Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Mater Chem B ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952205

RESUMO

Fluorescence-image guided surgery (FGS) can intraoperatively provide real-time visualization of a tumor incisal edge and high-resolution identification of tumor foci to improve treatment outcomes. In this contribution, we report a fluorescent probe NB-TAM based on intramolecularly folded photoinduced electron transfer (PET), which displayed a prominent turn-on response in the near-infrared (NIR) window upon specific interaction with the estrogen receptor (ER). Significantly, NB-TAM could delineate a clear tumor incisal edge (tumor-to-normal tissue ratio > 5) in a 70-min time window, and was successfully used to guide the facile and precise resection of ER+ breast tumors in mice. To our surprise, NB-TAM was found to be capable of identifying very tiny lung metastatic ER+ breast tumor foci (0.4 × 0.3 mm), and this ultrahigh resolution was essential to effectively promote tumor resection precision and early diagnosis of tiny tumors. These results clearly elucidate the promising application of NB-TAM as a diagnostic agent for intraoperative fluorescence imaging of ER+ breast cancer.

2.
Angew Chem Int Ed Engl ; : e202408769, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960984

RESUMO

The clinical application of photodynamic therapy (PDT) is limited by oxygen-dependence and side effects caused by photosensitizer residues. Photoinitiators based on the H-abstraction reaction can address these challenges because they can generate alkyl radical-killing cells independently of oxygen and undergo rapid bleaching following H-abstraction. Nonetheless, the development of photoinitiators for PDT has been impeded by the absence of effective design strategies. Herein, we have developed aryl-ketone substituted cyanine (ACy-R), the first red-light triggered H-abstraction photoinitiators for hypoxic cancer therapy. These ACy-R molecules inherited the near-infrared absorption of cyanine dye, and aryl-ketone modification imparted H-abstraction capability. Experimental and quantum calculations revealed that modifying the electron-withdrawing groups of the aryl (e.g., ACy-5F) improved the contribution of the O atom to the photon excitation process promoting intersystem crossing and H-abstraction ability. Particularly, ACy-5F rapidly penetrated cells and enriched in the endoplasmic reticulum. Even under severe hypoxia, ACy-5F initiated red-light induced H-abstraction with intracellular biomolecules, inducing necroptosis and ferroptosis. Moreover, ACy-5F was degraded after H-abstraction, thus avoiding the side effects of long-term phototoxicity after therapy. This study not only provides a crucial molecular tool for hypoxic tumors therapy, but also presents a promising strategy for the development of multifunctional photosensitizers and photoinitiators.

3.
Chem Sci ; 15(28): 10945-10953, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027272

RESUMO

Type I photodynamic therapy (PDT) is attracting increasing interest as an effective solution to the poor prognosis of patients with hypoxic tumors. The development of functional type I photosensitizers is limited by a lack of feasible strategies to systematically modulate electron transfer (ET) in photosensitization. Herein, we present an easily accessible approach for the preparation of nanophotosensitizers with self-assembly-integrated tumor-targeting and ET programming towards boosting tumor type I PDT. Specifically, a dual functional amphiphile PS-02 was designed with a ligand (6-NS) that had the ability to not only target tumor cell marker carbonic anhydrase IX (CAIX) but also regulate the ET process for type I PDT. The amphiphile PS-02 tended to self-assemble into PS-02 nanoparticles (NPs), which exhibited a local "ET-cage effect" due to the electron-deficient nature of 6-NS. It is noteworthy that when PS-02 NPs selectively targeted the tumor cells, the CAIX binding enabled the uncaging of the inhibited ET process owing to the electron-rich characteristic of CAIX. Therefore, PS-02 NPs integrated tumor targeting and CAIX activation towards boosting type I PDT. As a proof of concept, the improved PDT performance of PS-02 NPs was demonstrated with tumor cells under hypoxic conditions and solid tumor tissue in mouse in vivo experiments. This work provides a practical paradigm to develop versatile type I PDT nano-photosensitizers by simply manipulating ET and easy self-assembling.

4.
Plant Phenomics ; 6: 0188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933805

RESUMO

The tassel state in maize hybridization fields not only reflects the growth stage of the maize but also reflects the performance of the detasseling operation. Existing tassel detection models are primarily used to identify mature tassels with obvious features, making it difficult to accurately identify small tassels or detasseled plants. This study presents a novel approach that utilizes unmanned aerial vehicles (UAVs) and deep learning techniques to accurately identify and assess tassel states, before and after manually detasseling in maize hybridization fields. The proposed method suggests that a specific tassel annotation and data augmentation strategy is valuable for substantial enhancing the quality of the tassel training data. This study also evaluates mainstream object detection models and proposes a series of highly accurate tassel detection models based on tassel categories with strong data adaptability. In addition, a strategy for blocking large UAV images, as well as improving tassel detection accuracy, is proposed to balance UAV image acquisition and computational cost. The experimental results demonstrate that the proposed method can accurately identify and classify tassels at various stages of detasseling. The tassel detection model optimized with the enhanced data achieves an average precision of 94.5% across all categories. An optimal model combination that uses blocking strategies for different development stages can improve the tassel detection accuracy to 98%. This could be useful in addressing the issue of missed tassel detections in maize hybridization fields. The data annotation strategy and image blocking strategy may also have broad applications in object detection and recognition in other agricultural scenarios.

5.
Adv Mater ; 36(29): e2400196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734875

RESUMO

The activation of sequential events in the cancer-immunity cycle (CIC) is crucial for achieving effective antitumor immunity. However, formidable challenges, such as innate and adaptive immune resistance, along with the off-target adverse effects of nonselective immunomodulators, persist. In this study, a tumor-selective nano-regulator named PNBJQ has been presented, focusing on targeting two nonredundant immune nodes: inducing immunogenic cancer cell death and abrogating immune resistance to fully activate endogenous tumor immunity. PNBJQ is obtained by encapsulating the immunomodulating agent JQ1 within a self-assembling system formed by linking a Type-I photosensitizer to polyethylene glycol through a hypoxia-sensitive azo bond. Benefiting from the Type-I photosensitive mechanism, PNBJQ triggers the immunogenic cell death of hypoxic tumors under near-infrared (NIR) light irradiation. This process resolves innate immune resistance by stimulating sufficient cytotoxic T-lymphocytes. Simultaneously, PNBJQ smartly responds to the hypoxic tumor microenvironment for precise drug delivery, adeptly addressing adaptive immune resistance by using JQ1 to downregulate programmed death ligand 1 (PD-L1) and sustaining the response of cytotoxic T lymphocytes. The activatable synergic photoimmunotherapy promotes an immune-promoting tumor microenvironment by activating an iterative revolution of the CIC, which remarkably eradicates established hypoxic tumors and suppresses distal lesions under low light dose irradiation.


Assuntos
Nanopartículas , Fármacos Fotossensibilizantes , Animais , Camundongos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Imunoterapia , Azepinas/química , Azepinas/farmacologia , Polietilenoglicóis/química , Hipóxia Tumoral/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Raios Infravermelhos
6.
Front Microbiol ; 15: 1392090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808273

RESUMO

Introduction: Through the combined use of two nitrification inhibitors, Dicyandiamide (DCD) and chlorate with nitrogen amendment, this study aimed to investigate the contribution of comammox Nitrospira clade B, ammonia oxidizing bacteria (AOB) and archaea (AOA) to nitrification in a high fertility grassland soil, in a 90-day incubation study. Methods: The soil was treated with nitrogen (N) at three levels: 0 mg-N kg-1 soil, 50 mg-N kg-1 soil, and 700 mg-N kg-1 soil, with or without the two nitrification inhibitors. The abundance of comammox Nitrospira, AOA, AOB, and nitrite oxidising bacteria (NOB) was measured using qPCR. The comammox Nitrospira community structure was assessed using Illumina sequencing. Results and Discussion: The results showed that the application of chlorate inhibited the oxidation of both NH4+ and NO2- in all three nitrogen treatments. The application of chlorate significantly reduced the abundance of comammox Nitrospira amoA and nxrB genes across the 90-day experimental period. Chlorate also had a significant effect on the beta diversity (Bray-Curtis dissimilarity) of the comammox Nitrospira clade B community. Whilst AOB grew in response to the N substrate additions and were inhibited by both inhibitors, AOA showed litle or no response to either the N substrate or inhibitor treatments. In contrast, comammox Nitrospira clade B were inhibited by the high ammonium concentrations released from the urine substrates. These results demonstrate the differential and niche responses of the three ammonia oxidising communities to N substrate additions and nitrification inhibitor treatments. Further research is needed to investigate the specificity of the two inhibitors on the different ammonia oxidising communities.

7.
Biomaterials ; 308: 122571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636132

RESUMO

The abuse and overuse of antibiotics let drug-resistant bacteria emerges. Antibacterial photodynamic therapy (APDT) has shown outstanding merits to eliminate the drug-resistant bacteria via cytotoxic reactive oxygen species produced by irradiating photosensitizer. However, most of photosensitizers are not effective for Gram-negative bacteria elimination. Herein conjugates of NBS, a photosensitizer, linked with one (NBS-DPA-Zn) or two (NBS-2DPA-Zn) equivalents of zinc-dipicolylamine (Zn-DPA) have been designed to achieve the functional recognition of different bacteria. Due to the cationic character of NBS and metal transfer channel effect of Zn-DPA, NBS-DPA-Zn exhibited the first regent to distinguish P. aeruginosa from other Gram-negative bacteria. Whereas NBS-2DPA-Zn showed broad-spectrum antibacterial effect because the two arm of double Zn-DPA enhanced interactions with anionic membranes of bacteria, led the bacteria aggregation and thus provided the efficacy of APDT to bacteria and corresponding biofilm. In combination with a hydrogel of Pluronic, NBS-2DPA-Zn@gel shows promising clinical application in mixed bacterial diabetic mouse model infection. This might propose a new method that can realize functional identification and elimination of bacteria through intelligent regulation of Zn-DPA, and shows excellent potential for antibacterial application.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Picolinas , Ácidos Picolínicos , Animais , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Ácidos Picolínicos/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Biofilmes/efeitos dos fármacos , Zinco/química , Pseudomonas aeruginosa/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
8.
PLoS One ; 19(3): e0299073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466756

RESUMO

The rapid modernization in China has aggravated the reduction of the traditional settlements and aroused concern about the protection and research. This study aims to examine the spatial-temporal variations Tujia traditional settlements in China and to delineate the driving mechanism of the settlement distribution. Previous studies have focused on the characteristics of settlements in provincial or smaller areas, providing lacked information regarding spatial distribution heterogeneity of Tujia traditional settlements in China. In this study, the spatial heterogeneity and influence factors of the distribution of traditional Tujia settlements were examined using the GIS platform and statistical methods. The results reveal that the spatial distribution of settlements exhibits clustering with the pattern of "scattered distribution in a large region, while concentrated in small areas". The settlements were generally built in low hills, gentle slopes, sunny slopes and low-relief terrain areas, with elevation, relief degree of land surface (RDLS), slope and aspect were the key factors affecting the distribution. In Song, Yuan, Ming and Qing dynasties, settlements showed significant clustering all through, though the location and number of clustering center kept changing. In this process, the history of the Tujia chieftain and the transportation and marketing lines of Sichuan salt had a profound influence on the historical evolution of the settlement.


Assuntos
Mudança Social , Meios de Transporte , China , Análise por Conglomerados
9.
Adv Mater ; 36(21): e2313460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364230

RESUMO

Proteolysis targeting chimera (PROTAC) has recently emerged as a promising strategy for inducing post-translational knockdown of target proteins in disease treatment. The degradation of bromodomain-containing protein 4 (BRD4), an essential nuclear protein for gene transcription, induced by PROTAC is proposed as an epigenetic approach to treat breast cancer. However, the poor membrane permeability and indiscriminate distribution of PROTAC in vivo results in low bioavailability, limiting its development and application. Herein, a nano "targeting chimera" (abbreviated as L@NBMZ) consisting of BRD4-PROTAC combined with a photosensitizer, to serve as the first augmenter for photo-driven pyroptosis in breast cancer, is developed. With excellent BRD4 degradation ability, high biosafety, and biocompatibility, L@NBMZ blocks gene transcription by degrading BRD4 through proteasomes in vivo, and surprisingly, induces the cleavage of caspase-3. This type of caspase-3 cleavage is synergistically amplified by light irradiation in the presence of photosensitizers, leading to efficient photo-driven pyroptosis. Both in vitro and in vivo outcomes demonstrate the remarkable anti-cancer efficacy of this augmenter, which significantly inhibits the lung metastasis of breast cancer in vivo. Thus, the photo-PROTAC "targeting chimera" augmenter construction strategy may pave a new way for expanding PROTAC applications within anti-cancer paradigms.


Assuntos
Neoplasias da Mama , Fármacos Fotossensibilizantes , Proteólise , Piroptose , Fatores de Transcrição , Humanos , Piroptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Fatores de Transcrição/metabolismo , Feminino , Proteínas de Ciclo Celular/metabolismo , Camundongos , Caspase 3/metabolismo , Luz , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas que Contêm Bromodomínio
10.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327078

RESUMO

Nucleic acid is one of the most important substances in organisms, and its dynamic changes are closely related to physiological processes. Nucleic acid labeling is conducive to providing important information for the early diagnosis and treatment of pathophysiological processes. Here, we utilized the transfer mechanism between carbon sources and CDs to synthesize wavelength-adjustable N-CDs for the nucleic acid image. Along with the increased graphite nitrogen (from 10.6 to 30.1%) gradually by the precise design of the nitrogen structure in carbon sources (e.g., primary amines, secondary amines, tertiary amines, and liking graphite-nitrogen), the energy gap of CDs reduced, resulting in adjustable wavelength from visible to near-infrared range (from 461 nm/527 nm to 650 nm/676 nm). Furthermore, N-CDs exhibited a selective affinity for nucleic acids, especially RNA. Therefore, N-CDs support an efficient platform for real-time tracking of RNA dynamic changes in cells.

11.
Chem Commun (Camb) ; 60(22): 3031-3034, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38391081

RESUMO

The non-peptide-based fluorescent probe QMC11 is capable of specifically targeting asparagine endopeptidase (AEP) and imaging cellular endogenous AEP. The motion of the probe can be restricted by AEP to activate fluorescence while keeping a low background signal.


Assuntos
Cisteína Endopeptidases , Corantes Fluorescentes
12.
J Mater Chem B ; 12(5): 1372-1378, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240560

RESUMO

Owing to the efficient non-radiative relaxation by the free rotation of the B-phenyl moiety, monophenyl substituted aza-BODIPY on the boron centre with near-infrared absorption has high photothermal conversion efficiency, which is highly desirable for a photothermal therapy agent.


Assuntos
Compostos de Boro , Terapia Fototérmica , Rotação
13.
Plant Biotechnol J ; 22(4): 802-818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217351

RESUMO

The microphenotype plays a key role in bridging the gap between the genotype and the complex macro phenotype. In this article, we review the advances in data acquisition and the intelligent analysis of plant microphenotyping and present applications of microphenotyping in plant science over the past two decades. We then point out several challenges in this field and suggest that cross-scale image acquisition strategies, powerful artificial intelligence algorithms, advanced genetic analysis, and computational phenotyping need to be established and performed to better understand interactions among genotype, environment, and management. Microphenotyping has entered the era of Microphenotyping 3.0 and will largely advance functional genomics and plant science.


Assuntos
Inteligência Artificial , Genômica , Fenótipo , Genômica/métodos , Genótipo , Plantas/genética
14.
Adv Sci (Weinh) ; 11(7): e2305761, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063803

RESUMO

Pentamethyl cyanine dyes are promising fluorophores for fluorescence sensing and imaging. However, advanced biomedical applications require enhanced control of their excited-state properties. Herein, a synthetic approach for attaching aryl substituents at the C2' position of the thio-pentamethine cyanine (TCy5) dye structure is reported for the first time. C2'-aryl substitution enables the regulation of both the twisted intramolecular charge transfer (TICT) and photoinduced electron transfer (PET) mechanisms to be regulated in the excited state. Modulation of these mechanisms allows the design of a nitroreductase-activatable TCy5 fluorophore for hypoxic tumor photodynamic therapy and fluorescence imaging. These C2'-aryl TCy5 dyes provide a tunable platform for engineering cyanine dyes tailored to sophisticated biological applications, such as photodynamic therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Corantes Fluorescentes/química , Imagem Óptica/métodos
15.
Small ; 20(10): e2304407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880907

RESUMO

Cuproptosis is a novel form of regulated cell death which guarantees to increase the efficacy of existing anticancer treatments that employ traditional apoptotic therapeutics. However, reducing the amount of undesirable Cu ions released in normal tissue and maximizing Cu-induced cuproptosis therapeutic effects at tumor sites are the major challenges. In this study, exploiting the chemical properties of copper ionophores and the tumor microenvironment, a novel method is developed for controlling the valence of copper ions that cause photoinduced cuproptosis in tumor cells. CJS-Cu nanoparticles (NPs) can selectively induce cuproptosis after cascade reactions through H2 O2 -triggered Cu2+ release, photoirradiation-induced superoxide radical (∙O2 - ) generation, and reduction of Cu2+ to Cu+ by ∙O2 - . The generated reactive oxygen species can result in glutathione depletion and iron-sulfur cluster protein damage and further augmented cuproptosis. CJS-Cu NPs effectively suppressed tumor growth and downregulated the expression of metastasis-related proteins, contributing to the complete inhibition of lung metastasis. Ultimately, this study suggests novel avenues for the manipulation of cellular cuproptosis through photochemical reactions.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Cobre , Glutationa , Superóxidos , Apoptose , Microambiente Tumoral
16.
Adv Healthc Mater ; 13(6): e2302490, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909241

RESUMO

The emergence of drug-resistant bacteria, particularly resistant strains of Gram-negative bacteria, such as Pseudomonas aeruginosa, poses a significant threat to public health. Although antibacterial photodynamic therapy (APDT) is a promising strategy for combating drug-resistant bacteria, actively targeted photosensitizers (PSs) remain unknown. In this study, a PS based on dipicolylamine (DPA), known as WZK-DPA-Zn, is designed for the selective identification of P. aeruginosa and drug-resistant Gram-positive bacteria. WZK-DPA-Zn exploits the synergistic effects of DPA-Zn2+ coordination and cellular uptake, which could effectively anchor P. aeruginosa within a brief period (10 min) without interference from other Gram-negative bacteria. Simultaneously, the cationic nature of WZK-DPA-Zn enhances its interaction with Gram-positive bacteria via electrostatic forces. Compared to traditional clinical antibiotics, WZK-DPA-Zn shows exceptional antibacterial activity without inducing drug resistance. This effectiveness is achieved using the APDT strategy when irradiated with white light or sunlight. The combination of WZK-DPA-Zn with Pluronic-based thermosensitive hydrogel dressings (WZK-DPA-Zn@Gel) effectively eliminates mixed bacterial infections and accelerates wound healing, thereby achieving a synergistic effect where "1+1>2." In summary, this study proposes a precise strategy employing DPA-Zn as the targeting moiety of a PS, facilitating the rapid elimination of P. aeruginosa and drug-resistant Gram-positive bacteria using APDT.


Assuntos
Aminas , Ácidos Picolínicos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Bactérias Gram-Positivas , Zinco/farmacologia
17.
J Mater Chem B ; 11(44): 10625-10631, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37920935

RESUMO

The reasonable structure of aza-BODIPY renders it as an efficient photothermal reagent for photothermal therapy. Herein, we describe the design and synthesis of aza-BODIPY NMeBu with the free rotating tert-butyl group and the dimethylamino-substituted segment to promote the photothermal conversion via the excited state non-radiative transition. NMeBu was found to be the π-π stacking form in the unit cell based on X-ray analysis. NMeBu-NPs by self-assembly possessed a near-infrared absorption (λabs = 772 nm), and once activated by near-infrared light, the photothermal efficiency in aqueous solution can reach 49.3%. NMeBu-NPs can penetrate the cell and trigger cell death via the apoptosis pathway under low concentration and low light power irradiation, thereby avoiding dark toxicity. Aza-BODIPY created using this procedure has excellent photothermal efficiency and could serve as a potential candidate for the treatment of cancer cells and tumors.


Assuntos
Neoplasias , Terapia Fototérmica , Humanos , Apoptose , Neoplasias/terapia , Compostos de Boro/química
18.
Adv Mater ; 35(47): e2308205, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792315

RESUMO

Ultrasound, featuring deep tissue penetration and noninvasiveness, offers a new opportunity to activate functional materials in a tumor-selective manner. However, very few direct ultrasound-responsive redox systems are applicable under therapeutic ultrasound (1 MHz). Herein, the investigations on nanoprodrug of DHE@PEG-SS-DSPE are reported, which exhibit glutathione-activated release of dihydroethidium (DHE) in tumor cells. DHE is stable with good biosafety and is transformed into cytotoxic ethidium to induce DNA damage under medical ultrasound irradiation, accompanied by the generation of reactive oxygen species. Further, DHE@PEG-SS-DSPE could effectively induce ferroptosis through glutathione depletion, lipid peroxide accumulation, and downregulation of glutathione peroxidase 4. In vivo studies confirmed that DHE@PEG-SS-DSPE nanoparticles effectively inhibit both the growth of solid tumors and the expression of metastasis-related proteins in mice, thus effectively inhibiting lung metastasis. This DHE-based prodrug nanosystem could lay a foundation for the design of ultrasound-driven therapeutic agents.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Pró-Fármacos , Camundongos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pulmonares/patologia , Glutationa , Linhagem Celular Tumoral
19.
Biomaterials ; 302: 122365, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37890436

RESUMO

Prodrug is a potential regime to overcome serious adverse events and off-target effects of chemotherapy agents. Among various prodrug activators, hypoxia stands out owing to the generalizability and prominence in tumor micro-environment. However, existing hypoxia activating prodrugs generally face the limitations of stringent structural requirements, the lack of feedback and the singularity of therapeutic modality, which is imputed to the traditional paradigm that recognition groups must be located at the terminus of prodrugs. Herein, a multifunctional nano-prodrug Mal@Cy-NTR-CB has been designed. In this nano-prodrug, a self-destructive tether is introduced to break the mindset, and achieves the activation by hypoxia of chemotherapy based on Chlorambucil (CB), whose efficacy can be augmented and traced by photodynamic therapy (PDT) and fluorescence from Cyanine dyes (Cy). In addition, Maleimide (Mal) carried by the nano-shells can regulate glutathione (GSH) content, preventing 1O2 scavenging, so as to realize PDT sensitization. Experiments demonstrate that Mal@Cy-NTR-CB specifically responds to hypoxic tumors, and achieve synchronous activation, enhancement and feedback of chemotherapy and PDT, inhibiting the tumor growth effectively. This study broadens the design ideas of activatable prodrugs and provides the possibility of multifunctional nano-prodrugs to improve the generalization and prognosis in precision oncology.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Pró-Fármacos , Humanos , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Medicina de Precisão , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
20.
Chem Sci ; 14(34): 9095-9100, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655031

RESUMO

Ferroptosis therapy is gradually becoming a new strategy for the treatment of non-small cell lung cancer (NSCLC) because of its active iron metabolism. Because the hypoxic microenvironment in NSCLC inhibits ferroptosis heavily, the therapeutic effect of some ferroptosis inducers is severely limited. To address this issue, this work describes a promising photosensitizer ENBS-ML210 and its application against hypoxia of NSCLC treatment based on type I photodynamic therapy and glutathione peroxidase 4 (GPX4)-targeted ferroptosis. ENBS-ML210 can promote lipid peroxidation and reduce GPX4 expression by generating superoxide anion radicals under 660 nm light irradiation, which reverses the hypoxia-induced resistance of ferroptosis and effectively kills H1299 tumor cells. Finally, the excellent synergistic antitumor effects are confirmed both in vitro and in vivo. We firmly believe that this method will provide a new direction for the clinical treatment of NSCLC in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA