Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Cells ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38920678

RESUMO

Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.


Assuntos
Diferenciação Celular , Coração , Homeostase , Miócitos Cardíacos , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Coração/embriologia , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Linhagem da Célula/genética , Organogênese/genética
2.
JCI Insight ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889387

RESUMO

Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF). The mechanisms underlying DM-associated AF are unclear. AF and DM are both related to inflammation. We investigated whether DM-associated inflammation contributed to AF risk. Mice were fed with high fat diet to induce type II DM and were subjected to IL-1ß antibodies, macrophage depletion by Clodronate liposomes, a mitochondrial antioxidant (mitoTEMPO), or a cardiac ryanodine receptor (RyR2) stabilizer (S107). All tests were performed at 36-38 weeks of age. DM mice presented with increased AF inducibility, enhanced mitochondrial reactive oxygen species (mitoROS) generation, and activated innate immunity in the atria as evidenced by enhanced monocyte chemoattractant protein-1 (MCP-1) expression, macrophage infiltration, and IL-1ß levels. Signs of aberrant RyR2 Ca2+ leak were observed in the atria of DM mice. IL-1ß neutralization, macrophage depletion, mitoTEMPO, and S107 significantly ameliorated the AF vulnerability in DM mice. Atrial overexpression of MCP-1 increased AF occurrence in normal mice through the same mechanistic signaling cascade as observed in DM mice. In conclusion, macrophage-mediated IL-1ß contributed to DM-associated AF risk through mitoROS modulation of RyR2 Ca2+ leak.

3.
Circ Cardiovasc Imaging ; 16(10): e015735, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37795649

RESUMO

BACKGROUND: Emerging evidence suggests that atrial myopathy may be the underlying pathophysiology that explains adverse cardiovascular outcomes in heart failure (HF) and atrial fibrillation. Lower left atrial (LA) function (strain) is a key biomarker of atrial myopathy, but murine LA strain has not been described, thus limiting translational investigation. Therefore, the objective of this study was to characterize LA function by speckle-tracking echocardiography in mouse models of atrial myopathy. METHODS: We used 3 models of atrial myopathy in wild-type male and female C57Bl6/J mice: (1) aged 16 to 17 months, (2) Ang II (angiotensin II) infusion, and (3) high-fat diet+Nω-nitro-L-arginine methyl ester (HF with preserved ejection fraction, HFpEF). LA reservoir, conduit, and contractile strain were measured using speckle-tracking echocardiography from a modified parasternal long-axis window. Left ventricular systolic and diastolic function, and global longitudinal strain were also measured. Transesophageal rapid atrial pacing was used to induce atrial fibrillation. RESULTS: LA reservoir, conduit, and contractile strain were significantly reduced in aged, Ang II and HFpEF mice compared with young controls. There were no sex-based interactions. Left ventricular diastolic function and global longitudinal strain were lower in aged, Ang II and HFpEF, but left ventricular ejection fraction was unchanged. Atrial fibrillation inducibility was low in young mice (5%), moderately higher in aged mice (20%), and high in Ang II (75%) and HFpEF (83%) mice. CONCLUSIONS: Using speckle-tracking echocardiography, we observed reduced LA function in established mouse models of atrial myopathy with concurrent atrial fibrillation inducibility, thus providing the field with a timely and clinically relevant platform for understanding the pathophysiology and discovery of novel treatment targets for atrial myopathy.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Doenças Musculares , Masculino , Feminino , Animais , Camundongos , Volume Sistólico/fisiologia , Função Ventricular Esquerda , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/etiologia , Ecocardiografia , Átrios do Coração/diagnóstico por imagem
4.
Nutrients ; 15(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764704

RESUMO

As the second most abundant intracellular divalent cation, magnesium (Mg2+) is essential for cell functions, such as ATP production, protein/DNA synthesis, protein activity, and mitochondrial function. Mg2+ plays a critical role in heart rhythm, muscle contraction, and blood pressure. A significant decline in Mg2+ intake has been reported in developed countries because of the increased consumption of processed food and filtered/deionized water, which can lead to hypomagnesemia (HypoMg). HypoMg is commonly observed in cardiovascular diseases, such as heart failure, hypertension, arrhythmias, and diabetic cardiomyopathy, and HypoMg is a predictor for cardiovascular and all-cause mortality. On the other hand, Mg2+ supplementation has shown significant therapeutic effects in cardiovascular diseases. Some of the effects of HypoMg have been ascribed to changes in Mg2+ participation in enzyme activity, ATP stabilization, enzyme kinetics, and alterations in Ca2+, Na+, and other cations. In this manuscript, we discuss new insights into the pathogenic mechanisms of HypoMg that surpass previously described effects. HypoMg causes mitochondrial dysfunction, oxidative stress, and inflammation. Many of these effects can be attributed to the HypoMg-induced upregulation of a Mg2+ transporter transient receptor potential melastatin 7 channel (TRMP7) that is also a kinase. An increase in kinase signaling mediated by HypoMg-induced TRPM7 transcriptional upregulation, independently of any change in Mg2+ transport function, likely seems responsible for many of the effects of HypoMg. Therefore, Mg2+ supplementation and TRPM7 kinase inhibition may work to treat the sequelae of HypoMg by preventing increased TRPM7 kinase activity rather than just altering ion homeostasis. Since many diseases are characterized by oxidative stress or inflammation, Mg2+ supplementation and TRPM7 kinase inhibition may have wider implications for other diseases by acting to reduce oxidative stress and inflammation.


Assuntos
Doenças Cardiovasculares , Canais de Cátion TRPM , Humanos , Magnésio , Inflamação , Homeostase , Trifosfato de Adenosina , Proteínas Serina-Treonina Quinases
6.
PNAS Nexus ; 2(6): pgad174, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303713

RESUMO

Automaticity involves Ca2+ handling at the cell membrane and sarcoplasmic reticulum (SR). Abnormal or acquired automaticity is thought to initiate ventricular arrhythmias associated with myocardial ischemia. Ca2+ flux from mitochondria can influence automaticity, and lysosomes also release Ca2+. Therefore, we tested whether lysosomal Ca2+ flux could influence automaticity. We studied ventricular human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), hiPSC 3D engineered heart tissues (EHTs), and ventricular cardiomyocytes isolated from infarcted mice. Preventing lysosomal Ca2+ cycling reduced automaticity in hiPSC-CMs. Consistent with a lysosomal role in automaticity, activating the transient receptor potential mucolipin channel (TRPML1) enhanced automaticity, and two channel antagonists reduced spontaneous activity. Activation or inhibition of lysosomal transcription factor EB (TFEB) increased or decreased total lysosomes and automaticity, respectively. In adult ischemic cardiomyocytes and hiPSC 3D EHTs, reducing lysosomal Ca2+ release also inhibited automaticity. Finally, TRPML1 was up-regulated in cardiomyopathic patients with ventricular tachycardia (VT) compared with those without VT. In summary, lysosomal Ca2+ handling modulates abnormal automaticity, and reducing lysosomal Ca2+ release may be a clinical strategy for preventing ventricular arrhythmias.

7.
Sci Rep ; 13(1): 7855, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188671

RESUMO

Hypomagnesemia (HypoMg) can cause seizures and death, but the mechanism is unknown. Transient receptor potential cation channel subfamily M 7 (TRPM7) is a Mg transporter with both channel and kinase function. In this study, we focused on the kinase role of TRPM7 in HypoMg-induced seizures and death. Wild type C57BL/6J mice and transgenic mice with a global homozygous mutation in the TRPM7 kinase domain (TRPM7K1646R, with no kinase function) were fed with control diet or a HypoMg diet. After 6 weeks of HypoMg diet, mice had significantly decreased serum Mg, elevated brain TRPM7, and a significant rate of death, with females being most susceptible. Deaths were immediately preceded by seizure events. TRPM7K1646R mice showed resistance to seizure-induced death. HypoMg-induced brain inflammation and oxidative stress were suppressed by TRPM7K1646R. Compared to their male counterparts, HypoMg female mice had higher levels of inflammation and oxidative stress in the hippocampus. We concluded that TRPM7 kinase function contributes seizure-induced deaths in HypoMg mice and that inhibiting the kinase reduced inflammation and oxidative stress.


Assuntos
Canais de Cátion TRPM , Camundongos , Masculino , Feminino , Animais , Canais de Cátion TRPM/genética , Camundongos Endogâmicos C57BL , Magnésio/metabolismo , Camundongos Transgênicos , Convulsões
8.
JACC Basic Transl Sci ; 8(2): 174-185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908663

RESUMO

Diabetes mellitus (DM) is a main risk factor for diastolic dysfunction (DD) and heart failure with preserved ejection fraction. High-fat diet (HFD) mice presented with diabetes mellitus, DD, higher cardiac interleukin (IL)-1ß levels, and proinflammatory cardiac macrophage accumulation. DD was significantly ameliorated by suppressing IL-1ß signaling or depleting macrophages. Mice with macrophages unable to adopt a proinflammatory phenotype were low in cardiac IL-1ß levels and were resistant to HFD-induced DD. IL-1ß enhanced mitochondrial reactive oxygen species (mitoROS) in cardiomyocytes, and scavenging mitoROS improved HFD-induced DD. In conclusion, macrophage-mediated inflammation contributed to HFD-associated DD through IL-1ß and mitoROS production.

9.
Am J Otolaryngol ; 44(2): 103732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36682146

RESUMO

PURPOSE: Second medical opinions (SMO) can improve patient outcomes and change medical decision-making. The purpose was to determine the concordance of initial management of thyroid nodules for patients seeking SMO to established management guidelines. MATERIALS AND METHODS: Cases of patients consulting a single provider via telemedicine for SMO on the workup and management of thyroid nodule(s) were reviewed from September 2011 to February 2022. The primary outcome was the overall rate of adherence to 2015 ATA guidelines (correct/incorrect) and complete agreement (yes/no) between SMO and initial treatment team. RESULTS: Most sought a second opinion for treatment options. Only 14 (29.2 %) cases had followed all the guidelines correctly. Living in North America compared to Asia (10/18 vs. 4/25, p = 0.004) and consulting endocrinology (11/21 vs. 3/26, p = 0.004) was associated with correct following of all guidelines. The most common violations of the guidelines were a lack of Bethesda scoring in pathology reports (31.8 %) and inappropriate initial FNA (25.5 %). The SMO was in complete agreement with the initial treatment recommendation in 31 cases (64.6 %), in partial agreement in 12 cases (25 %), and in disagreement in 5 cases (10.4 %). CONCLUSIONS: In our study, adherence to guidelines was low. However, the SMO agreed with the workup and management of most patients, as most of this discordance with guidelines did not affect the overall treatment. The virtual second opinion consult was valuable in addressing patient-specific concerns, explaining additional treatment options, and, in a few cases, recommending against inappropriate surgical intervention.


Assuntos
Endocrinologia , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/terapia , Nódulo da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Estudos Retrospectivos , Ultrassonografia
11.
Heart Rhythm ; 20(5): 730-736, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36693615

RESUMO

BACKGROUND: MicroRNA miR-448 mediates some of the effects of ischemia on arrhythmic risk. Potassium voltage-gated channel subfamily A member 4 (KCNA4) encodes a Kv1.4 current that opens in response to membrane depolarization and is essential for regulating the action potential duration in heart. KCNA4 has a miR-448 binding site. OBJECTIVE: We investigated whether miR-448 was involved in the regulation of KCNA4 messenger RNA expression in ischemia. METHODS: Quantitative real-time reverse-transcriptase polymerase chain reaction was used to investigate the expression of KCNA4 and miR-448. Pull-down assays were used to examine the interaction between miR-448 and KCNA4. miR-448 decoy and binding site mutation were used to examine the specificity of the effect for KCNA4. RESULTS: The expression of KCNA4 is diminished in ischemia and human heart failure tissues with ventricular tachycardia. Previously, we have shown that miR-448 is upregulated in ischemia and inhibition can prevent arrhythmic risk after myocardial infarction. The 3'-untranslated region of KCNA4 has a conserved miR-448 binding site. miR-448 bound to this site directly and reduced KCNA4 expression and the transient outward potassium current. Inhibition of miR-448 restored KCNA4. CONCLUSION: These findings showed a link between Kv1.4 downregulation and miR-448-mediated upregulation in ischemia, suggesting a new mechanism for the antiarrhythmic effect of miR-448 inhibition.


Assuntos
Insuficiência Cardíaca , Canal de Potássio Kv1.4 , MicroRNAs , Humanos , Regulação para Baixo , Insuficiência Cardíaca/genética , MicroRNAs/genética , Infarto do Miocárdio/metabolismo , Potássio/metabolismo , Canal de Potássio Kv1.4/metabolismo , Isquemia/metabolismo
12.
Exp Brain Res ; 240(11): 2965-2979, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36173425

RESUMO

Previous history of activity and learning modulates synaptic plasticity and can lead to saturation of synaptic connections. According to the synaptic homeostasis hypothesis, neural oscillations during slow-wave sleep play an important role in restoring plasticity within a functional range. However, it is not known whether slow-wave oscillations-without the concomitant requirement of sleep-play a causal role in human synaptic homeostasis. Here, we aimed to answer this question using transcranial alternating current stimulation (tACS) to induce slow-oscillatory activity in awake human participants. tACS was interleaved between two plasticity-inducing interventions: motor learning, and paired associative stimulation (PAS). The hypothesis tested was that slow-oscillatory tACS would prevent homeostatic interference between motor learning and PAS, and facilitate plasticity from these successive interventions. Thirty-six participants received sham and active fronto-motor tACS in two separate sessions, along with electroencephalography (EEG) recordings, while a further 38 participants received tACS through a control montage. Motor evoked potentials (MEPs) were recorded throughout the session to quantify plasticity changes after the different interventions, and the data were analysed with Bayesian statistics. As expected, there was converging evidence that motor training led to excitatory plasticity. Importantly, we found moderate evidence against an effect of active tACS in restoring PAS plasticity, and no evidence of lasting entrainment of slow oscillations in the EEG. This suggests that, under the conditions tested here, slow-oscillatory tACS does not modulate synaptic homeostasis in the motor system of awake humans.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Motor/fisiologia , Teorema de Bayes , Potencial Evocado Motor/fisiologia , Plasticidade Neuronal/fisiologia
13.
Stem Cell Reports ; 17(9): 2005-2022, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931076

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide great opportunities for mechanistic dissection of human cardiac pathophysiology; however, hiPSC-CMs remain immature relative to the adult heart. To identify novel signaling pathways driving the maturation process during heart development, we analyzed published transcriptional and epigenetic datasets from hiPSC-CMs and prenatal and postnatal human hearts. These analyses revealed that several components of the MAPK and PI3K-AKT pathways are downregulated in the postnatal heart. Here, we show that dual inhibition of these pathways for only 5 days significantly enhances the maturation of day 30 hiPSC-CMs in many domains: hypertrophy, multinucleation, metabolism, T-tubule density, calcium handling, and electrophysiology, many equivalent to day 60 hiPSC-CMs. These data indicate that the MAPK/PI3K/AKT pathways are involved in cardiomyocyte maturation and provide proof of concept for the manipulation of key signaling pathways for optimal hiPSC-CM maturation, a critical aspect of faithful in vitro modeling of cardiac pathologies and subsequent drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Heart Rhythm ; 19(12): 2107-2114, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028211

RESUMO

BACKGROUND: We have described an arrhythmic mechanism seen only in cardiomyopathy that involves increased mitochondrial Ca2+ handling and selective transfer of Ca2+ to the sarcoplasmic reticulum (SR). Modeling suggested that mitochondrial Ca2+ transfer to the SR via type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) is a crucial element of this arrhythmic mechanism. OBJECTIVE: We tested the role of SERCA2a in arrhythmias during ischemic cardiomyopathy. METHODS: Myocardial infarction (MI) was induced in wild-type (Wt) and SERCA2a heterozygous knockdown (SERCA+/-) mice. RESULTS: Compared with Wt MI mice, SERCA2a heterozygous knockdown (SERCA+/-) MI mice had a substantially lower mortality after 3 weeks of MI without a significant change in MI area. Aside from a significant delay of the cytoplasmic Ca2+ transient decay existed in SERCA+/- compared with Wt, SERCA+/- did not affect cardiac systolic and diastolic function at the whole organ or single cell levels either before or after MI. After MI, SERCA+/- mice had reduced SERCA2a expression in the MI border zone compared with Wt MI mice. SERCA+/- mice had significantly decreased corrected QT intervals and less ventricular tachycardia compared with Wt MI mice. SERCA+/- cardiomyocytes from MI mice showed a reduced action potential duration and reduced triggered activity compared with Wt MI cardiomyocytes. Reduction in arrhythmic risk was accompanied by reduced diastolic SR Ca2+ sparks, reduced SR Ca2+ content, reduced oxidized ryanodine receptor, and increased calsequestrin 2 in SERCA+/- MI mice. CONCLUSION: SERCA2a knockdown was antiarrhythmic after MI without affecting overall systolic performance. Possible antiarrhythmic mechanisms included reduced SR free Ca2+ and reduced diastolic SR Ca2+ release.


Assuntos
Cardiomiopatias , Infarto do Miocárdio , Isquemia Miocárdica , Camundongos , Animais , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Infarto do Miocárdio/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Antiarrítmicos
15.
J Am Heart Assoc ; 11(11): e025295, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35656993

RESUMO

Background cMyBP-C (Cardiac myosin binding protein-C) regulates cardiac contraction and relaxation. Previously, we demonstrated that elevated myocardial S-glutathionylation of cMyBP-C correlates with diastolic dysfunction (DD) in animal models. In this study, we tested whether circulating S-glutathionylated cMyBP-C would be a biomarker for DD. Methods and Results Humans, African Green monkeys, and mice had DD determined by echocardiography. Blood samples were acquired and analyzed for S-glutathionylated cMyBP-C by immunoprecipitation. Circulating S-glutathionylated cMyBP-C in human participants with DD (n=24) was elevated (1.46±0.13-fold, P=0.014) when compared with the non-DD controls (n=13). Similarly, circulating S-glutathionylated cMyBP-C was upregulated by 2.13±0.47-fold (P=0.047) in DD monkeys (n=6), and by 1.49 (1.22-2.06)-fold (P=0.031) in DD mice (n=5) compared with the respective non-DD controls. Circulating S-glutathionylated cMyBP-C was positively correlated with DD in humans. Conclusions Circulating S-glutathionylated cMyBP-C was elevated in humans, monkeys, and mice with DD. S-glutathionylated cMyBP-C may represent a novel biomarker for the presence of DD.


Assuntos
Proteínas de Transporte/análise , Cardiopatias , Animais , Biomarcadores , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Diástole/fisiologia , Cardiopatias/metabolismo , Humanos , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Fosforilação
16.
Trends Mol Med ; 28(6): 443-451, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35414478

RESUMO

Cardiomyopathies are associated with arrhythmias and cardiac ion channel downregulation. This downregulation is arrhythmogenic. Paradoxically, antiarrhythmic therapies are based on ion channel-blocking drugs that further downregulate these channels and exhibit proarrhythmic risk. Recent studies have shown that inhibition of the protein kinase RNA-like ER kinase (PERK) arm of the unfolded protein response (UPR) prevents select cardiac ion channel downregulation and plays a protective role against arrhythmias. Prevention of ion channel downregulation represents as a novel therapeutic strategy to treat arrhythmias in myocardial infarction and heart failure.


Assuntos
Arritmias Cardíacas , Infarto do Miocárdio , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/uso terapêutico , Resposta a Proteínas não Dobradas
17.
Cleft Palate Craniofac J ; 59(11): 1371-1376, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514869

RESUMO

OBJECTIVE: To study the efficacy and safety profile of ketorolac in cleft palate surgery. DESIGN: Retrospective analysis of patients who underwent primary cleft palate surgery and received either postoperative ketorolac or opioids. SETTING: Tertiary care children's hospital. PATIENTS, PARTICIPANTS: Eighty-nine patients enrolled who were all younger than 36 months of age, not dependent on a gastrostomy tube, with no history of bleeding disorders, and had undergone their primary cleft palate procedure by one specific surgeon between January 2010 and June 2019. INTERVENTIONS: n/a. MAIN OUTCOME MEASURE: Morphine equivalent dose (MED), Face, Legs, Activity, Cry, Consolability (FLACC) score, length of stay (LOS), total oral intake (mL), total oral intake/LOS, and postoperative adverse events between ketorolac and no ketorolac groups. RESULTS: MED, FLACC score, and LOS were significantly lower in the ketorolac group compared to the no ketorolac group. One patient in the ketorolac group had a bleeding event. CONCLUSIONS: Use of ketorolac significantly decreased narcotic usage and pain scores as reported by the FLACC score. Moreover, postoperative bleeding was rare in both ketorolac and no ketorolac groups.


Assuntos
Fissura Palatina , Cetorolaco , Analgésicos Opioides/uso terapêutico , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/uso terapêutico , Criança , Fissura Palatina/induzido quimicamente , Fissura Palatina/cirurgia , Humanos , Cetorolaco/efeitos adversos , Cetorolaco/uso terapêutico , Morfina , Manejo da Dor , Dor Pós-Operatória/tratamento farmacológico , Estudos Retrospectivos
18.
ESC Heart Fail ; 8(6): 5531-5541, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480422

RESUMO

AIMS: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. METHODS AND RESULTS: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10-8 under an additive genetic model. CONCLUSIONS: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Feminino , Genômica , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
19.
JACC Clin Electrophysiol ; 7(9): 1079-1083, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34454876

RESUMO

Cardiac resynchronization therapy (CRT) can improve heart function and decrease arrhythmic events. We tested whether CRT altered circulating markers of calcium handling and sudden death risk. Circulating cardiac sodium channel messenger RNA (mRNA) splicing variants indicate arrhythmic risk, and a reduction in sarco/endoplasmic reticulum calcium adenosine triphosphatase 2a (SERCA2a) is thought to diminish contractility in heart failure. CRT was associated with a decreased proportion of circulating, nonfunctional sodium channels and improved SERCA2a mRNA expression. Patients without CRT did not have improvement in the biomarkers. These changes might explain the lower arrhythmic risk and improved contractility associated with CRT.


Assuntos
Terapia de Ressincronização Cardíaca , Biomarcadores , Cálcio , Morte Súbita , Humanos , Retículo Sarcoplasmático
20.
J Clin Invest ; 131(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34324437

RESUMO

Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase-like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmia risk after myocardial infarct (MI). MI induced in mice by coronary artery ligation resulted in reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves on the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK KO reduced electrical remodeling in response to MI, with shortened QTc intervals, fewer VT episodes, and higher survival rates. Pharmacological PERK inhibition had similar effects. In conclusion, we found that activated PERK during MI contributed to arrhythmia risk by the downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmia risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmia mechanism and that maintenance of ion channel levels is antiarrhythmic.


Assuntos
Arritmias Cardíacas/prevenção & controle , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/antagonistas & inibidores , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Regulação para Baixo , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Indóis/farmacologia , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , Inibidores de Proteínas Quinases/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA