC class I and class II molecules, with potent co-stimulation provided by the DCs. Although DC-tumor fusion cells are immunogenic, murine studies have shown that effective immunotherapy requires a third signal, which can be provided by exogenous interleukin 12 (IL-12). Unfortunately, systemic administration of IL-12 induces severe toxicity in cancer patients, potentially precluding clinical use of this cytokine to augment fusion vaccine efficacy. To overcome this limitation, we developed a novel approach in which DC-tumor fusion cells locally secrete IL-12, then evaluated the effectiveness of this approach in a murine B16 melanoma model. MATERIALS AND METHODS: Tumor cells were stably transduced to secrete murine IL-12p70. These tumor cells were then electrofused to DC to form DC-tumor heterokaryons. These cells were used to treat established B16 pulmonary metastases. Enumeration of these metastases was performed and compared between experimental groups using Wilcoxon rank sum test. Interferon γ enzyme-linked immunosorbent spot assay was performed on splenocytes from treated mice. RESULTS: We show that vaccination with DCs fused to syngeneic melanoma cells that stably express murine IL-12p70 significantly reduces counts of established lung metastases in treated animals when compared with DC-tumor alone (P = 0.029). Interferon γ enzyme-linked immunosorbent spot assays suggest that this antitumor response is mediated by CD4(+) T cells, in the absence of a tumor-specific CD8(+) T cell response, and that the concomitant induction of antitumor CD4(+) and CD8(+) T cell responses required exogenous IL-12. CONCLUSIONS: This study is, to the best of our knowledge, the first report that investigates the impact of local secretion of IL-12 on antitumor immunity induced by a DC-tumor fusion cell vaccine in a melanoma model and may aid the rational design of future clinical trials.


Assuntos
Células Dendríticas/transplante , Interleucina-12/metabolismo , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Vacinação/métodos , Animais , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Células Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Células Híbridas/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-12/genética , Óperon Lac/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias
7.
J Transl Med ; 11: 148, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23768240

RESUMO

BACKGROUND: A promising cancer vaccine involves the fusion of tumor cells with dendritic cells (DCs). As such, a broad spectrum of both known and unidentified tumor antigens is presented to the immune system in the context of the potent immunostimulatory capacity of DCs. Murine studies have demonstrated the efficacy of fusion immunotherapy. However the clinical impact of DC/tumor fusion vaccines has been limited, suggesting that the immunosuppresive milieu found in patients with malignancies may blunt the efficacy of cancer vaccination. Thus, novel strategies to enhance fusion vaccine efficacy are needed. Regulatory T cells (Tregs) are known to suppress anti-tumor immunity, and depletion or functional inactivation of these cells improves immunotherapy in both animal models and clinical trials. In this study, we sought to investigate whether functional inactivation of CD4+CD25+FoxP3+ Treg with anti-CD25 monoclonal antibody (mAb) PC61 prior to DC/tumor vaccination would significantly improve immunotherapy in the murine B16 melanoma model. METHODS: Treg blockade was achieved with systemic PC61 administration. This blockage was done in conjunction with DC/tumor fusion vaccine administration to treat established melanoma pulmonary metastases. Enumeration of these metastases was performed and compared between experimental groups using Wilcoxon Rank Sum Test. IFN-gamma ELISPOT assay was performed on splenocytes from treated mice. RESULTS: We demonstrate that treatment of mice with established disease using mAb PC61 and DC/tumor fusion significantly reduced counts of pulmonary metastases compared to treatment with PC61 alone (p=0.002) or treatment with control antibody plus fusion vaccine (p=0.0397). Furthermore, IFN-gamma ELISPOT analyses reveal that the increase in cancer immunity was mediated by anti-tumor specific CD4+ T-helper cells, without concomitant induction of CD8+ cytotoxic T cells. Lastly, our data provide proof of principle that combination treatment with mAb PC61 and systemic IL-12 can lower the dose of IL-12 necessary to obtain maximal therapeutic efficacy. CONCLUSIONS: To our knowledge, this is the first report investigating the effects of anti-CD25 mAb administration on DC/tumor-fusion vaccine efficacy in a murine melanoma model, and our results may aide the design of future clinical trials with enhanced therapeutic impact.


Assuntos
Anticorpos Monoclonais/farmacologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/citologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Melanoma/terapia , Animais , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucina-12/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/citologia
8.
Blood ; 119(13): 3113-22, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22323449

RESUMO

Generation of human monocyte-derived dendritic cells (DCs) for cancer vaccination involves ex vivo maturation in the presence of proinflammatory cytokines and prostaglandin E(2) (PGE(2)). Although the inclusion of PGE(2) during maturation is imperative for the induction of DC migration, PGE(2) has unfavorable effects on the immunostimulatory capacity of these cells. Like PGE(2), leukotrienes (LTs) are potent mediators of DC migration. We therefore sought to characterize the migratory and immunologic properties of DCs that matured in the presence of LTB(4), LTC(4), LTD(4), and PGE(2). Here, we demonstrate that DCs matured in the presence of LTC(4), but not LTB(4) or LTD(4), are superior to PGE(2)-matured DCs in stimulating CD4(+) T-cell responses and in inducing antigen-specific cytotoxic T lymphocytes (CTLs) in vitro without concomitant induction or recruitment of regulatory T cells (Tregs). LTC(4)-matured DCs migrate efficiently through layers of extracellular matrix and secrete higher levels of immunostimulatory IL-12p70 while producing reduced levels of immune-inhibitory IL-10, IL12p40, indoleamine-2,3-dioxidase, and TIMP-1 (tissue inhibitor of matrix metalloproteinases). Intracellular calcium mobilization and receptor antagonist studies reveal that, in contrast to LTD(4), LTC(4) did not signal through CysLTR(1) in DCs. Collectively, our data suggest that LTC(4) represents a promising candidate to replace PGE(2) in DC maturation protocols for cancer vaccination.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Leucotrieno C4/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/fisiologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Leucotrieno C4/metabolismo , Leucotrieno D4/metabolismo , Leucotrieno D4/fisiologia , Ativação Linfocitária/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/fisiologia , Receptores de Leucotrienos/agonistas , Receptores de Leucotrienos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Regulação para Cima/efeitos dos fármacos
9.
Eur J Immunol ; 41(12): 3553-63, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22028176

RESUMO

Cancer vaccines have now demonstrated clinical efficacy, but immune modulatory mechanisms that prevent autoimmunity limit their effectiveness. Systemic administration of mAbs targeting the immune modulatory receptors CTLA-4 and glucocorticoid-induced TNFR-related protein (GITR) on Treg and effector T cells augments anti-tumor immunity both experimentally and clinically, but can induce life-threatening autoimmunity. We hypothesized that local delivery of anti-CTLA-4 and anti-GITR mAbs to the sites where T cells and tumor antigen-loaded DC vaccines interact would enhance the induction of anti-tumor immunity while avoiding autoimmunity. To achieve this goal, DCs transfected with mRNA encoding the H and L chains of anti-mouse CTLA-4 and GITR mAbs were co-administered with tumor antigen mRNA-transfected DCs. We observed enhanced induction of anti-tumor immunity and significantly improved survival in melanoma-bearing mice, without signs of autoimmunity. Using in vitro assays with human DCs, we demonstrated that DCs transfected with mRNA encoding a humanized anti-CTLA-4 mAb and mRNA encoding a soluble human GITR-L fusion protein enhance the induction of anti-tumor CTLs in response to DCs transfected with mRNAs encoding either melanoma or breast cancer antigens. Based on these results, this approach of using local delivery of immune modulators to enhance vaccine-induced immunity is currently being evaluated in a phase I clinical cancer immunotherapy trial.


Assuntos
Antígeno CTLA-4/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Melanoma Experimental/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Autoimunidade/imunologia , Células CHO , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/metabolismo , Linhagem Celular Tumoral , Cricetinae , Células Dendríticas/metabolismo , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transfecção/métodos , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo
10.
Clin Cancer Res ; 14(24): 8270-8, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19088044

RESUMO

PURPOSE: Tumor-induced immunosuppression remains a significant obstacle that limits the efficacy of biological therapy for renal cell carcinoma. Here we evaluate the role of CD33 myeloid-derived suppressor cells (MDSC) in the regulation of T-cell responses in renal cell carcinoma patients. We also examine effect of all-trans-retinoic acid (ATRA) on MDSC-mediated immune suppression. EXPERIMENTAL DESIGN: CD33-positive myeloid cells were isolated from the peripheral blood of renal cell carcinoma patients with magnetic beads and tested in vitro for their ability to inhibit T-cell responses. T-cell function was evaluated using ELISPOT and CTL assays. RESULTS: MDSC isolated from renal cell carcinoma patients, but not from healthy donors, were capable of suppressing antigen-specific T-cell responses in vitro through the secretion of reactive oxygen species and nitric oxide upon interaction with CTL. MDSC-mediated immune suppression and IFN-gamma down-regulation was reversible in vitro by exposing cells to the reactive oxygen species inhibitors. Moreover, ATRA was capable of abrogating MDSC-mediated immunosuppression and improving T-cell function by direct differentiation into antigen-presenting cell precursors. CONCLUSIONS: These results may have significant implications regarding the future design of active immunotherapy protocols that may include differentiation agents as part of a multimodal approach to renal cell carcinoma immunotherapy.


Assuntos
Carcinoma de Células Renais/imunologia , Tolerância Imunológica , Neoplasias Renais/imunologia , Células Mieloides/fisiologia , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Antígenos HLA-DR/análise , Humanos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Tretinoína/farmacologia
11.
Blood ; 110(13): 4341-50, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17855630

RESUMO

The process of dendritic cell (DC) maturation, critical for effective DC-based immunotherapy, also alters the proteasome such that peptides presented in the context of HLA class I are generated not by the constitutive proteasome, but by the immunoproteasome. Cytotoxic T lymphocytes (CTLs) induced by such DCs might not optimally recognize tumor cells normally expressing the constitutive proteasome. Using small interfering RNA (siRNA) transfection of DCs to inhibit expression of the 3 inducible immunoproteasome subunits in mature DCs, we found that such DCs expressed increased intracellular levels of constitutive proteasomes and presented an altered repertoire of tumor-antigenic peptides. When DCs generated from the monocytes of 3 patients with melanoma were transfected with immunoproteasome siRNA, induced to mature, and then trans-fected with RNA encoding defined melanoma antigens, these DCs were superior inducers of antigen-specific CTLs against autologous melanoma cells. This alteration of DC proteasome composition, which enhances the ability of mature antigen-loaded DCs to stimulate anti-tumor immune responses, may lead to more effective DC-based tumor immunotherapy.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Células Dendríticas/imunologia , Melanoma/imunologia , Complexo de Endopeptidases do Proteassoma/genética , Linfócitos T Citotóxicos/imunologia , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Humanos , Imunoterapia/métodos , Melanoma/terapia , RNA Interferente Pequeno/genética , Transfecção
12.
J Clin Invest ; 115(12): 3623-33, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16308572

RESUMO

In this study, we investigated whether elimination of CD4+/CD25+ Tregs using the recombinant IL-2 diphtheria toxin conjugate DAB(389)IL-2 (also known as denileukin diftitox and ONTAK) is capable of enhancing the immunostimulatory efficacy of tumor RNA-transfected DC vaccines. We show that DAB(389)IL-2 is capable of selectively eliminating CD25-expressing Tregs from the PBMCs of cancer patients without inducing toxicity on other cellular subsets with intermediate or low expression of CD25. DAB(389)IL-2-mediated Treg depletion resulted in enhanced stimulation of proliferative and cytotoxic T cell responses in vitro but only when DAB(389)IL-2 was omitted during T cell priming. DAB(389)IL-2 significantly reduced the number of Tregs present in the peripheral blood of metastatic renal cell carcinoma (RCC) patients and abrogated Treg-mediated immunosuppressive activity in vivo. Moreover, DAB(389)IL-2-mediated elimination of Tregs followed by vaccination with RNA-transfected DCs significantly improved the stimulation of tumor-specific T cell responses in RCC patients when compared with vaccination alone. Our findings may have implications in the design of immune-based strategies that may incorporate the Treg depletion strategy to achieve potent antitumor immunity with therapeutic impact.


Assuntos
Vacinas Anticâncer , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Idoso , Antígenos de Neoplasias/química , Antígenos CD28/biossíntese , Complexo CD3/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Carcinoma de Células Renais/terapia , Separação Celular , Células Dendríticas/imunologia , Toxina Diftérica/química , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imunossupressores/farmacologia , Interferon gama/metabolismo , Interleucina-2/química , Interleucina-2/imunologia , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Neoplasias Renais/terapia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , RNA/química , RNA/metabolismo , RNA Neoplásico/química , Receptores de Interleucina-2/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo , Fatores de Tempo , Transfecção
13.
J Surg Res ; 124(2): 264-73, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15820257

RESUMO

BACKGROUND: Cotransfection of dendritic cells (DC) with MART-1 and constitutively active TLR4 (caTLR4) RNA enhances the maturation of DC. MATERIALS AND METHODS: Immature DC were cotransfected with RNA constructs encoding MART-1 and caTLR4, and CTL responses were analyzed. RESULTS: Cotransfection of DC with MART-1 + caTLR4 enhanced the expression of CD80 and CD83 surface markers and increased the secretion of cytokines IL-6, IL-12, and TNFalpha. Neither the native nor the A27L-modified MART-1 RNA could induce significant DC maturation or cytokine secretion. More importantly, DC cotransfected with caTLR4 + MART-1 RNA induced MART-1-specific CTL responses of a higher magnitude than DC transfected with either the native or A27L MART-1 RNA. When the MART-1 RNA-transfected DC were treated with DC-maturing cytokines, the induced CTL were less frequent and less lytic than those induced with MART-1 + caTLR4. A 2- to 100-fold increase in MART-1 tetramer+ cells and 2- to 10-fold increases in IFNgamma secretion and cytotoxicity were seen in CTL induced with MART-1 + caTLR4 compared to CTL induced with either MART-1 or A27L RNA. CTL induced with the mixed RNA displayed high percentages of CD8+ cells coexpressing CD45RA, CD56, and 2B4 antigens. Transfection with caTLR4 alone induced DC maturation, but did not induce lytic CTL, suggesting that CTL responses were induced solely by MART-1 epitopes. CONCLUSIONS: caTLR4 increases the CTL-inducing capacity of DC generating a lytic response specific for the accompanying antigen. These results demonstrate the possibility of enhancing the immunogenicity of the native MART-1 and other RNA derived from weakly immunogenic tumors in DC-based immunotherapy.


Assuntos
Células Dendríticas/fisiologia , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Superfície Celular/genética , Transfecção/métodos , Antígenos de Neoplasias/genética , Antígenos CD8/metabolismo , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Expressão Gênica/imunologia , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Antígeno MART-1 , RNA/genética , Receptor 4 Toll-Like , Receptores Toll-Like
14.
J Immunol ; 174(6): 3798-807, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15749921

RESUMO

Telomerase reverse transcriptase (hTERT) represents an attractive target for cancer immunotherapy because hTERT is reactivated in most human tumors. A clinical trial was initiated in which hTERT mRNA-transfected dendritic cells (DC) were administered to 20 patients with metastatic prostate cancer. Nine of these subjects received DC transfected with mRNA encoding a chimeric lysosome-associated membrane protein-1 (LAMP) hTERT protein, allowing for concomitant induction of hTERT-specific CD8+ and CD4+ T cell responses. Treatment was well tolerated. Intense infiltrates of hTERT-specific T cells were noted at intradermal injection sites after repeated vaccination. In 19 of 20 subjects, expansion of hTERT-specific CD8+ T cells was measured in the peripheral blood of study subjects, with 0.9-1.8% of CD8+ T cells exhibiting Ag specificity. Patients immunized with the chimeric LAMP hTERT vaccine developed significantly higher frequencies of hTERT-specific CD4+ T cells than subjects receiving DC transfected with the unmodified hTERT template. Moreover, CTL-mediated killing of hTERT targets was enhanced in the LAMP hTERT group, suggesting that an improved CD4+ response could augment a CTL response. Vaccination was further associated with a reduction of prostate-specific Ag velocity and molecular clearance of circulating micrometastases. Our findings provide a rationale for further development of hTERT-transfected DC vaccines in the treatment of prostate and other cancers.


Assuntos
Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Telomerase/genética , Telomerase/imunologia , Idoso , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/genética , Vacinas Anticâncer/farmacologia , Proteínas de Ligação a DNA , Humanos , Imunoterapia/métodos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/secundário , RNA Mensageiro/genética , Segurança , Transfecção
15.
Nat Clin Pract Urol ; 2(1): 44-51, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16474576

RESUMO

The lack of effective therapies for advanced prostate cancer mandates continued development of alternative treatment strategies. Insights into the regulation of immune responses and the malignant process have facilitated the emergence of new immune-based strategies, currently under investigation in clinical trials. Like other forms of targeted therapy, cancer vaccines hold the promise of achieving cancer control without inducing overt toxicity. Many prostate cancer vaccines at different phases of development have been tested in clinical trials. Vaccination strategies under consideration include: immunization with defined antigenic preparations such as synthetic peptides, proteins or plasmid DNA; antigen-loaded dendritic cells; manipulated tumor cells; or with viral vectors engineered to express immunogenic genes. Although the underlying mechanisms of immunization may vary, all strategies share the common goal of eliciting immune responses against prostate tumor-associated antigens or of enhancing an otherwise weak antitumor response in the cancer patient. Unlocking the therapeutic potential of cancer vaccines will require a thorough understanding of cellular and molecular mechanisms that modulate the immune response. In this review, we provide an overview of vaccine-based strategies for prostate cancer therapy, discuss their mechanisms of action, and provide relevant clinical trial data.


Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Vacinas Anticâncer/administração & dosagem , Células Dendríticas , Portadores de Fármacos , Humanos , Masculino
16.
Blood ; 105(8): 3206-13, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15618466

RESUMO

The objective of this study was to investigate whether the immunostimulatory properties of human monocyte-derived dendritic cells (DCs) could be enhanced by triggering OX40/OX40L signaling. Since monocyte-derived DCs possess only low-cell surface levels of OX40L in the absence of CD40 signaling, OX40L was expressed by transfection of DCs with the corresponding mRNA. We show that OX40L mRNA transfection effectively enhanced the immunostimulatory function of DCs at multiple levels: OX40L mRNA transfection augmented allogeneic and HLA class II epitope-specific CD4+ T-cell responses, improved the stimulation of antigen-specific cytotoxic T lymphocytes (CTLs) in vitro without interfering with the prostaglandin E2 (PGE2)-mediated migratory function of the DCs, and facilitated interleukin 12 p70 (IL-12p70)-independent T helper type 1 (Th1) polarization of naive CD4+ T-helper cells. Furthermore, vaccination of tumor-bearing mice using OX40L mRNA-cotransfected DCs resulted in significant enhancement of therapeutic antitumor immunity due to in vivo priming of Th1-type T-cell responses. Our data suggest that transfection of DCs with OX40L mRNA may represent a promising strategy that could be applied in clinical immunotherapy protocols, while circumventing the current unavailability of reagents facilitating OX40 ligation.


Assuntos
Células Dendríticas/imunologia , Melanoma/terapia , Neoplasias Cutâneas/terapia , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Animais , Antígenos de Superfície , Linhagem Celular Tumoral , Movimento Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Dinoprostona/farmacologia , Expressão Gênica/imunologia , Terapia Genética/métodos , Antígenos de Histocompatibilidade Classe I/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Humanos , Imunoterapia/métodos , Interleucina-12/metabolismo , Melanoma/imunologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , RNA Mensageiro , Receptores OX40 , Receptores do Fator de Necrose Tumoral , Neoplasias Cutâneas/imunologia , Células Th1/imunologia
17.
J Immunol ; 172(11): 7162-8, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15153540

RESUMO

Maturation of dendritic cells (DC) is critical for the induction of Ag-specific immunity. Ag-loaded DC matured with LPS, which mediates its effects by binding to Toll-like receptor 4 (TLR4), induce Ag-specific CTL in vitro and in vivo in animal models. However, clinical use of LPS is limited due to potential toxicity. Therefore, we sought to mimic the maturation-inducing effects of LPS on DC by stimulating TLR4-mediated signaling in the absence of exogenous LPS. We developed a constitutively active TLR4 (caTLR4) and demonstrated that transfection of human DC with RNA encoding caTLR4 led to IL-12 and TNF-alpha secretion. Transfection with caTLR4 RNA also induced a mature DC phenotype. Functionally, transfection of DC with caTLR4 RNA enhanced allostimulation of CD4(+) T cells. DC transfected with RNA encoding the MART (Melan-A/MART-1) melanoma Ag were then used to stimulate T cells in vitro. Cotransfection of these DC with caTLR4 RNA enhanced the generation of MART-specific CTL. This CTL activity was superior to that seen when DC maturation was induced using either LPS or a standard mixture of cytokines (TNF-alpha, IL-6, IL-1beta, and PGE(2)). We conclude that transfection of DC with RNA encoding a functional signaling protein, such as caTLR4, may provide a new tool for studying TLR signaling in DC and may be a promising approach for the induction of DC maturation for tumor immunotherapy.


Assuntos
Células Dendríticas/fisiologia , Glicoproteínas de Membrana/fisiologia , RNA/genética , Receptores de Superfície Celular/fisiologia , Linhagem Celular , Células Dendríticas/imunologia , Granulócitos , Humanos , Interleucina-12/biossíntese , Isoantígenos/genética , Isoantígenos/imunologia , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Linfócitos T/imunologia , Receptor 4 Toll-Like , Receptores Toll-Like , Transfecção , Fator de Necrose Tumoral alfa/biossíntese
18.
J Immunol ; 171(11): 6275-82, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14634145

RESUMO

A key and limiting step in the process of generating human monocyte-derived dendritic cells (DC) for clinical applications is maturation. In the setting of immunotherapy, DC are matured ex vivo by culturing them with various agents that mimic the conditions encountered at a site of inflammation. This study examined whether the ex vivo DC maturation step could be replaced by maturing DC in situ by injecting immature DC into sites pre-exposed to agents that induce a microenvironment conducive to in situ maturation of the injected DC. The hypothesis was that recapitulation of the physiological conditions occurring during pathogen infection would lead to optimal conditions for DC maturation, migration, and function. Murine immature DC injected into adjuvant (Adjuprime, poly-arginine, or Imiquimod)-pretreated skin exhibited lymph node migratory capacity comparable to and immunostimulatory capacity equal to or exceeding that of ex vivo matured DC. Acquisition of migratory capacity did not always correlate with enhanced immunostimulatory capacity. Immunostimulatory capacity was not enhanced when mature DC were injected into adjuvant-pretreated sites and remained below that seen with immature DC matured in situ. Immature DC injected into adjuvant-pretreated sites were more effective than mature DC in stimulating antitumor immunity in mice. (111)Indium-labeled human monocyte-derived immature DC injected into adjuvant (Imiquimod)-pretreated sites in cancer patients acquired lymph node migratory capacity comparable to ex vivo matured DC. This study shows that in situ maturation offers a simpler and potentially superior method to generate potent immunostimulatory DC for clinical immunotherapy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Células Dendríticas/citologia , Células Dendríticas/transplante , Pele/citologia , Pele/imunologia , Células-Tronco/imunologia , Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Humanos , Imiquimode , Injeções Subcutâneas , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia , Especificidade da Espécie , Células-Tronco/citologia
19.
Urol Clin North Am ; 30(3): 633-43, x, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12953761

RESUMO

Gene-modified tumor cells have been employed in a vaccination setting to trigger therapeutic antitumor immunity against metastatic renal cell carcinoma. Recent studies suggest that dendritic cells may be even more potent, because these cells can efficiently present tumor antigens to effector T cells, thereby circumventing the poor antigen-presenting properties of tumor cells. Proof of concept studies using antigen-loaded dendritic cells have been performed, establishing clear evidence of vaccine safety and bioactivity by stimulating immunologic and even clinical responses in cancer patients. Nevertheless, key aspects of such vaccination remain undefined. The critical challenge remains to understand fully the mechanisms of action and to further optimize dendritic cell vaccines to produce effective, durable, and, ultimately, therapeutic antitumor responses.


Assuntos
Vacinas Anticâncer , Carcinoma de Células Renais/imunologia , Células Dendríticas/imunologia , Neoplasias Renais/imunologia , Carcinoma de Células Renais/terapia , Humanos , Imunoterapia/métodos , Neoplasias Renais/terapia , Metástase Neoplásica
20.
Cancer Res ; 63(9): 2127-33, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12727829

RESUMO

Autologous dendritic cells transfected with total renal tumor RNA have been shown to be potent stimulators of CTLs and antitumor immunity in vitro. A Phase I trial was conducted to evaluate this strategy for feasibility, safety, and efficacy to induce tumor-specific T-cell responses in subjects with metastatic renal cell carcinoma. Renal tumor RNA-transfected dendritic cells were administered to 10 evaluable study patients with no evidence of dose-limiting toxicity or vaccine-related adverse effects including autoimmunity. In six of seven evaluable subjects, expansion of tumor-specific T cells was detected after immunization. The vaccine-induced T-cell reactivities were directed against a broad set of renal tumor-associated antigens, including telomerase reverse transcriptase, G250, and oncofetal antigen, but not against self-antigens expressed by normal renal tissues. Although most patients underwent secondary therapies after vaccination, tumor-related mortality of the study subjects was unexpectedly low with only 3 of 10 patients dying from disease after a mean follow-up of 19.8 months. These data provide a scientific rationale for continued clinical investigation of this polyvalent vaccine strategy in the treatment of metastatic renal cell carcinoma and, potentially, other cancers.


Assuntos
Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Carcinoma de Células Renais/terapia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Renais/terapia , RNA Neoplásico/imunologia , Vacinas Anticâncer/genética , Carcinoma de Células Renais/imunologia , Proteínas de Ligação a DNA , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Neoplasias Renais/imunologia , Masculino , RNA Neoplásico/genética , Linfócitos T/imunologia , Telomerase/imunologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA