Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Immunol ; 14: 1252274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965342

RESUMO

Introduction: T cell expressed CD27 provides costimulation upon binding to inducible membrane expressed trimeric CD70 and is required for protective CD8 T cell responses. CD27 agonists could therefore be used to bolster cellular vaccines and anti-tumour immune responses. To date, clinical development of CD27 agonists has focussed on anti-CD27 antibodies with little attention given to alternative approaches. Methods: Here, we describe the generation and activity of soluble variants of CD70 that form either trimeric (t) or dimer-of-trimer proteins and conduct side-by-side comparisons with an agonist anti-CD27 antibody. To generate a dimer-of-trimer protein (dt), we fused three extracellular domains of CD70 to the Fc domain of mouse IgG1 in a 'string of beads' configuration (dtCD70-Fc). Results: Whereas tCD70 failed to costimulate CD8 T cells, both dtCD70-Fc and an agonist anti-CD27 antibody were capable of enhancing T cell proliferation in vitro. Initial studies demonstrated that dtCD70-Fc was less efficacious than anti-CD27 in boosting a CD8 T cell vaccine response in vivo, concomitant with rapid clearance of dtCD70-Fc from the circulation. The accelerated plasma clearance of dtCD70-Fc was not due to the lack of neonatal Fc receptor binding but was dependent on the large population of oligomannose type glycosylation. Enzymatic treatment to reduce the oligomannose-type glycans in dtCD70-Fc improved its half-life and significantly enhanced its T cell stimulatory activity in vivo surpassing that of anti-CD27 antibody. We also show that whereas the ability of the anti-CD27 to boost a vaccine response was abolished in Fc gamma receptor (FcγR)-deficient mice, dtCD70-Fc remained active. By comparing the activity of dtCD70-Fc with a variant (dtCD70-Fc(D265A)) that lacks binding to FcγRs, we unexpectedly found that FcγR binding to dtCD70-Fc was required for maximal boosting of a CD8 T cell response in vivo. Interestingly, both dtCD70-Fc and dtCD70-Fc(D265A) were effective in prolonging the survival of mice harbouring BCL1 B cell lymphoma, demonstrating that a substantial part of the stimulatory activity of dtCD70-Fc in this setting is retained in the absence of FcγR interaction. Discussion: These data reveal that TNFRSF ligands can be generated with a tunable activity profile and suggest that this class of immune agonists could have broad applications in immunotherapy.


Assuntos
Receptores de IgG , Vacinas , Animais , Camundongos , Ligante CD27/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Imunização
2.
Front Immunol ; 13: 956603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389776

RESUMO

Tapasin, a component of the major histocompatibility complex (MHC) I peptide loading complex, edits the repertoire of peptides that is presented at the cell surface by MHC I and thereby plays a key role in shaping the hierarchy of CD8+ T-cell responses to tumors and pathogens. We have developed a system that allows us to tune the level of tapasin expression and independently regulate the expression of competing peptides of different off-rates. By quantifying the relative surface expression of peptides presented by MHC I molecules, we show that peptide editing by tapasin can be measured in terms of "tapasin bonus," which is dependent on both peptide kinetic stability (off-rate) and peptide abundance (peptide supply). Each peptide has therefore an individual tapasin bonus fingerprint. We also show that there is an optimal level of tapasin expression for each peptide in the immunopeptidome, dependent on its off-rate and abundance. This is important, as the level of tapasin expression can vary widely during different stages of the immune response against pathogens or cancer and is often the target for immune escape.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Epitopos , Antígenos de Histocompatibilidade , Complexo Principal de Histocompatibilidade
3.
ACS Pharmacol Transl Sci ; 5(11): 1169-1180, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407959

RESUMO

The tumor suppressor protein p53 is inactivated in the majority of human cancers and remains a prime target for developing new drugs to reactivate its tumor suppressing activity for anticancer therapies. The oncogenic p53 mutant Y220C accounts for approximately 125,000 new cancer cases per annum and is one of the most prevalent p53 mutants overall. It harbors a narrow, mutationally induced pocket at the surface of the DNA-binding domain that destabilizes p53, leading to its rapid denaturation and aggregation. Here, we present the structure-guided development of high-affinity small molecules stabilizing p53-Y220C in vitro, along with the synthetic routes developed in the process, in vitro structure-activity relationship data, and confirmation of their binding mode by protein X-ray crystallography. We disclose two new chemical probes displaying sub-micromolar binding affinity in vitro, marking an important milestone since the discovery of the first small-molecule ligand of Y220C in 2008. New chemical probe JC744 displayed a K d = 320 nM, along with potent in vitro protein stabilization. This study, therefore, represents a significant advance toward high-affinity Y220C ligands for clinical evaluation.

4.
Sci Immunol ; 7(73): eabm3723, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857577

RESUMO

Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.


Assuntos
Dissulfetos , Imunoglobulina G , Anticorpos Monoclonais , Dissulfetos/química , Epitopos , Humanos , Conformação Proteica
5.
J Infect ; 84(1): 48-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606784

RESUMO

Background Controlling the spread of SARS-CoV-2 is problematic because of transmission driven by asymptomatic and pre-symptomatic individuals. Community screening can help identify these individuals but is often too expensive for countries with limited health care resources. Low-cost ELISA assays may address this problem, but their use has not yet been widely reported. Methods We developed a SARS-CoV-2 nucleocapsid ELISA and assessed its diagnostic performance on nose and throat swab samples from UK hospitalised patients and sputum samples from patients in Ghana. Results The ELISA had a limit of detection of 8.4 pg/ml antigen and 16 pfu/ml virus. When tested on UK samples (128 positive and 10 negative patients), sensitivity was 58.6% (49.6-67.2) rising to 78.3% (66.7-87.3) if real-time PCR Ct values > 30 were excluded, while specificity was 100% (69.2-100). In a second trial using the Ghanaian samples (121 positive, 96 negative), sensitivity was 52% (42.8-61.2) rising to 72.6% (61.8-81.2) when a > 30 Ct cut-off was applied, while specificity was 100% (96.2-100). Conclusions: Our data show that nucleocapsid ELISAs can test a variety of patient sample types while achieving levels of sensitivity and specificity required for effective community screening. Further investigations into the opportunities that this provides are warranted.


Assuntos
COVID-19 , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática , Gana , Humanos , Nucleocapsídeo , Sensibilidade e Especificidade
6.
Blood ; 138(17): 1570-1582, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34424958

RESUMO

Glycosylation of the surface immunoglobulin (Ig) variable region is a remarkable follicular lymphoma-associated feature rarely seen in normal B cells. Here, we define a subset of diffuse large B-cell lymphomas (DLBCLs) that acquire N-glycosylation sites selectively in the Ig complementarity-determining regions (CDRs) of the antigen-binding sites. Mass spectrometry and X-ray crystallography demonstrate how the inserted glycans are stalled at oligomannose-type structures because they are buried in the CDR loops. Acquisition of sites occurs in ∼50% of germinal-center B-cell-like DLBCL (GCB-DLBCL), mainly of the genetic EZB subtype, irrespective of IGHV-D-J use. This markedly contrasts with the activated B-cell-like DLBCL Ig, which rarely has sites in the CDR and does not seem to acquire oligomannose-type structures. Acquisition of CDR-located acceptor sites associates with mutations of epigenetic regulators and BCL2 translocations, indicating an origin shared with follicular lymphoma. Within the EZB subtype, these sites are associated with more rapid disease progression and with significant gene set enrichment of the B-cell receptor, PI3K/AKT/MTORC1 pathway, glucose metabolism, and MYC signaling pathways, particularly in the fraction devoid of MYC translocations. The oligomannose-type glycans on the lymphoma cells interact with the candidate lectin dendritic cell-specific intercellular adhesion molecule 3 grabbing non-integrin (DC-SIGN), mediating low-level signals, and lectin-expressing cells form clusters with lymphoma cells. Both clustering and signaling are inhibited by antibodies specifically targeting the DC-SIGN carbohydrate recognition domain. Oligomannosylation of the tumor Ig is a posttranslational modification that readily identifies a distinct GCB-DLBCL category with more aggressive clinical behavior, and it could be a potential precise therapeutic target via antibody-mediated inhibition of the tumor Ig interaction with DC-SIGN-expressing M2-polarized macrophages.


Assuntos
Regiões Determinantes de Complementaridade/química , Linfoma Difuso de Grandes Células B/patologia , Polissacarídeos/análise , Sítios de Ligação , Moléculas de Adesão Celular/química , Glicosilação , Humanos , Lectinas Tipo C/química , Linfoma Difuso de Grandes Células B/química , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/química , Células Tumorais Cultivadas
7.
Sci Rep ; 11(1): 11676, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083646

RESUMO

In follicular lymphoma (FL), surface immunoglobulin (sIg) carries mandatory N-glycosylation sites in the variable regions, inserted during somatic hypermutation. These glycosylation sites are tumor-specific, indicating a critical function in FL. Added glycan unexpectedly terminates at high mannose (Mann) and confers capability for sIg-mediated interaction with local macrophage-expressed DC-SIGN lectin resulting in low-level activation of upstream B-cell receptor signaling responses. Here we show that despite being of low-level, DC-SIGN induces a similar downstream transcriptional response to anti-IgM in primary FL cells, characterized by activation of pathways associated with B-cell survival, proliferation and cell-cell communication. Lectin binding was also able to engage post-transcriptional receptor cross-talk pathways since, like anti-IgM, DC-SIGN down-modulated cell surface expression of CXCR4. Importantly, pre-exposure of a FL-derived cell line expressing sIgM-Mann or primary FL cells to DC-SIGN, which does not block anti-IgM binding, reversibly paralyzed the subsequent Ca2+ response to anti-IgM. These novel findings indicate that modulation of sIg function occurs in FL via lectin binding to acquired mannoses. The B-cell receptor alternative engagement described here provides two advantages to lymphoma cells: (i) activation of signaling, which, albeit of low-level, is sufficient to trigger canonical lymphoma-promoting responses, and (ii) protection from exogenous antigen by paralyzing anti-IgM-induced signaling. Blockade of this alternative engagement could offer a new therapeutic strategy.


Assuntos
Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Linfoma Folicular/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Sinalização do Cálcio , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Imunoglobulina M/imunologia , Lectinas Tipo C/genética , Linfoma Folicular/genética , Linfoma Folicular/imunologia , Ligação Proteica , Receptores CXCR4/metabolismo , Receptores de Superfície Celular/genética
8.
Commun Biol ; 4(1): 772, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162985

RESUMO

Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.


Assuntos
Receptores do Fator de Necrose Tumoral/agonistas , Animais , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Antígenos CD40/agonistas , Antígenos CD40/química , Linhagem Celular , Humanos , Imunoglobulina G/farmacologia , Camundongos , Microscopia Confocal , Receptores OX40/agonistas , Receptores do Fator de Necrose Tumoral/química , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas
9.
ChemMedChem ; 16(8): 1316-1324, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33533576

RESUMO

Lysine-specific demethylase 1 (LSD1/KDM1A) oxidatively removes methyl groups from histone proteins, and its aberrant activity has been correlated with cancers including acute myeloid leukemia (AML). We report a novel series of tranylcypromine analogues with a carboxamide at the 4-position of the aryl ring. These compounds, such as 5 a and 5 b with benzyl and phenethylamide substituents, respectively, had potent sub-micromolar IC50 values for the inhibition of LSD1 as well as cell proliferation in a panel of AML cell lines. The dose-dependent increase in cellular expression levels of H3K4me2, CD86, CD11b and CD14 supported a mechanism involving LSD1 inhibition. The tert-butyl and ethyl carbamate derivatives of these tranylcypromines, although inactive in LSD1 inhibition, were of similar potency in cell-based assays with a more rapid onset of action. This suggests that carbamates can act as metabolically labile tranylcypromine prodrugs with superior pharmacokinetics.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Tranilcipromina/análogos & derivados , Tranilcipromina/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Humanos
10.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32554613

RESUMO

BACKGROUND: Immune compromised mice are increasingly used for the preclinical development of monoclonal antibodies (mAb). Most common are non-obese diabetic (NOD) severe combined immunodeficient (SCID) and their derivatives such as NOD SCID interleukin-2 γ-/- (NSG), which are attractive hosts for patient-derived xenografts. Despite their widespread use, the relative biological performance of mAb in these strains has not been extensively studied. METHODS: Clinically relevant mAb of various isotypes were administered to tumor and non-tumor-bearing SCID and NOD SCID mice and the mAb clearance monitored by ELISA. Expression analysis of surface proteins in both strains was carried out by flow cytometry and immunofluorescence microscopy. Further analysis was performed in vitro by surface plasmon resonance to assess mAb affinity for Fcγ receptors (FcγR) at pH 6 and pH 7.4. NOD SCID mice genetically deficient in different FcγR were used to delineate their involvement. RESULTS: Here, we show that strains on the NOD SCID background have significantly faster antibody clearance than other strains leading to reduced antitumor efficacy of clinically relevant mAb. This rapid clearance is dependent on antibody isotype, the presence of Fc glycosylation (at N297) and expression of FcγRII. Comparable effects were not seen in the parental NOD or SCID strains, demonstrating the presence of a compound defect requiring both genotypes. The absence of endogenous IgG was the key parameter transferred from the SCID as reconstituting NOD SCID or NSG mice with exogenous IgG overcame the rapid clearance and recovered antitumor efficacy. In contrast, the NOD strain was associated with reduced expression of the neonatal Fc Receptor (FcRn). We propose a novel mechanism for the rapid clearance of certain mAb isotypes in NOD SCID mouse strains, based on their interaction with FcγRII in the context of reduced FcRn. CONCLUSIONS: This study highlights the importance of understanding the limitation of the mouse strain being used for preclinical evaluation, and demonstrates that NOD SCID strains of mice should be reconstituted with IgG prior to studies of mAb efficacy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunoglobulina G/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Neoplasias Experimentais/imunologia , Receptores de IgG/imunologia , Rituximab/farmacologia , Animais , Antineoplásicos Imunológicos/imunologia , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores de IgG/metabolismo , Rituximab/imunologia , Células Tumorais Cultivadas
11.
Cancer Cell ; 37(6): 850-866.e7, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442402

RESUMO

Anti-CD40 monoclonal antibodies (mAbs) comprise agonists and antagonists, which display promising therapeutic activities in cancer and autoimmunity, respectively. We previously showed that epitope and isotype interact to deliver optimal agonistic anti-CD40 mAbs. The impact of Fc engineering on antagonists, however, remains largely unexplored. Here, we show that clinically relevant antagonists used for treating autoimmune conditions can be converted into potent FcγR-independent agonists with remarkable antitumor activity by isotype switching to hIgG2. One antagonist is converted to a super-agonist with greater potency than previously reported highly agonistic anti-CD40 mAbs. Such conversion is dependent on the unique disulfide bonding properties of the hIgG2 hinge. This investigation highlights the transformative capacity of the hIgG2 isotype for converting antagonists to agonists to treat cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Células Dendríticas/imunologia , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Dendríticas/efeitos dos fármacos , Switching de Imunoglobulina/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de IgE/fisiologia , Receptores de IgG/fisiologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/imunologia , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia
12.
Expert Rev Neurother ; 20(2): 175-187, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869274

RESUMO

Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), ß-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.


Assuntos
Doença de Alzheimer/prevenção & controle , Anti-Hipertensivos/farmacologia , Humanos , Prevenção Secundária
13.
Cardiovasc Diabetol ; 18(1): 71, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164165

RESUMO

In the era of precision medicine, treatments that target specific modifiable characteristics of high-risk patients have the potential to lower further the residual risk of atherosclerotic cardiovascular events. Correction of atherogenic dyslipidemia, however, remains a major unmet clinical need. Elevated plasma triglycerides, with or without low levels of high-density lipoprotein cholesterol (HDL-C), offer a key modifiable component of this common dyslipidemia, especially in insulin resistant conditions such as type 2 diabetes mellitus. The development of selective peroxisome proliferator-activated receptor alpha modulators (SPPARMα) offers an approach to address this treatment gap. This Joint Consensus Panel appraised evidence for the first SPPARMα agonist and concluded that this agent represents a novel therapeutic class, distinct from fibrates, based on pharmacological activity, and, importantly, a safe hepatic and renal profile. The ongoing PROMINENT cardiovascular outcomes trial is testing in 10,000 patients with type 2 diabetes mellitus, elevated triglycerides, and low levels of HDL-C whether treatment with this SPPARMα agonist safely reduces residual cardiovascular risk.


Assuntos
Benzoxazóis/uso terapêutico , Butiratos/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Dislipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Lipídeos/sangue , PPAR alfa/agonistas , Animais , Benzoxazóis/efeitos adversos , Biomarcadores/sangue , Butiratos/efeitos adversos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Consenso , Dislipidemias/sangue , Dislipidemias/diagnóstico , Humanos , Hipolipemiantes/efeitos adversos , Terapia de Alvo Molecular , PPAR alfa/metabolismo , Segurança do Paciente , Medição de Risco , Fatores de Risco , Transdução de Sinais , Resultado do Tratamento
14.
Cells ; 8(3)2019 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832318

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common and deadly cancer; however, very little improvement has been made towards its diagnosis and prognosis. The expression and functional contribution of the receptor tyrosine kinase ROR1 have not been investigated in HCC before. Hence, we investigated the expression of ROR1 in HCC cells and assessed its involvement in hepatocarcinogenesis. METHODS: Recombinant bacterial ROR1 protein was used as an immunogen to generate ROR1 monoclonal antibodies. ROR1 transcript levels were detected by RT-qPCR and the protein expression of ROR1 in HCC was assessed by Western blotting by using homemade anti-ROR1 monoclonal antibodies. Apoptosis, cell cycle, trans-well migration, and drug efflux assays were performed in shRNA-ROR1 HCC cell clones to uncover the functional contribution of ROR1 to hepatocarcinogenesis. RESULTS: New ROR1 antibodies specifically detected endogenous ROR1 protein in human and mouse HCC cell lines. ROR1-knockdown resulted in decreased proliferation and migration but enhanced resistance to apoptosis and anoikis. The observed chemotherapy-resistant phenotype of ROR1-knockdown cells was due to enhanced drug efflux and increased expression of multi-drug resistance genes. CONCLUSIONS: ROR1 is expressed in HCC and contributes to disease development by interfering with multiple pathways. Acquired ROR1 expression may have diagnostic and prognostic value in HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Animais , Anoikis/efeitos dos fármacos , Anoikis/genética , Anticorpos Monoclonais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Fase G1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Fenótipo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
16.
Cancer Cell Int ; 18: 71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760584

RESUMO

BACKGROUND: Castrate resistant prostate cancer (CRPC) is often driven by constitutively active forms of the androgen receptor such as the V7 splice variant (AR-V7) and commonly becomes resistant to established hormonal therapy strategies such as enzalutamide as a result. The lysine demethylase LSD1 is a co-activator of the wild type androgen receptor and a potential therapeutic target in hormone sensitive prostate cancer. We evaluated whether LSD1 could also be therapeutically targeted in CRPC models driven by AR-V7. METHODS: We utilised cell line models of castrate resistant prostate cancer through over expression of AR-V7 to test the impact of chemical LSD1 inhibition on AR activation. We validated findings through depletion of LSD1 expression and in prostate cancer cell lines that express AR-V7. RESULTS: Chemical inhibition of LSD1 resulted in reduced activation of the androgen receptor through both the wild type and its AR-V7 splice variant forms. This was confirmed and validated in luciferase reporter assays, in LNCaP and 22Rv1 prostate cancer cell lines and in LSD1 depletion experiments. CONCLUSION: LSD1 contributes to activation of both the wild type and V7 splice variant forms of the androgen receptor and can be therapeutically targeted in models of CRPC. Further development of this approach is warranted.

17.
Cancer Cell ; 33(4): 664-675.e4, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29576376

RESUMO

Anti-CD40 monoclonal antibodies (mAbs) that promote or inhibit receptor function hold promise as therapeutics for cancer and autoimmunity. Rules governing their diverse range of functions, however, are lacking. Here we determined characteristics of nine hCD40 mAbs engaging epitopes throughout the CD40 extracellular region expressed as varying isotypes. All mAb formats were strong agonists when hyper-crosslinked; however, only those binding the membrane-distal cysteine-rich domain 1 (CRD1) retained agonistic activity with physiological Fc gamma receptor crosslinking or as human immunoglobulin G2 isotype; agonistic activity decreased as epitopes drew closer to the membrane. In addition, all CRD2-4 binding mAbs blocked CD40 ligand interaction and were potent antagonists. Thus, the membrane distal CRD1 provides a region of choice for selecting CD40 agonists while CRD2-4 provides antagonistic epitopes.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD40/química , Antígenos CD40/metabolismo , Epitopos/química , Anticorpos Monoclonais/química , Especificidade de Anticorpos , Antígenos CD40/agonistas , Ligante de CD40/metabolismo , Reagentes de Ligações Cruzadas , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos
18.
Cancer Immunol Immunother ; 67(4): 627-638, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29330557

RESUMO

Vaccination with DNA that encodes cancer antigens is a simple and convenient way to raise immunity against cancer and has already shown promise in the clinical setting. Conventional plasmid DNA is commonly used which together with the encoded antigen also includes bacterial immunostimulatory CpG motifs to target the DNA sensor Toll-like receptor 9. Recently DNA vaccines using doggybone DNA (dbDNA™), have been developed without the use of bacteria. The cell-free process relies on the use of Phi29 DNA polymerase to amplify the template followed by protelomerase TelN to complete individual closed linear DNA. The resulting DNA contains the required antigenic sequence, a promoter and a poly A tail but lacks bacterial sequences such as an antibiotic resistance gene, prompting the question of immunogenicity. Here we compared the ability of doggybone DNA vaccine with plasmid DNA vaccine to induce adaptive immunity using clinically relevant oncotargets E6 and E7 from HPV. We demonstrate that despite the inability to trigger TLR9, doggybone DNA was able to induce similar levels of cellular and humoral immunity as plasmid DNA, with suppression of established TC-1 tumours.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunidade Celular/imunologia , Neoplasias Pulmonares/imunologia , Plasmídeos/imunologia , Receptor Toll-Like 9/imunologia , Vacinas de DNA/imunologia , Animais , Modelos Animais de Doenças , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/administração & dosagem , Plasmídeos/genética , Células Tumorais Cultivadas , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
19.
J Immunol ; 200(5): 1937-1950, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351998

RESUMO

Fc γ receptors (FcγR) are involved in multiple aspects of immune cell regulation, are central to the success of mAb therapeutics, and underpin the pathology of several autoimmune diseases. However, reliable assays capable of accurately measuring FcγR interactions with their physiological ligands, IgG immune complexes (IC), are limited. A method to study and detect IC interactions with FcγRs was therefore developed. This method, designed to model the signaling pathway of the inhibitory FcγRIIB (CD32B), used NanoLuc Binary Interaction Technology to measure recruitment of the Src homology 2 domain-containing inositol phosphatase 1 to the ITIM of this receptor. Such recruitment required prior cross-linking of an ITAM-containing activatory receptor, and evoked luciferase activity in discrete clusters at the cell surface, recapitulating the known biology of CD32B signaling. The assay detected varying forms of experimental IC, including heat-aggregated IgG, rituximab-anti-idiotype complexes, and anti-trinitrophenol-trinitrophenol complexes in a sensitive manner (≤1 µg/ml), and discriminated between complexes of varying size and isotype. Proof-of-concept for the detection of circulating ICs in autoimmune disease was provided, as responses to sera from patients with systemic lupus erythematosus and rheumatoid arthritis were detected in small pilot studies. Finally, the method was translated to a stable cell line system. In conclusion, a rapid and robust method for the detection of IC was developed, which has numerous potential applications including the monitoring of IC in autoimmune diseases and the study of underlying FcγR biology.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/imunologia , Receptores de IgG/imunologia , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Linhagem Celular , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fosfoproteínas/imunologia , Rituximab/imunologia , Transdução de Sinais/imunologia , Domínios de Homologia de src/imunologia
20.
Metab Brain Dis ; 33(1): 63-77, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29034440

RESUMO

Antipsychotics, such as risperidone, increase food intake and induce alteration in glucose and lipid metabolism concomitantly with overweight and body fat increase, these biological abnormalities belong to the metabolic syndrome definition (high visceral adiposity, hypertriglyceridemia, hyperglycemia, low HDL-cholesterol and high blood pressure). Curcumin is a major component of traditional turmeric (Curcuma longa) which has been reported to improve lipid and glucose metabolism and to decrease weight in obese mice. We questioned the potential capacity of curcumin, contained in Curcuma longa extract (Biocurcuma™), to attenuate the risperidone-induced metabolic dysfunction. Two groups of mice were treated once a week, for 22 weeks, with intraperitoneal injection of risperidone (Risperdal) at a dose 12.5 mpk. Two other groups received intraperitoneal injection of the vehicle of Risperdal following the same schedule. Mice of one risperidone-treated groups and of one of vehicle-treated groups were fed a diet with 0.05% Biocurcuma™ (curcumin), while mice of the two other groups received the standard diet. Curcumin limited the capacity of risperidone to reduce spontaneous motricity, but failed to impede risperidone-induced increase in food intake. Curcumin did not reduce the capacity of risperidone to induce weight gain, but decreased visceral adiposity and decreased the risperidone-induced hepatomegaly, but not steatosis. Furthermore, curcumin repressed the capacity of risperidone to induce the hepatic over expression of enzymes involved in lipid metabolism (LXRα, FAS, ACC1, LPL, PPARγ, ACO, SREBP2) and decreased risperidone-induced glucose intolerance and hypertriglyceridemia. Curcumin decreased risperidone-induced increases in serum markers of hepatotoxicity (ALAT, ASAT), as well as of one major hepatic pro-inflammatory transcription factor (NFκB: p105 mRNA and p65 protein). These findings support that nutritional doses of curcumin contained in Curcuma longa extract are able to partially counteract the risperidone-induced metabolic dysfunction in mice, suggesting that curcumin ought to be tested to reduce the capacity of risperidone to induce the metabolic syndrome in human.


Assuntos
Curcuma/efeitos dos fármacos , Curcumina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Risperidona/farmacologia , Animais , Glicemia/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA