Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancers (Basel) ; 16(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672595

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) has surpassed the hepatitis B virus and hepatitis C virus as the leading cause of chronic liver disease in most parts of the Western world. MASLD (formerly known as NAFLD) encompasses both simple steatosis and more aggressive metabolic dysfunction-associated steatohepatitis (MASH), which is accompanied by inflammation, fibrosis, and cirrhosis, and ultimately can lead to hepatocellular carcinoma (HCC). There are currently very few approved therapies for MASH. Weight loss strategies such as caloric restriction can ameliorate the harmful metabolic effect of MASH and inhibit HCC; however, it is difficult to implement and maintain in daily life, especially in individuals diagnosed with HCC. In this study, we tested a time-restricted feeding (TRF) nutritional intervention in mouse models of MASH and HCC. We show that TRF abrogated metabolic dysregulation induced by a Western diet without any calorie restriction or weight loss. TRF improved insulin sensitivity and reduced hyperinsulinemia, liver steatosis, inflammation, and fibrosis. Importantly, TRF inhibited liver tumors in two mouse models of obesity-driven HCC. Our data suggest that TRF is likely to be effective in abrogating MASH and HCC and warrant further studies of time-restricted eating in humans with MASH who are at higher risk of developing HCC.

2.
Hepatology ; 80(2): 363-375, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456794

RESUMO

BACKGROUND AND AIMS: In obesity, depletion of KCs expressing CRIg (complement receptor of the Ig superfamily) leads to microbial DNA accumulation, which subsequently triggers tissue inflammation and insulin resistance. However, the mechanism underlying obesity-mediated changes in KC complement immune functions is largely unknown. APPROACH AND RESULTS: Using KC-specific deactivated Cas9 transgenic mice treated with guide RNA, we assessed the effects of restoring CRIg or the serine/arginine-rich splicing factor 3 (SRSF3) abundance on KC functions and metabolic phenotypes in obese mice. The impacts of weight loss on KC responses were evaluated in a diet switch mouse model. The role of SRSF3 in regulating KC functions was also evaluated using KC-specific SRSF3 knockout mice. Here, we report that overexpression of CRIg in KCs of obese mice protects against bacterial DNA accumulation in metabolic tissues. Mechanistically, SRSF3 regulates CRIg expression, which is essential for maintaining the CRIg+ KC population. During obesity, SRSF3 expression decreases, but it is restored with weight loss through a diet switch, normalizing CRIg+ KCs. KC SRSF3 is also repressed in obese human livers. Lack of SRSF3 in KCs in lean and obese mice decreases their CRIg+ population, impairing metabolic parameters. During the diet switch, the benefits of weight loss are compromised due to SRSF3 deficiency. Conversely, SRSF3 overexpression in obese mice preserves CRIg+ KCs and improves metabolic responses. CONCLUSIONS: Restoring SRSF3 abundance in KCs offers a strategy against obesity-associated tissue inflammation and insulin resistance by preventing bacterial DNA accumulation.


Assuntos
Resistência à Insulina , Células de Kupffer , Obesidade , Fatores de Processamento de Serina-Arginina , Animais , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Obesidade/metabolismo , Camundongos , Células de Kupffer/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Camundongos Knockout , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
J Vasc Interv Radiol ; 34(9): 1516-1527.e6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178816

RESUMO

PURPOSE: To test the hypothesis that antitumoral immunity can be induced after cryoablation (cryo) of hepatocellular carcinoma (HCC) through coadministration of the immunostimulant CpG and an immune checkpoint (programmed cell death 1 [PD-1]) inhibitor. MATERIALS AND METHODS: Sixty-three immunocompetent C57BL/6J mice were generated with 2 orthotopic HCC tumor foci: 1 for treatment and 1 to observe for antitumoral immunity. Tumors were treated with incomplete cryo alone or intratumoral CpG and/or a PD-1 inhibitor. The primary endpoint was death or when the following criteria for sacrifice were met: tumor > 1 cm (determined using ultrasound) or moribund state. Antitumoral immunity was assessed using flow cytometry and histology (tumor and liver) as well as enzyme-linked immunosorbent assay (serum). Analysis of variance was used for statistical comparisons. RESULTS: At 1 week, the nonablated satellite tumor growth was reduced by 1.9-fold (P = .047) in the cryo + CpG group and by 2.8-fold (P = .007) in the cryo + CpG + PD-1 group compared with that in the cryo group. Compared with cryo alone, the time to tumor progression to endpoints was also prolonged for cryo + CpG + PD-1 and cryo + CpG mice, with log-rank hazard ratios of 0.42 (P = .031) and 0.27 (P < .001), respectively. Flow cytometry and histology showed increased cytotoxic T-cell infiltration (P = .002) and serum levels of the proinflammatory cytokine interferon-γ (P = .015) in tumors and serum of cryo + CpG mice compared with those in tumors and serum of mice treated with cryo alone. High serum levels of the anti-inflammatory cytokine tumor growth factor-ß and the proangiogenesis chemokine C-X-C motif chemokine ligand 1 were correlated with a shorter time to endpoints and faster tumor growth. CONCLUSIONS: Cryo combined with the immunostimulant CpG promoted cytotoxic T-cell infiltration into tumors, slowed tumor growth, and prolonged the time to progression to endpoints in an aggressive murine HCC model.


Assuntos
Carcinoma Hepatocelular , Criocirurgia , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Adjuvantes Imunológicos , Receptor de Morte Celular Programada 1 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Citocinas , Linhagem Celular Tumoral
4.
Diabetes ; 72(9): 1235-1250, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257047

RESUMO

In obesity, CD11c+ innate immune cells are recruited to adipose tissue and create an inflammatory state that causes both insulin and catecholamine resistance. We found that ablation of Gnas, the gene that encodes Gαs, in CD11c expressing cells protects mice from obesity, glucose intolerance, and insulin resistance. Transplantation studies showed that the lean phenotype was conferred by bone marrow-derived cells and did not require adaptive immunity. Loss of cAMP signaling was associated with increased adipose tissue norepinephrine and cAMP signaling, and prevention of catecholamine resistance. The adipose tissue had reduced expression of catecholamine transport and degradation enzymes, suggesting that the elevated norepinephrine resulted from decreased catabolism. Collectively, our results identified an important role for cAMP signaling in CD11c+ innate immune cells in whole-body metabolism by controlling norepinephrine levels in white adipose tissue, modulating catecholamine-induced lipolysis and increasing thermogenesis, which, together, created a lean phenotype. ARTICLE HIGHLIGHTS: We undertook this study to understand how immune cells communicate with adipocytes, specifically, whether cAMP signaling in the immune cell and the adipocyte are connected. We identified a reciprocal interaction between CD11c+ innate immune cells and adipocytes in which high cAMP signaling in the immune cell compartment induces low cAMP signaling in adipocytes and vice versa. This interaction regulates lipolysis in adipocytes and inflammation in immune cells, resulting in either a lean, obesity-resistant, and insulin-sensitive phenotype, or an obese, insulin-resistant phenotype.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Obesidade , Animais , Camundongos , Tecido Adiposo Branco/metabolismo , Catecolaminas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
5.
Cancer Metastasis Rev ; 41(3): 697-717, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35984550

RESUMO

Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several metabolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have potential utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.


Assuntos
Neoplasias , Obesidade , Animais , Ingestão de Energia , Feminino , Humanos , Masculino , Neoplasias/epidemiologia , Neoplasias/etiologia , Obesidade/complicações
6.
Adv Sci (Weinh) ; 9(21): e2105120, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35615981

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Serine-arginine rich splicing factor 3 (SRSF3) plays a critical role in hepatocyte function and its loss in mice promotes chronic liver damage and leads to HCC. Hepatocyte-specific SRSF3 knockout mice (SKO mice) also overexpress insulin-like growth factor 2 (IGF2). In the present study, double deletion of Igf2 and Srsf3 (DKO mice) prevents hepatic fibrosis and inflammation, and completely prevents tumor formation, and is associated with decreased proliferation, apoptosis and DNA damage, and restored DNA repair enzyme expression. This is confirmed in vitro, where IGF2 treatment of HepG2 hepatoma cells decreases DNA repair enzyme expression and causes DNA damage. Tumors from the SKO mice also show mutational signatures consistent with homologous recombination and mismatch repair defects. Analysis of frozen human samples shows that SRSF3 protein is decreased sixfold in HCC compared to normal liver tissue but SRSF3 mRNA is increased. Looking at public TCGA data, HCC patients having high SRSF3 mRNA expression show poor survival, as do patients with alterations in known SRSF3-dependent splicing events. The results indicate that IGF2 overexpression in conjunction with reduced SRSF3 splicing activity could be a major cause of DNA damage and driver of liver cancer.


Assuntos
Carcinoma Hepatocelular , Dano ao DNA , Fator de Crescimento Insulin-Like II , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Dano ao DNA/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Camundongos , RNA Mensageiro , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
7.
Nat Commun ; 12(1): 565, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495474

RESUMO

Accumulating evidence indicates that obesity with its associated metabolic dysregulation, including hyperinsulinemia and aberrant circadian rhythms, increases the risk for a variety of cancers including postmenopausal breast cancer. Caloric restriction can ameliorate the harmful metabolic effects of obesity and inhibit cancer progression but is difficult to implement and maintain outside of the clinic. In this study, we aim to test a time-restricted feeding (TRF) approach on mouse models of obesity-driven postmenopausal breast cancer. We show that TRF abrogates the obesity-enhanced mammary tumor growth in two orthotopic models in the absence of calorie restriction or weight loss. TRF also reduces breast cancer metastasis to the lung. Furthermore, TRF delays tumor initiation in a transgenic model of mammary tumorigenesis prior to the onset of obesity. Notably, TRF increases whole-body insulin sensitivity, reduces hyperinsulinemia, restores diurnal gene expression rhythms in the tumor, and attenuates tumor growth and insulin signaling. Importantly, inhibition of insulin secretion with diazoxide mimics TRF whereas artificial elevation of insulin through insulin pumps implantation reverses the effect of TRF, suggesting that TRF acts through modulating hyperinsulinemia. Our data suggest that TRF is likely to be effective in breast cancer prevention and therapy.


Assuntos
Neoplasias da Mama/prevenção & controle , Modelos Animais de Doenças , Jejum , Hiperinsulinismo/prevenção & controle , Obesidade/prevenção & controle , Pós-Menopausa/fisiologia , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/fisiopatologia , Restrição Calórica/métodos , Linhagem Celular Tumoral , Dieta Hiperlipídica , Feminino , Humanos , Hiperinsulinismo/sangue , Hiperinsulinismo/fisiopatologia , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Obesidade/fisiopatologia , Ovariectomia , Pós-Menopausa/sangue
8.
Endocrinology ; 162(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32945868

RESUMO

Mounting evidence suggests a role for mitochondrial dysfunction in the pathogenesis of many diseases, including type 2 diabetes, aging, and ovarian failure. Because of the central role of mitochondria in energy production, heme biosynthesis, calcium buffering, steroidogenesis, and apoptosis signaling within cells, understanding the molecular mechanisms behind mitochondrial dysregulation and its potential implications in disease is critical. This review will take a journey through the past and summarize what is known about mitochondrial dysfunction in various disorders, focusing on metabolic alterations and reproductive abnormalities. Evidence is presented from studies in different human populations, and rodents with genetic manipulations of pathways known to affect mitochondrial function.


Assuntos
Infertilidade/patologia , Doenças Mitocondriais/metabolismo , Obesidade/metabolismo , Animais , Humanos , Infertilidade/metabolismo , Doenças Mitocondriais/patologia
9.
J Clin Invest ; 129(10): 4477-4491, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393851

RESUMO

Serine rich splicing factor 3 (SRSF3) plays a critical role in liver function and its loss promotes chronic liver damage and regeneration. As a consequence, genetic deletion of SRSF3 in hepatocytes caused progressive liver disease and ultimately led to hepatocellular carcinoma. Here we show that SRSF3 is decreased in human liver samples with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), or cirrhosis that was associated with alterations in RNA splicing of known SRSF3 target genes. Hepatic SRSF3 expression was similarly decreased and RNA splicing dysregulated in mouse models of NAFLD and NASH. We showed that palmitic acid-induced oxidative stress caused conjugation of the ubiquitin like NEDD8 protein to SRSF3 and proteasome mediated degradation. SRSF3 was selectively neddylated at lysine11 and mutation of this residue (SRSF3-K11R) was sufficient to prevent both SRSF3 degradation and alterations in RNA splicing. Finally prevention of SRSF3 degradation in vivo partially protected mice from hepatic steatosis, fibrosis and inflammation. These results highlight a neddylation-dependent mechanism regulating gene expression in the liver that is disrupted in early metabolic liver disease and may contribute to the progression to NASH, cirrhosis and ultimately hepatocellular carcinoma.


Assuntos
Hepatócitos/metabolismo , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteólise , Splicing de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Hepatócitos/patologia , Fígado/patologia , Cirrose Hepática Experimental/patologia , Camundongos , Proteína NEDD8/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Processamento de Proteína Pós-Traducional
10.
Biomed Pharmacother ; 102: 555-566, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29597089

RESUMO

Pancreatic cancer is considered as one of the most lethal type of cancer with a poor 5-year survival rate. Cancer metastasis represents one of the primary cause which limits therapy against this disease. Current chemotherapeutic approaches are largely ineffective, thus calling for the development of alternative strategies to combat this disease. In this regard, numerous studies have reported the anticancer effect of curcumin in different types of cancer including pancreatic cancer. However, low aqueous solubility, poor stability and decreased bioavailability associated with native curcumin holds back its use in clinical settings. In order to enhance its therapeutic value, polymeric nanoparticles (NPs) represent an ideal delivery system. Further, surface modification of NPs with various macromolecules, such as chitosan and polyethylene glycol (PEG) holds tremendous potential for improving the bioavailability and circulation time of native drug in the blood. In the present study, we have explored the above approach to formulate curcumin-loaded Poly d,l-lactide-co-glycolide (PLGA) NPs and further surface coated it with chitosan and PEG (CNPs) with anticipation to reduce the limitations associated with native curcumin delivery for achieving an optimum therapeutic effect. Results revealed that NPs are of nanometre range having smooth and spherical surface morphology and with an efficient loading of curcumin. In vitro, cellular studies revealed superior cytotoxicity, enhanced anti-migratory, anti-invasive and apoptosis-inducing ability of CNPs in metastatic pancreatic cancer in comparison to a native counterpart. Thus, we anticipate that the results from these studies can open up novel options for the treatment of pancreatic cancer.


Assuntos
Quitosana/química , Curcumina/uso terapêutico , Ácido Láctico/química , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis/química , Ácido Poliglicólico/química , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Endocitose/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Invasividade Neoplásica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA