Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Eur Heart J ; 43(45): 4739-4750, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200607

RESUMO

AIMS: In response to pro-fibrotic signals, scleraxis regulates cardiac fibroblast activation in vitro via transcriptional control of key fibrosis genes such as collagen and fibronectin; however, its role in vivo is unknown. The present study assessed the impact of scleraxis loss on fibroblast activation, cardiac fibrosis, and dysfunction in pressure overload-induced heart failure. METHODS AND RESULTS: Scleraxis expression was upregulated in the hearts of non-ischemic dilated cardiomyopathy patients, and in mice subjected to pressure overload by transverse aortic constriction (TAC). Tamoxifen-inducible fibroblast-specific scleraxis knockout (Scx-fKO) completely attenuated cardiac fibrosis, and significantly improved cardiac systolic function and ventricular remodelling, following TAC compared to Scx+/+ TAC mice, concomitant with attenuation of fibroblast activation. Scleraxis deletion, after the establishment of cardiac fibrosis, attenuated the further functional decline observed in Scx+/+ mice, with a reduction in cardiac myofibroblasts. Notably, scleraxis knockout reduced pressure overload-induced mortality from 33% to zero, without affecting the degree of cardiac hypertrophy. Scleraxis directly regulated transcription of the myofibroblast marker periostin, and cardiac fibroblasts lacking scleraxis failed to upregulate periostin synthesis and secretion in response to pro-fibrotic transforming growth factor ß. CONCLUSION: Scleraxis governs fibroblast activation in pressure overload-induced heart failure, and scleraxis knockout attenuated fibrosis and improved cardiac function and survival. These findings identify scleraxis as a viable target for the development of novel anti-fibrotic treatments.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Camundongos , Animais , Fibrose , Miofibroblastos/metabolismo , Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/patologia , Miocárdio/patologia , Camundongos Endogâmicos C57BL
2.
Wound Repair Regen ; 29(4): 667-677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34076932

RESUMO

Heart disease with attendant cardiac fibrosis kills more patients in developed countries than any other disease, including cancer. We highlight the recent literature on factors that activate and also deactivate cardiac fibroblasts. Activation of cardiac fibroblasts results in myofibroblasts phenotype which incorporates aSMA to stress fibres, express ED-A fibronectin, elevated PDGFRα and are hypersecretory ECM components. These cells facilitate both acute wound healing (infarct site) and chronic cardiac fibrosis. Quiescent fibroblasts are associated with normal myocardial tissue and provide relatively slow turnover of the ECM. Deactivation of activated myofibroblasts is a much less studied phenomenon. In this context, SKI is a known negative regulator of TGFb1 /Smad signalling, and thus may share functional similarity to PPARγ activation. The discovery of SKI's potent anti-fibrotic role, and its ability to deactivate and/or myofibroblasts is featured and contrasted with PPARγ. While myofibroblasts are typically recruited from pools of potential precursor cells in a variety of organs, the importance of activation of resident cardiac fibroblasts has been recently emphasised. Myofibroblasts deposit ECM components at an elevated rate and contribute to both systolic and diastolic dysfunction with attendant cardiac fibrosis. A major knowledge gap exists as to specific proteins that may signal for fibroblast deactivation. As SKI may be a functionally pluripotent protein, we suggest that it serves as a scaffold to proteins other than R-Smads and associated Smad signal proteins, and thus its anti-fibrotic effects may extend beyond binding R-Smads. While cardiac fibrosis is causal to heart failure, the treatment of cardiac fibrosis is hampered by the lack of availability of effective pharmacological anti-fibrotic agents. The current review will provide an overview of work highlighting novel factors which cause fibroblast activation and deactivation to underscore putative therapeutic avenues for improving disease outcomes in cardiac patients with fibrosed hearts.


Assuntos
Antifibróticos , Cicatrização , Fibroblastos/patologia , Fibrose , Humanos , Miocárdio/patologia , Miofibroblastos/patologia
4.
Methods Mol Biol ; 2299: 171-179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028743

RESUMO

Two-dimensional cell culture is the primary method employed for proof-of-concept studies in most molecular biology labs. While immortalized cell lines are convenient and easy to maintain for extended periods in vitro, their inability to accurately represent genuine cell physiology-or pathophysiology-presents a challenge for drug discovery, as most results are not viable for the transition to clinical trial. The use of primary cells is a more biologically relevant approach to this issue; however, simulating in vitro what is observed in vivo is exigent at best. Primary cardiac fibroblasts are particularly difficult to maintain in a quiescent state, due to their innate phenotypic plasticity, and sensitivity to mechanical and biochemical stimulus. As conventional cell culture methods do not consider these factors, here we describe a method that limits environmental input (i.e., mechanical, nutritional, hormonal) to extend the physiological cardiac fibroblast phenotype in vitro.


Assuntos
Miócitos Cardíacos/citologia , Miofibroblastos/citologia , Cultura Primária de Células/métodos , Actinas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Fenômenos Mecânicos , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Fenótipo
5.
Basic Res Cardiol ; 116(1): 25, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33847835

RESUMO

We have previously shown that overexpression of SKI, an endogenous TGF-ß1 repressor, deactivates the pro-fibrotic myofibroblast phenotype in the heart. We now show that SKI also functions independently of SMAD/TGF-ß signaling, by activating the Hippo tumor-suppressor pathway and inhibiting the Transcriptional co-Activator with PDZ-binding motif (TAZ or WWTR1). The mechanism(s) by which SKI targets TAZ to inhibit cardiac fibroblast activation and fibrogenesis remain undefined. A rat model of post-myocardial infarction was used to examine the expression of TAZ during acute fibrogenesis and chronic heart failure. Results were then corroborated with primary rat cardiac fibroblast cell culture performed both on plastic and on inert elastic substrates, along with the use of siRNA and adenoviral expression vectors for active forms of SKI, YAP, and TAZ. Gene expression was examined by qPCR and luciferase assays, while protein expression was examined by immunoblotting and fluorescence microscopy. Cell phenotype was further assessed by functional assays. Finally, to elucidate SKI's effects on Hippo signaling, the SKI and TAZ interactomes were captured in human cardiac fibroblasts using BioID2 and mass spectrometry. Potential interactors were investigated in vitro to reveal novel mechanisms of action for SKI. In vitro assays on elastic substrates revealed the ability of TAZ to overcome environmental stimuli and induce the activation of hypersynthetic cardiac myofibroblasts. Further cell-based assays demonstrated that SKI causes specific proteasomal degradation of TAZ, but not YAP, and shifts actin cytoskeleton dynamics to inhibit myofibroblast activation. These findings were supported by identifying the bi-phasic expression of TAZ in vivo during post-MI remodeling and fibrosis. BioID2-based interactomics in human cardiac fibroblasts suggest that SKI interacts with actin-modifying proteins and with LIM Domain-containing protein 1 (LIMD1), a negative regulator of Hippo signaling. Furthermore, we found that LATS2 interacts with TAZ, whereas LATS1 does not, and that LATS2 knockdown prevented TAZ downregulation with SKI overexpression. Our findings indicate that SKI's capacity to regulate cardiac fibroblast activation is mediated, in part, by Hippo signaling. We postulate that the interaction between SKI and TAZ in cardiac fibroblasts is arbitrated by LIMD1, an important intermediary in focal adhesion-associated signaling pathways. This study contributes to the understanding of the unique physiology of cardiac fibroblasts, and of the relationship between SKI expression and cell phenotype.


Assuntos
Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Via de Sinalização Hippo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Remodelação Ventricular , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fenótipo , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Sprague-Dawley , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
6.
Cell Signal ; 76: 109802, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017619

RESUMO

Cardiac fibroblast activation to hyper-synthetic myofibroblasts following a pathological stimulus or in response to a substrate with increased stiffness may be a key tipping point for the evolution of cardiac fibrosis. Cardiac fibrosis per se is associated with progressive loss of heart pump function and is a primary contributor to heart failure. While TGF-ß is a common cytokine stimulus associated with fibroblast activation, a druggable target to quell this driver of fibrosis has remained an elusive therapeutic goal due to its ubiquitous use by different cell types and also in the signaling complexity associated with SMADs and other effector pathways. More recently, mechanical stimulus of fibroblastic cells has been revealed as a major point of activation; this includes cardiac fibroblasts. Further, the complexity of TGF-ß signaling has been offset by the discovery of members of the SKI family of proteins and their inherent anti-fibrotic properties. In this respect, SKI is a protein that may bind a number of TGF-ß associated proteins including SMADs, as well as signaling proteins from other pathways, including Hippo. As SKI is also known to directly deactivate cardiac myofibroblasts to fibroblasts, this mode of action is a putative candidate for further study into the amelioration of cardiac fibrosis. Herein we provide a synthesis of this topic and highlight novel candidate pathways to explore in the treatment of cardiac fibrosis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibroblastos , Mecanotransdução Celular , Miocárdio , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Via de Sinalização Hippo , Humanos , Miocárdio/metabolismo , Miocárdio/patologia
7.
Sci Rep ; 9(1): 12889, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501457

RESUMO

Primary cardiac fibroblasts are notoriously difficult to maintain for extended periods of time in cell culture, due to the plasticity of their phenotype and sensitivity to mechanical input. In order to study cardiac fibroblast activation in vitro, we have developed cell culture conditions which promote the quiescent fibroblast phenotype in primary cells. Using elastic silicone substrata, both rat and mouse primary cardiac fibroblasts could be maintained in a quiescent state for more than 3 days after isolation and these cells showed low expression of myofibroblast markers, including fibronectin extracellular domain A, non-muscle myosin IIB, platelet-derived growth factor receptor-alpha and alpha-smooth muscle actin. Gene expression was also more fibroblast-like vs. that of myofibroblasts, as Tcf21 was significantly upregulated, while Fn1-EDA, Col1A1 and Col1A2 were markedly downregulated. Cell culture conditions (eg. serum, nutrient concentration) are critical for the control of temporal fibroblast proliferation. We propose that eliminating mechanical stimulus and limiting the nutrient content of cell culture media can extend the quiescent nature of primary cardiac fibroblasts for physiological analyses in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Miofibroblastos/citologia , Animais , Proliferação de Células , Masculino , Ratos
8.
Adv Exp Med Biol ; 1132: 35-41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037622

RESUMO

Cardiac muscle (the myocardium) is a unique arrangement of atria and ventricles that are spatially and electrically separated by a fibrous border. The spirally-arranged myocytes in both left and right ventricles are tethered by the component molecules of the cardiac extracellular matrix (ECM), including fibrillar collagen types I and III. Loss of normal arrangement of the ECM with either too little (as is observed in acute myocardial infarction) or too much (cardiac fibrosis in chronic post-myocardial infarction) is the primary contributor to cardiac dysfunction and heart failure. Matricellular proteins exist as non-structural signaling moieties in the ECM, and in the context of cardiac hypertrophy and heart failure, secreted 90 kDa periostin protein has attracted intense scrutiny during the past decade. Secreted periostin is now recognized for its important role in ECM development and maturation, as well as cellular adhesion. The novel mechanisms of periostin function include its role as a mediator of cell-to-matrix signaling, cell survival, and epithelial-mesenchymal transition (EMT). A number of recent studies have examined the hypothesis that periostin is a major contributor to ECM remodeling in the heart, and a number of very recent studies underscore its important role. This review examines recent developments in the mechanisms of periostin function in the normal heart and vasculature, and discusses recent advances which underpin its putative role in the development of cardiovascular disease. Periostin expression is very low at baseline in healthy tissues, but is re-expressed in damaged heart and in vessel walls after injury, in activated cardiac myofibroblasts and vascular smooth muscle cells, respectively. For this reason, periostin may be exploited for investigation of mechanisms of cardiac fibrosis , and we speculate that data generated from studies utilizing this approach may shed light on the timing for application of periostin-specific therapies to quell cardiac fibrosis and associated cardiac dysfunction.


Assuntos
Moléculas de Adesão Celular/fisiologia , Infarto do Miocárdio , Miofibroblastos/citologia , Remodelação Ventricular , Proteínas da Matriz Extracelular , Ventrículos do Coração , Humanos , Miocárdio , Fenótipo
9.
Compr Physiol ; 9(1): 75-125, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30549015

RESUMO

Cardiovascular disease leading to heart failure (HF) remains a leading cause of morbidity and mortality worldwide. Improved pharmacological and interventional coronary procedures have led to improved outcomes following acute myocardial infarction. This success has translated into an unforeseen increased incidence in HF. This review summarizes the signaling pathways implicated in the transition to HF following cardiac injury. In addition, we provide an update on cell death signaling and discuss recent advances in cardiac fibrosis as an independent event leading to HF. Finally, we discuss cell-based therapies and their possible use to avert the deteriorating nature of HF. © 2019 American Physiological Society. Compr Physiol 9:75-125, 2019.


Assuntos
Insuficiência Cardíaca/metabolismo , Medicina Regenerativa/métodos , Transdução de Sinais , Engenharia Tecidual/métodos , Animais , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Humanos , Miocárdio/metabolismo , Miocárdio/patologia
10.
Physiol Rep ; 6(22): e13897, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30488595

RESUMO

Many etiologies of heart disease are characterized by expansion and remodeling of the cardiac extracellular matrix (ECM or matrix) which results in cardiac fibrosis. Cardiac fibrosis is mediated in cardiac fibroblasts by TGF-ß1 /R-Smad2/3 signaling. Matrix component proteins are synthesized by activated resident cardiac fibroblasts known as myofibroblasts (MFB). These events are causal to heart failure with diastolic dysfunction and reduced cardiac filling. We have shown that exogenous Ski, a TGF-ß1 /Smad repressor, localizes in the cellular nucleus and deactivates cardiac myofibroblasts. This deactivation is associated with reduction of myofibroblast marker protein expression in vitro, including alpha smooth muscle actin (α-SMA) and extracellular domain-A (ED-A) fibronectin. We hypothesize that Ski also acutely regulates MMP expression in cardiac MFB. While acute Ski overexpression in cardiac MFB in vitro was not associated with any change in intracellular MMP-9 protein expression versus LacZ-treated controls,exogenous Ski caused elevated MMP-9 mRNA expression and increased MMP-9 protein secretion versus controls. Zymographic analysis revealed increased MMP-9-specific gelatinase activity in myofibroblasts overexpressing Ski versus controls. Moreover, Ski expression was attended by reduced paxillin and focal adhesion kinase phosphorylation (FAK - Tyr 397) versus controls. As myofibroblasts are hypersecretory and less motile relative to fibroblasts, Ski's reduction of paxillin and FAK expression may reflect the relative deactivation of myofibroblasts. Thus, in addition to its known antifibrotic effects, Ski overexpression elevates expression and extracellular secretion/release of MMP-9 and thus may facilitate internal cytoskeletal remodeling as well as extracellular ECM components. Further, as acute TGF-ß1 treatment of primary cardiac MFB is known to cause rapid translocation of Ski to the nucleus, our data support an autoregulatory role for Ski in mediating cardiac ECM accumulation.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Miocárdio/citologia , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Movimento Celular , Células Cultivadas , Fibronectinas/genética , Fibronectinas/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Miocárdio/metabolismo , Miofibroblastos/fisiologia , Paxilina/genética , Paxilina/metabolismo , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Sprague-Dawley
11.
Int J Mol Sci ; 19(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336567

RESUMO

Following cardiac injury, fibroblasts are activated and are termed as myofibroblasts, and these cells are key players in extracellular matrix (ECM) remodeling and fibrosis, itself a primary contributor to heart failure. Nutraceuticals have been shown to blunt cardiac fibrosis in both in-vitro and in-vivo studies. However, nutraceuticals have had conflicting results in clinical trials, and there are no effective therapies currently available to specifically target cardiac fibrosis. We have previously shown that expression of the zinc finger E box-binding homeobox 2 (Zeb2) transcription factor increases as fibroblasts are activated. We now show that Zeb2 plays a critical role in fibroblast activation. Zeb2 overexpression in primary rat cardiac fibroblasts is associated with significantly increased expression of embryonic smooth muscle myosin heavy chain (SMemb), ED-A fibronectin and α-smooth muscle actin (α-SMA). We found that Zeb2 was highly expressed in activated myofibroblast nuclei but not in the nuclei of inactive fibroblasts. Moreover, ectopic Zeb2 expression in myofibroblasts resulted in a significantly less migratory phenotype with elevated contractility, which are characteristics of mature myofibroblasts. Knockdown of Zeb2 with siRNA in primary myofibroblasts did not alter the expression of myofibroblast markers, which may indicate that Zeb2 is functionally redundant with other profibrotic transcription factors. These findings add to our understanding of the contribution of Zeb2 to the mechanisms controlling cardiac fibroblast activation.


Assuntos
Fibroblastos/metabolismo , Miocárdio/citologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Biomarcadores/metabolismo , Movimento Celular , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Miofibroblastos/metabolismo , Fenótipo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley
12.
J Mol Cell Cardiol ; 120: 64-73, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29750994

RESUMO

Remodeling of the cardiac extracellular matrix is responsible for a number of the detrimental effects on heart function that arise secondary to hypertension, diabetes and myocardial infarction. This remodeling consists both of an increase in new matrix protein synthesis, and an increase in the expression of matrix metalloproteinases (MMPs) that degrade existing matrix structures. Previous studies utilizing knockout mice have demonstrated clearly that MMP2 plays a pathogenic role during matrix remodeling, thus it is important to understand the mechanisms that regulate MMP2 gene expression. We have shown that the transcription factor scleraxis is an important inducer of extracellular matrix gene expression in the heart that may also control MMP2 expression. In the present study, we demonstrate that scleraxis directly transactivates the proximal MMP2 gene promoter, resulting in increased histone acetylation, and identify a specific E-box sequence in the promoter to which scleraxis binds. Cardiac myo-fibroblasts isolated from scleraxis knockout mice exhibited dramatically decreased MMP2 expression; however, scleraxis over-expression in knockout cells could rescue this loss. We further show that regulation of MMP2 gene expression by the pro-fibrotic cytokine TGFß occurs via a scleraxis-dependent mechanism: TGFß induces recruitment of scleraxis to the MMP2 promoter, and TGFß was unable to up-regulate MMP2 expression in cells lacking scleraxis due to either gene knockdown or knockout. These results reveal that scleraxis can exert control over both extracellular matrix synthesis and breakdown, and thus may contribute to matrix remodeling in wound healing and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Metaloproteinase 2 da Matriz/genética , Miocárdio/citologia , Miofibroblastos/fisiologia , Análise de Variância , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Elementos E-Box/fisiologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Knockout , Células NIH 3T3 , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Ativação Transcricional , Transfecção , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Ann Thorac Surg ; 105(6): 1763-1770, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29382512

RESUMO

BACKGROUND: Normothermic ex vivo heart perfusion (EVHP) has been shown to improve the preservation of hearts donated after circulatory arrest and to facilitate clinical successful transplantation. Steroids are added to the perfusate solution in current clinical EVHP protocols; however, the impact of this approach on donor heart preservation has not been previously investigated. We sought to determine the impact of steroids on the inflammatory response and development of myocardial edema during EVHP. METHODS: Thirteen pigs were anesthetized, mechanical ventilation was discontinued, and a hypoxemic cardiac arrest ensued. A 15-minute warm-ischemic standoff period was observed, and then hearts were resuscitated with a cardioplegic solution. Donor hearts were then perfused ex vivo in a normothermic beating state for 6 hours with 500 mg of methylprednisolone (steroid: n = 5) or without (control: n = 8). RESULTS: The addition of steroids to the perfusate solution reduced the generation of proinflammatory cytokines (interleukin-6, -8, -1ß, and tumor necrosis factor-α) and the development of myocardial edema during EVHP (percentage of weight gain: control = 26% ± 7% versus steroid = 16% ± 10%, p = 0.049). Electron microscopy suggested less endothelial cell edema in the steroid group (injury score: control = 1.8 ± 0.2 versus steroid = 1.2 ± 0.2, p = 0.06), whereas perfusate troponin-I (control = 11.9 ± 1.9 ng/mL versus steroid = 9.5 ± 2.4 ng/mL, p = 0.448) and myocardial function were comparable between the groups. CONCLUSIONS: The addition of methylprednisolone to the perfusion solution minimizes the generation of proinflammatory cytokines and development of myocardial edema during normothermic ex vivo perfusion of hearts donated after circulatory arrest.


Assuntos
Soluções Cardioplégicas/farmacologia , Edema Cardíaco/prevenção & controle , Metilprednisolona/farmacologia , Preservação de Órgãos/métodos , Animais , Modelos Animais de Doenças , Sobrevivência de Enxerto , Parada Cardíaca , Transplante de Coração/métodos , Humanos , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Suínos
14.
Basic Res Cardiol ; 113(1): 1, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29101484

RESUMO

Tissue development and homeostasis are dependent upon the concerted synthesis, maintenance, and degradation of extracellular matrix (ECM) molecules. Cardiac fibrosis is now recognized as a primary contributor to incidence of heart failure, particularly heart failure with preserved ejection fraction, wherein cardiac filling in diastole is compromised. Periostin is a cell-associated protein involved in cell fate determination, proliferation, tumorigenesis, and inflammatory responses. As a non-structural component of the ECM, secreted 90 kDa periostin is emerging as an important matricellular factor in cardiac mesenchymal tissue development. In addition, periostin's role as a mediator in cell-matrix crosstalk has also garnered attention for its association with fibroproliferative diseases in the myocardium, and for its association with TGF-ß/BMP signaling. This review summarizes the phylogenetic history of periostin, its role in cardiac development, and the major signaling pathways influencing its expression in cardiovascular pathology. Further, we provide a synthesis of the current literature to distinguish the multiple roles of periostin in cardiac health, development and disease. As periostin may be targeted for therapeutic treatment of cardiac fibrosis, these insights may shed light on the putative timing for application of periostin-specific therapies.


Assuntos
Doenças Cardiovasculares/metabolismo , Moléculas de Adesão Celular/metabolismo , Valvas Cardíacas/embriologia , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Matriz Extracelular/metabolismo , Coração/fisiologia , Humanos , Mesoderma/metabolismo , Família Multigênica , Domínios Proteicos , Regeneração
15.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L493-L504, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074489

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease in adults with limited treatment options. Autophagy and the unfolded protein response (UPR), fundamental processes induced by cell stress, are dysregulated in lung fibroblasts and epithelial cells from humans with IPF. Human primary cultured lung parenchymal and airway fibroblasts from non-IPF and IPF donors were stimulated with transforming growth factor-ß1 (TGF-ß1) with or without inhibitors of autophagy or UPR (IRE1 inhibitor). Using immunoblotting, we monitored temporal changes in abundance of protein markers of autophagy (LC3ßII and Atg5-12), UPR (BIP, IRE1α, and cleaved XBP1), and fibrosis (collagen 1α2 and fibronectin). Using fluorescent immunohistochemistry, we profiled autophagy (LC3ßII) and UPR (BIP and XBP1) markers in human non-IPF and IPF lung tissue. TGF-ß1-induced collagen 1α2 and fibronectin protein production was significantly higher in IPF lung fibroblasts compared with lung and airway fibroblasts from non-IPF donors. TGF-ß1 induced the accumulation of LC3ßII in parallel with collagen 1α2 and fibronectin, but autophagy marker content was significantly lower in lung fibroblasts from IPF subjects. TGF-ß1-induced collagen and fibronectin biosynthesis was significantly reduced by inhibiting autophagy flux in fibroblasts from the lungs of non-IPF and IPF donors. Conversely, only in lung fibroblasts from IPF donors did TGF-ß1 induce UPR markers. Treatment with an IRE1 inhibitor decreased TGF-ß1-induced collagen 1α2 and fibronectin biosynthesis in IPF lung fibroblasts but not those from non-IPF donors. The IRE1 arm of the UPR response is uniquely induced by TGF-ß1 in lung fibroblasts from human IPF donors and is required for excessive biosynthesis of collagen and fibronectin in these cells.


Assuntos
Autofagia , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Fator de Crescimento Transformador beta1/administração & dosagem , Resposta a Proteínas não Dobradas , Estudos de Casos e Controles , Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Transdução de Sinais
16.
Oncotarget ; 7(48): 78516-78531, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27705938

RESUMO

The incidence of heart failure with concomitant cardiac fibrosis is very high in developed countries. Fibroblast activation in heart is causal to cardiac fibrosis as they convert to hypersynthetic cardiac myofibroblasts. There is no known treatment for cardiac fibrosis. Myofibroblasts contribute to the inappropriate remodeling of the myocardial interstitium, which leads to reduced cardiac function and ultimately heart failure. Elevated levels of autophagy have been linked to stress-induced ventricular remodeling and other cardiac diseases. Previously, we had shown that TGF-ß1 treatment of human atrial fibroblasts both induced autophagy and enhanced the fibrogenic response supporting a linkage between the myofibroblast phenotype and autophagy. We now demonstrate that with in vitro culture of primary rat cardiac fibroblasts, inhibition of autophagy represses fibroblast to myofibroblast phenoconversion. Culturing unpassaged cardiac fibroblasts for 72 hours on plastic tissue culture plates is associated with elevated α-smooth muscle actin (α-SMA) expression. This activation parallels increased microtubule-associated protein 1A/1B-light chain 3 (LC-3ß II) protein expression. Inhibition of autophagy with bafilomycin-A1 (Baf-A1) and chloroquine (CQ) in cardiac fibroblasts significantly reduces α-SMA and extracellular domain A fibronectin (ED-A FN) protein vs untreated controls. Myofibroblast cell migration and contractility were significantly reduced following inhibition of autophagy. These data support the possibility of a causal link between cardiac fibroblast-to-myofibroblast phenoconversion and autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Cardiomiopatias/prevenção & controle , Cloroquina/farmacologia , Fibroblastos/efeitos dos fármacos , Macrolídeos/farmacologia , Miocárdio/patologia , Miofibroblastos/efeitos dos fármacos , Actinas/metabolismo , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibronectinas/metabolismo , Fibrose , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fenótipo , Fosforilação , Cultura Primária de Células , Ratos Sprague-Dawley , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Biochim Biophys Acta ; 1863(6 Pt A): 1261-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27039037

RESUMO

Inappropriate cardiac interstitial remodeling is mediated by activated phenoconverted myofibroblasts. The synthesis of matrix proteins by these cells is triggered by both chemical and mechanical stimuli. Ski is a repressor of TGFß1/Smad signaling and has been described as possessing anti-fibrotic properties within the myocardium. We hypothesized that overexpression of Ski in myofibroblasts will induce an apoptotic response, which may either be supported or opposed by autophagic flux. We used primary myofibroblasts (activated fibroblasts) which were sourced from whole heart preparations that were only passaged once. We found that overexpression of Ski results in distinct morphological and biochemical changes within primary cardiac myofibroblasts associated with apoptosis. Ski treatment was associated with the expression of pro-apoptotic factors such as Bax, caspase-7, and -9. Our results indicate that Ski triggers a pro-death mechanism in primary rat cardiac myofibroblasts that is mediated through the intrinsic apoptotic pathway. Myofibroblast survival is prolonged by an autophagic response, as the dataset indicate that apoptosis is hastened when autophagy is inhibited. We suggest that the apoptotic death response of myofibroblasts is working in parallel with the previously observed anti-fibrotic properties of Ski within this cell type. As myofibroblasts are the sole mediators of matrix expansion in heart failure, we suggest that Ski, or a putative Ski-mimetic, may induce graded apoptosis in myofibroblasts within the failing heart and may be a novel therapeutic approach towards controlling cardiac fibrosis. Future studies are needed to examine the potential effects of Ski overexpression on other cell types in the heart.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Western Blotting , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Macrolídeos/farmacologia , Masculino , Microscopia Confocal , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Ratos Sprague-Dawley , Estaurosporina/farmacologia , Fatores de Tempo , Transfecção , Vimentina/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 310(2): H239-49, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26566727

RESUMO

In cardiac wound healing following myocardial infarction (MI), relatively inactive resident cardiac fibroblasts phenoconvert to hypersynthetic/secretory myofibroblasts that produce large quantities of extracellular matrix (ECM) and fibrillar collagen proteins. Our laboratory and others have identified TGFß1 as being a persistent stimulus in the chronic and inappropriate wound healing phase that is marked by hypertrophic scarring and eventual stiffening of the entire myocardium, ultimately leading to the pathogenesis of heart failure following MI. Ski is a potent negative regulator of TGFß/Smad signaling with known antifibrotic effects. Conversely, Scleraxis is a potent profibrotic basic helix-loop-helix transcription factor that stimulates fibrillar collagen expression. We hypothesize that TGFß1 induces Scleraxis expression by a novel Smad-independent pathway. Our data support the hypothesis that Scleraxis expression is induced by TGFß1 through a Smad-independent pathway in the cardiac myofibroblast. Specifically, we demonstrate that TGFß1 stimulates p42/44 (Erk1/2) kinases, which leads to increased Scleraxis expression. Inhibition of MEK1/2 using U0126 led to a sequential temporal reduction of phospho-p42/44 and subsequent Scleraxis expression. We also found that adenoviral Ski expression in primary myofibroblasts caused a significant repression of endogenous Scleraxis expression at both the mRNA and protein levels. Thus we have identified a novel TGFß1-driven, Smad-independent, signaling cascade that may play an important role in regulating the fibrotic response in activated cardiac myofibroblasts following cardiac injury.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Miócitos Cardíacos/metabolismo , Proteínas Smad/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Células 3T3 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Butadienos/farmacologia , Células COS , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Chlorocebus aethiops , Fibrose/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
Am J Physiol Heart Circ Physiol ; 308(2): H75-82, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25380815

RESUMO

Remodeling of the extracellular matrix is beneficial during the acute wound healing stage following tissue injury. In the short term, resident fibroblasts and myofibroblasts regulate the matrix remodeling process through production of matricellular protein components that provide structural support to the damaged tissue. This process is largely governed by the transforming growth factor-ß1 (TGF-ß1) pathway, a critical mediator of the remodeling process. In the long term, chronic activation of the TGF-ß1 pathway promotes excessive synthesis and deposition of matrix proteins, including fibrillar collagens, which ultimately leads to organ failure. SnoN (and its alternatively-spliced isoforms SnoN2, SnoA, and SnoI) is one of four members of a family of negative regulators of TGF-ß1 signaling that includes Ski and functional Smad-suppressing elements on chromosomes 15 and 18. SnoN has been shown to be structurally and functionally similar to Ski and has been demonstrated to directly interact with Ski to abrogate gene expression. Despite this, little progress has been made in delineating a specific role for SnoN in the regulation of myofibroblast phenotype and function. This review outlines the current body of knowledge of what we refer to as the "Ski-Sno superfamily," with a focus on the structural and functional importance of SnoN in mediating the fibrotic response by myofibroblasts following tissue injury.


Assuntos
Pulmão/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Smad/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Colágeno/genética , Colágeno/metabolismo , Fibrose/metabolismo , Humanos , Pulmão/patologia , Miocárdio/patologia , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
Mol Cell Biochem ; 392(1-2): 187-204, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24691634

RESUMO

Cardiac fibrosis accompanies a variety of myocardial disorders, and is induced by myofibroblasts. These cells may be composed of a heterogeneous population of parent cells, including interstitial fibroblasts and circulating progenitor cells. Direct comparison of human bone marrow-derived mesenchymal stem cells (BM-MSCs) and cardiac myofibroblasts (CMyfbs) has not been previously reported. We hypothesized that BM-MSCs readily adopt a myofibroblastic phenotype in culture. Human primary BM-MSCs and human CMyfbs were isolated from patients undergoing open heart surgery and expanded under standard culture conditions. We assessed and compared their phenotypic and functional characteristics by examining their gene expression profile, their ability to contract collagen gels and synthesize collagen type I. In addition, we examined the role of non-muscle myosin II (NMMII) in modulating MSC myogenic function using NMMII siRNA knockdown and blebbistatin, a specific small molecule inhibitor of NMMII. We report that, while human BM-MSCs retain pluripotency, they adopt a myofibroblastic phenotype in culture and stain positive for the myofibroblast markers α-SMA, vimentin, NMMIIB, ED-A fibronectin, and collagen type 1 at each passage. In addition, they contract collagen gels in response to TGF-ß1 and synthesize collagen similar to human CMyfbs. Moreover, inhibition of NMMII activity with blebbistatin completely attenuates gel contractility without affecting cell viability. Thus, human BM-MSCs share and exhibit similar physiological and functional characteristics as human CMyfbs in vitro, and their propensity to adopt a myofibroblast phenotype in culture may contribute to cardiac fibrosis.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Miocárdio/citologia , Miofibroblastos/metabolismo , Sequência de Bases , Colágeno Tipo I/biossíntese , Primers do DNA , Humanos , Técnicas In Vitro , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA