Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Nucleic Acids Res ; 51(7): 3307-3326, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36938885

RESUMO

Genome duplication occurs while the template DNA is bound by numerous DNA-binding proteins. Each of these proteins act as potential roadblocks to the replication fork and can have deleterious effects on cells. In Escherichia coli, these roadblocks are displaced by the accessory helicase Rep, a DNA translocase and helicase that interacts with the replisome. The mechanistic details underlying the coordination with replication and roadblock removal by Rep remain poorly understood. Through real-time fluorescence imaging of the DNA produced by individual E. coli replisomes and the simultaneous visualization of fluorescently-labeled Rep, we show that Rep continually surveils elongating replisomes. We found that this association of Rep with the replisome is stochastic and occurs independently of whether the fork is stalled or not. Further, we visualize the efficient rescue of stalled replication forks by directly imaging individual Rep molecules as they remove a model protein roadblock, dCas9, from the template DNA. Using roadblocks of varying DNA-binding stabilities, we conclude that continuation of synthesis is the rate-limiting step of stalled replication rescue.


Assuntos
DNA Helicases , Proteínas de Escherichia coli , DNA/metabolismo , DNA Helicases/química , Replicação do DNA , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química
2.
Methods Enzymol ; 672: 299-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35934481

RESUMO

Single-molecule imaging studies using long linear DNA substrates have revealed unanticipated insights into the dynamics of multi-protein systems. The use of long DNA substrates allows for the study of protein-DNA interactions with observation of the movement and behavior of proteins over distances accessible by fluorescence microscopy. Generalized methods can be exploited to generate and optimize a variety of linear DNA substrates with plasmid DNA as a simple starting point using standard biochemical techniques. Here, we present protocols to produce high-quality plasmid-based 36-kb linear DNA substrates that support DNA replication by the Escherichia coli replisome and that contain chemical lesions at well-defined positions. These substrates can be used to visualize replisome-lesion encounters at the single-molecule level, providing mechanistic details of replisome stalling and dynamics occurring during replication rescue and restart.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , DNA/metabolismo , DNA Polimerase III , DNA Polimerase Dirigida por DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Nucleic Acids Res ; 50(10): 5688-5712, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641110

RESUMO

Elongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear. With Escherichia coli as a model, we used single-molecule assays to study dynamic modulation of elongation by Mfd, the bacterial TRCF. We found that nucleotide-bound Mfd converts the elongation complex (EC) into a catalytically poised state, presenting the EC with an opportunity to restart transcription. After long-lived residence in this catalytically poised state, ATP hydrolysis by Mfd remodels the EC through an irreversible process leading to loss of the RNA transcript. Further, biophysical studies revealed that the motor domain of Mfd binds and partially melts DNA containing a template strand overhang. The results explain pathway choice determining the fate of the EC and provide a molecular mechanism for transcription modulation by TRCF.


Assuntos
Proteínas de Bactérias , Reparo do DNA , Escherichia coli , Fatores de Transcrição , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Microbiologyopen ; 10(6): e1251, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964291

RESUMO

Efficient control of transcription is essential in all organisms. In bacteria, where DNA replication and transcription occur simultaneously, the replication machinery is at risk of colliding with highly abundant transcription complexes. This can be exacerbated by the fact that transcription complexes pause frequently. When pauses are long-lasting, the stalled complexes must be removed to prevent collisions with either another transcription complex or the replication machinery. HelD is a protein that represents a new class of ATP-dependent motor proteins distantly related to helicases. It was first identified in the model Gram-positive bacterium Bacillus subtilis and is involved in removing and recycling stalled transcription complexes. To date, two classes of HelD have been identified: one in the low G+C and the other in the high G+C Gram-positive bacteria. In this work, we have undertaken the first comprehensive investigation of the phylogenetic diversity of HelD proteins. We show that genes in certain bacterial classes have been inherited by horizontal gene transfer, many organisms contain multiple expressed isoforms of HelD, some of which are associated with antibiotic resistance, and that there is a third class of HelD protein found in Gram-negative bacteria. In summary, HelD proteins represent an important new class of transcription factors associated with genome maintenance and antibiotic resistance that are conserved across the Eubacterial kingdom.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/química , DNA Helicases/classificação , DNA Helicases/genética , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transferência Genética Horizontal , Modelos Moleculares , Filogenia , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
Front Mol Biosci ; 8: 741718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513934

RESUMO

Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.

6.
Nucleic Acids Res ; 49(12): 6804-6816, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139009

RESUMO

In Escherichia coli, the DnaB helicase forms the basis for the assembly of the DNA replication complex. The stability of DnaB at the replication fork is likely important for successful replication initiation and progression. Single-molecule experiments have significantly changed the classical model of highly stable replication machines by showing that components exchange with free molecules from the environment. However, due to technical limitations, accurate assessments of DnaB stability in the context of replication are lacking. Using in vitro fluorescence single-molecule imaging, we visualise DnaB loaded on forked DNA templates. That these helicases are highly stable at replication forks, indicated by their observed dwell time of ∼30 min. Addition of the remaining replication factors results in a single DnaB helicase integrated as part of an active replisome. In contrast to the dynamic behaviour of other replisome components, DnaB is maintained within the replisome for the entirety of the replication process. Interestingly, we observe a transient interaction of additional helicases with the replication fork. This interaction is dependent on the τ subunit of the clamp-loader complex. Collectively, our single-molecule observations solidify the role of the DnaB helicase as the stable anchor of the replisome, but also reveal its capacity for dynamic interactions.


Assuntos
Replicação do DNA , DnaB Helicases/metabolismo , DNA Polimerase Dirigida por DNA , Escherichia coli/genética , Complexos Multienzimáticos , Imagem Individual de Molécula
7.
J Am Chem Soc ; 142(41): 17277-17281, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32975937

RESUMO

SF5Phe, para-pentafluorosulfanyl phenylalanine, is an unnatural amino acid with extreme physicochemical properties, which is stable in physiological conditions. Here we present newly developed aminoacyl-tRNA synthetases that enable genetic encoding of SF5Phe for site-specific incorporation into proteins in high yields. Owing to the SF5 moiety's dichotomy of strong polarity and high hydrophobicity, the unnatural amino acid forms specific and strong interactions in proteins. The potential of SF5Phe in protein research is illustrated by (i) increasing the binding affinity of a consensus pentapeptide motif toward the ß subunit of Escherichia coli DNA polymerase III holoenzyme by mutation of a phenylalanine to a SF5Phe residue, (ii) site-specifically adhering ß-cyclodextrin to the surface of ubiquitin, and (iii) selective detection of 19F-19F nuclear Overhauser effects in the Escherichia coli peptidyl-prolyl cis/trans-isomerase B following mutation of two phenylalanine residues in the core of the protein to SF5Phe. With increasing use of the SF5 moiety in pharmaceutical chemistry, this general method of functionalizing proteins with SF5 groups opens unique opportunities for structural biology and in vivo studies.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , DNA Polimerase III/metabolismo , Fluorocarbonos/química , Fenilalanina/química , Aminoacil-tRNA Sintetases/genética , Ciclodextrinas/química , DNA Polimerase III/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Flúor/química , Interações Hidrofóbicas e Hidrofílicas , Isomerases/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Propriedades de Superfície , Ubiquitina/química
8.
Mol Cell ; 79(1): 140-154.e7, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32464091

RESUMO

Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.


Assuntos
DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Holoenzimas/química , DNA Primase/genética , DNA Bacteriano , DNA Polimerase Dirigida por DNA/genética , DnaB Helicases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Conformação Molecular , Ligação Proteica , Conformação Proteica
9.
Nucleic Acids Res ; 48(11): 6053-6067, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32374866

RESUMO

Bacterial single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA and help to recruit heterologous proteins to their sites of action. SSBs perform these essential functions through a modular structural architecture: the N-terminal domain comprises a DNA binding/tetramerization element whereas the C-terminus forms an intrinsically disordered linker (IDL) capped by a protein-interacting SSB-Ct motif. Here we examine the activities of SSB-IDL fusion proteins in which fluorescent domains are inserted within the IDL of Escherichia coli SSB. The SSB-IDL fusions maintain DNA and protein binding activities in vitro, although cooperative DNA binding is impaired. In contrast, an SSB variant with a fluorescent protein attached directly to the C-terminus that is similar to fusions used in previous studies displayed dysfunctional protein interaction activity. The SSB-IDL fusions are readily visualized in single-molecule DNA replication reactions. Escherichia coli strains in which wildtype SSB is replaced by SSB-IDL fusions are viable and display normal growth rates and fitness. The SSB-IDL fusions form detectible SSB foci in cells with frequencies mirroring previously examined fluorescent DNA replication fusion proteins. Cells expressing SSB-IDL fusions are sensitized to some DNA damaging agents. The results highlight the utility of SSB-IDL fusions for biochemical and cellular studies of genome maintenance reactions.


Assuntos
Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Fluorescência , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/química , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/química , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Resposta SOS em Genética
10.
Proc Natl Acad Sci U S A ; 116(51): 25591-25601, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796591

RESUMO

DNA lesions stall the replisome and proper resolution of these obstructions is critical for genome stability. Replisomes can directly replicate past a lesion by error-prone translesion synthesis. Alternatively, replisomes can reprime DNA synthesis downstream of the lesion, creating a single-stranded DNA gap that is repaired primarily in an error-free, homology-directed manner. Here we demonstrate how structural changes within the Escherichia coli replisome determine the resolution pathway of lesion-stalled replisomes. This pathway selection is controlled by a dynamic interaction between the proofreading subunit of the replicative polymerase and the processivity clamp, which sets a kinetic barrier to restrict access of translesion synthesis (TLS) polymerases to the primer/template junction. Failure of TLS polymerases to overcome this barrier leads to repriming, which competes kinetically with TLS. Our results demonstrate that independent of its exonuclease activity, the proofreading subunit of the replisome acts as a gatekeeper and influences replication fidelity during the resolution of lesion-stalled replisomes.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Bacteriano , DNA Polimerase Dirigida por DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
11.
Sci Rep ; 9(1): 13292, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527759

RESUMO

Limited experimental tools are available to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct as a generic, novel, targetable protein-DNA roadblock for studying mechanisms underlying enzymatic activities on DNA substrates in vitro. We illustrate the broad utility of this tool by demonstrating replication fork arrest by the specifically bound dCas9-guideRNA complex to arrest viral, bacterial and eukaryotic replication forks in vitro.


Assuntos
Proteína 9 Associada à CRISPR/genética , Replicação do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , RNA Guia de Cinetoplastídeos/genética , Sistemas CRISPR-Cas/genética , Streptococcus pyogenes/enzimologia
13.
Nucleic Acids Res ; 47(8): 4111-4123, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30767010

RESUMO

Single-stranded DNA-binding proteins (SSBs) support DNA replication by protecting single-stranded DNA from nucleolytic attack, preventing intra-strand pairing events and playing many other regulatory roles within the replisome. Recent developments in single-molecule approaches have led to a revised picture of the replisome that is much more complex in how it retains or recycles protein components. Here, we visualize how an in vitro reconstituted Escherichia coli replisome recruits SSB by relying on two different molecular mechanisms. Not only does it recruit new SSB molecules from solution to coat newly formed single-stranded DNA on the lagging strand, but it also internally recycles SSB from one Okazaki fragment to the next. We show that this internal transfer mechanism is balanced against recruitment from solution in a manner that is concentration dependent. By visualizing SSB dynamics in live cells, we show that both internal transfer and external exchange mechanisms are physiologically relevant.


Assuntos
Replicação do DNA , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Escherichia coli/genética , DNA/genética , DNA/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DnaB Helicases/genética , DnaB Helicases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Imagem com Lapso de Tempo
14.
Curr Opin Struct Biol ; 53: 159-168, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30292863

RESUMO

Bacterial replisomes are dynamic multiprotein DNA replication machines that are inherently difficult for structural studies. However, breakthroughs continue to come. The structures of Escherichia coli DNA polymerase III (core)-clamp-DNA subcomplexes solved by single-particle cryo-electron microscopy in both polymerization and proofreading modes and the discovery of the stochastic nature of the bacterial replisomes represent notable progress. The structures reveal an intricate interaction network in the polymerase-clamp subassembly, providing insights on how replisomes may work. Meantime, ensemble and single-molecule functional assays and fluorescence microscopy show that the bacterial replisomes can work in a decoupled and uncoordinated way, with polymerases quickly exchanging and both leading-strand and lagging-strand polymerases and the helicase working independently, contradictory to the elegant textbook view of a highly coordinated machine.


Assuntos
Replicação do DNA , Escherichia coli , Complexos Multienzimáticos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacteriófago T7/enzimologia , Bacteriófago T7/genética , DNA Helicases/química , DNA Helicases/metabolismo , DNA Ligases/química , DNA Ligases/metabolismo , DNA Polimerase I/química , DNA Polimerase I/metabolismo , DNA Polimerase III/química , DNA Polimerase III/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo
15.
Bioorg Med Chem Lett ; 28(22): 3526-3528, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297281

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious hospital-acquired infections and is responsible for significant morbidity and mortality in residential care facilities. New agents against MRSA are needed to combat rising resistance to current antibiotics. We recently reported 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC) as a new bacteriostatic agent against MRSA that appears to act via a novel mechanism. Here, twenty nine analogs of HMPC were synthesized, their anti-MRSA structure-activity relationships evaluated and selectivity versus human HKC-8 cells determined. Minimum inhibitory concentrations (MIC) ranged from 0.5 to 64 µg/mL and up to 16-fold selectivity was achieved. The 4-carbodithioate function was found to be essential for activity but non-specific reactivity was ruled out as a contributor to antibacterial action. The study supports further work aimed at elucidating the molecular targets of this interesting new class of anti-MRSA agents.


Assuntos
Antibacterianos/química , Pirazóis/química , Tiocarbamatos/química , Tiocarbamatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pirazóis/síntese química , Pirazóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiocarbamatos/síntese química
16.
J Struct Biol ; 204(3): 396-405, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30366028

RESUMO

Bacterial sliding clamps bind to DNA and act as protein-protein interaction hubs for several proteins involved in DNA replication and repair. The partner proteins all bind to a common pocket on sliding clamps via conserved linear peptide sequence motifs, which suggest the pocket as an attractive target for development of new antibiotics. Herein we report the X-ray crystal structures and biochemical characterization of ß sliding clamps from the Gram-negative pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacter cloacae. The structures reveal close similarity between the pathogen and Escherichia coli clamps and similar patterns of binding to linear clamp-binding motif peptides. The results suggest that linear motif-sliding clamp interactions are well conserved and an antibiotic targeting the sliding clamp should have broad-spectrum activity against Gram-negative pathogens.


Assuntos
Acinetobacter baumannii/genética , DNA Bacteriano/química , Enterobacter cloacae/genética , Pseudomonas aeruginosa/genética , Algoritmos , Motivos de Aminoácidos/genética , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cristalografia por Raios X , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica
17.
Anal Biochem ; 557: 42-45, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30016625

RESUMO

Rolling-circle DNA amplification is a powerful tool employed in biotechnology to produce large from small amounts of DNA. This mode of DNA replication proceeds via a DNA topology that resembles a replication fork, thus also providing experimental access to the molecular mechanisms of DNA replication. However, conventional templates do not allow controlled access to multiple fork topologies, which is an important factor in mechanistic studies. Here we present the design and production of a rolling-circle substrate with a tunable length of both the gap and the overhang, and we show its application to the bacterial DNA-replication reaction.


Assuntos
Replicação do DNA/fisiologia , DNA Bacteriano/biossíntese , DNA Circular/biossíntese , Escherichia coli/química , Técnicas de Amplificação de Ácido Nucleico , DNA Bacteriano/química , DNA Circular/química , Escherichia coli/citologia , Conformação de Ácido Nucleico , Moldes Genéticos
18.
Chemistry ; 24(44): 11325-11331, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29917264

RESUMO

The human sliding clamp (PCNA) controls access to DNA for many proteins involved in DNA replication and repair. Proteins are recruited to the PCNA surface by means of a short, conserved peptide motif known as the PCNA-interacting protein box (PIP-box). Inhibitors of these essential protein-protein interactions may be useful as cancer therapeutics by disrupting DNA replication and repair in these highly proliferative cells. PIP-box peptide mimetics have been identified as a potentially rapid route to potent PCNA inhibitors. Here we describe the rational design and synthesis of the first PCNA peptidomimetic ligands, based on the high affinity PIP-box sequence from the natural PCNA inhibitor p21. These mimetics incorporate covalent i,i+4 side-chain/side-chain lactam linkages of different lengths, designed to constrain the peptides into the 310 -helical structure required for PCNA binding. NMR studies confirmed that while the unmodified p21 peptide had little defined structure in solution, mimetic ACR2 pre-organized into 310 -helical structure prior to interaction with PCNA. ACR2 displayed higher affinity binding than most known PIP-box peptides, and retains the native PCNA binding mode, as observed in the co-crystal structure of ACR2 bound to PCNA. This study offers a promising new strategy for PCNA inhibitor design for use as anti-cancer therapeutics.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/química , Peptídeos/química , Antígeno Nuclear de Célula em Proliferação/química , Motivos de Aminoácidos , Sítios de Ligação , Fenômenos Bioquímicos , Cristalografia por Raios X , Humanos , Lactamas/química , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptidomiméticos/química , Conformação Proteica em alfa-Hélice
19.
Antibiotics (Basel) ; 7(1)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470422

RESUMO

In bacteria, the DnaG primase is responsible for synthesis of short RNA primers used to initiate chain extension by replicative DNA polymerase(s) during chromosomal replication. Among the proteins with which Escherichia coli DnaG interacts is the single-stranded DNA-binding protein, SSB. The C-terminal hexapeptide motif of SSB (DDDIPF; SSB-Ct) is highly conserved and is known to engage in essential interactions with many proteins in nucleic acid metabolism, including primase. Here, fragment-based screening by saturation-transfer difference nuclear magnetic resonance (STD-NMR) and surface plasmon resonance assays identified inhibitors of the primase/SSB-Ct interaction. Hits were shown to bind to the SSB-Ct-binding site using 15N-¹H HSQC spectra. STD-NMR was used to demonstrate binding of one hit to other SSB-Ct binding partners, confirming the possibility of simultaneous inhibition of multiple protein/SSB interactions. The fragment molecules represent promising scaffolds on which to build to discover new antibacterial compounds.

20.
Crit Rev Biochem Mol Biol ; 53(1): 49-63, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29108427

RESUMO

Synchronizing the convergence of the two-oppositely moving DNA replication machineries at specific termination sites is a tightly coordinated process in bacteria. In Escherichia coli, a "replication fork trap" - found within a chromosomal region where forks are allowed to enter but not leave - is set by the protein-DNA roadblock Tus-Ter. The exact sequence of events by which Tus-Ter blocks replisomes approaching from one direction but not the other has been the subject of controversy for many decades. Specific protein-protein interactions between the nonpermissive face of Tus and the approaching helicase were challenged by biochemical and structural studies. These studies show that it is the helicase-induced strand separation that triggers the formation of new Tus-Ter interactions at the nonpermissive face - interactions that result in a highly stable "locked" complex. This controversy recently gained renewed attention as three single-molecule-based studies scrutinized this elusive Tus-Ter mechanism - leading to new findings and refinement of existing models, but also generating new questions. Here, we discuss and compare the findings of each of the single-molecule studies to find their common ground, pinpoint the crucial differences that remain, and push the understanding of this bipartite DNA-protein system further.


Assuntos
Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA