Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124556, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38850820

RESUMO

For the sustainable advancement of industrial expansion that is environmentally conscious, harmful dyes must be removed from wastewater. Untreated effluents containing colors have the potential to harm the ecosystem and pose major health risks to people, animals, and aquatic life. Here, we have fabricated Ni or Fe modified with BaTiO3 materials and effectively utilized them for Reactive Red 120 (RR 120) dye degradation under UV-A light. The synthesized materials were characterized, and their structural, and photo-physical properties were reported. Phase segregation was not present in the XRD pattern, as evidenced by the absence of secondary phase peaks linked to iron, nickel, or oxides. Low metal ion concentrations may be the cause of this, and the presence of those elements was confirmed by XPS measurements. The Raman spectra of the BaTiO3/Ni and BaTiO3/Fe samples show a widened peak at 500 cm-1, which suggests that Ni or Fe are efficiently loaded onto the BaTiO3. RR 120 dye photodegradation under UV light conditions was effectively catalyzed by BaTiO3/Fe, as evidenced by its superior performance in the UV irradiation technique over both BaTiO3 and BaTiO3/Ni. Compared to bare BaTiO3, both metal-modified materials efficiently degraded the RR 120 dye. Acidic pH facilitated the degradation process, which makes sense given that the heterogeneous photo-Fenton reaction was the mechanism of degradation along with BaTiO3 sensitization. High-acidity sewage can be dangerous and carcinogenic, and conventional biological treatment methods are not appropriate for managing it. In the current investigation, it may be used to treat color effluents with extremely low pH levels. Additionally, the ability of the produced nanocomposites to inhibit the growth of twenty pathogens was examined, along with two fungi, fifteen Gram-negative Bacilli (GNB), one Gram-positive Bacilli (GPB), and two Gram-positive Cocci (GBC).

2.
Int J Biol Macromol ; : 133083, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866289

RESUMO

In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers and is overexpressed in various cancers. This study reports on the development of a novel voltammetric immunosensor for TfR detection. The electrochemical platform was made up of a glassy carbon electrode (GCE) functionalized with gold nanoparticles (AuNPs), on which anti-TfR was immobilized. The surface characteristics and electrochemical behaviors of the modified electrodes were comprehensively investigated through scanning electron microscopy, XPS, Raman spectroscopy FT-IR, electrochemical cyclic voltammetry and impedance spectroscopy. The developed immunosensor exhibited robust analytical performance with TfR fortified buffer solution, showing a linear range (LR) response from 0.01 to 3000 µg/mL, with a limit of detection (LOD) of 0.01 µg/mL and reproducibility (RSD <4 %). The fabricated sensor demonstrated high reproducibility and selectivity when subjected to testing with various types of interfering proteins. The immunosensor designed for TfR detection demonstrated several advantageous features, such as being cost-effective and requiring a small volume of test sample making it highly suitable for point-of-care applications.

3.
BMC Plant Biol ; 24(1): 416, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760676

RESUMO

BACKGROUND: Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS: Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS: Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.


Assuntos
Capsicum , Resistência à Doença , Estudo de Associação Genômica Ampla , Phytophthora , Doenças das Plantas , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Phytophthora/fisiologia , Phytophthora/patogenicidade , Capsicum/genética , Capsicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Genótipo
4.
Chemosphere ; 359: 142224, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723693

RESUMO

Environmental remediation has sought several innovative ways for the treatment of wastewater and captivated researchers around the globe towards it. Through this study, we aim to proceed with the efforts to foster sustainable and feasible ways for the treatment of wastewater. In this work, we report the sol-gel synthesis of CuO/MgO/ZnO nanocomposite and carry out their systematic characterization with the help of state-of-the-art analytical techniques, such as FTIR, SEM, TEM, PL, XRD, Raman, and AFM. The SEM along with TEM and AFM provided useful insights into the surface morphology of the synthesized nanocomposite on both 2D and 3D surfaces and concluded the well-dispersed behavior of the nanocomposite. The characteristic functional groups responsible for carrying out the reaction of Cu-O, Mg-O, and Zn-O were identified by FTIR spectroscopy. On the other hand, crystal size, dislocation density, and microstrain of the nanocomposite were calculated by XRD. For optical studies, photoluminescence spectroscopy was performed. Once the characterization of the nanocomposite was done, they were eventually treated against the toxic organic dye, methylene blue. The calculated rate constant values of k for CuO was 2.48 × 10-3 min-1, for CuO/MgO (2.04 × 10-3 min-1), for CuO/ZnO (1.82 × 10-3 min-1) and CuO/MgO/ZnO was found to be 2.00 × 10-3 min-1. It has become increasingly evident that nanotechnology can be used in various facets of modern life, and its implementation in wastewater treatment has recently received much attention.


Assuntos
Cobre , Recuperação e Remediação Ambiental , Óxido de Magnésio , Nanocompostos , Óxido de Zinco , Nanocompostos/química , Óxido de Zinco/química , Cobre/química , Recuperação e Remediação Ambiental/métodos , Catálise , Óxido de Magnésio/química , Luz , Águas Residuárias/química , Poluentes Químicos da Água/química , Azul de Metileno/química
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124513, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815298

RESUMO

In this study, we report the successful synthesis of Ni-doped ZnS nanocomposite via a green route using ethanolic crude extract of Avena fatua. The as-synthesized nanocomposite was comprehensively characterized using Dynamic light scattering (DLS), Zeta potential, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Atomic force microscopy (AFM). These analyses provided detailed insights into the size, morphology, composition, surface properties, and structural characteristics of the nanocomposite. Subsequently, the synthesized nanocomposite was evaluated for their photocatalytic performance against the organic dye Methyl orange. Remarkably, the nanocomposite exhibited rapid and efficient degradation of Methyl orange, achieving 90 % degradation within only 30 min of irradiation under UV light. Moreover, the photocatalyst demonstrated an exceptional hydrogen production rate, reaching 167.73 µmolg-1h-1, which is approximately 4.5 times higher than that of its pristine counterparts. These findings highlight the significant potential of Ni-doped ZnS nanocomposite as highly efficient photocatalysts for wastewater treatment and hydrogen production applications.

6.
Sci Rep ; 14(1): 7841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570648

RESUMO

Recent research has focused on applying blockchain technology to solve security-related problems in Internet of Things (IoT) networks. However, the inherent scalability issues of blockchain technology become apparent in the presence of a vast number of IoT devices and the substantial data generated by these networks. Therefore, in this paper, we use a lightweight consensus algorithm to cater to these problems. We propose a scalable blockchain-based framework for managing IoT data, catering to a large number of devices. This framework utilizes the Delegated Proof of Stake (DPoS) consensus algorithm to ensure enhanced performance and efficiency in resource-constrained IoT networks. DPoS being a lightweight consensus algorithm leverages a selected number of elected delegates to validate and confirm transactions, thus mitigating the performance and efficiency degradation in the blockchain-based IoT networks. In this paper, we implemented an Interplanetary File System (IPFS) for distributed storage, and Docker to evaluate the network performance in terms of throughput, latency, and resource utilization. We divided our analysis into four parts: Latency, throughput, resource utilization, and file upload time and speed in distributed storage evaluation. Our empirical findings demonstrate that our framework exhibits low latency, measuring less than 0.976 ms. The proposed technique outperforms Proof of Stake (PoS), representing a state-of-the-art consensus technique. We also demonstrate that the proposed approach is useful in IoT applications where low latency or resource efficiency is required.

7.
Org Biomol Chem ; 22(16): 3299-3303, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38577730

RESUMO

ß-Nitroenones can be efficiently converted into 3,5-disubstituted isoxazoles by using tin(II)chloride dihydrate and ethyl acetate as a reducing agent and solvent, respectively. Products are obtained in good yields and several functional groups are tolerated thanks to the mild reaction conditions.

9.
Anim Biosci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38665082

RESUMO

Objective: To investigate the prevalence of paratuberculosis in cattle and buffaloes at twelve public dairy farms in Punjab, Pakistan. Methods: A total of 2181 more than two-year-old animals (1242 cattle and 939 buffaloes) were tested by avian tuberculin, i.e., killed purified protein derivative (PPD) of Mycobacterium avium paratuberculosis and indirect ELISA. Blood and fecal samples were collected from tuberculin positive animals. These samples were further processed by indirect ELISA. The data were analyzed using frequency analysis and logistic analysis procedures. Results: The prevalence of paratuberculosis at public dairy farms was 3.8%, as determined by tuberculin + ELISA test. It varied from 0.71-13.5% with a 100% herd prevalence. Multivariate logistic regression analysis revealed that species, milk production, total animals, total small ruminants, and total buffaloes were significantly associated with the occurrence of paratuberculosis. Odd ratio analysis revealed that with a one-kilogram increase in body weight, there will be a 0.006% increase in disease occurrence. With the increase in one animal in small ruminants and buffaloes, there will be 0.008% and 0.42% greater chances of developing paratuberculosis, respectively. Bivariate logistic regression analysis of cattle and buffaloes revealed that farm number, age, and total number of cattle were significantly associated with the occurrence of paratuberculosis. A one-month increase in lactation length increases the chance of tuberculosis by 0.004%; similarly, a one-liter increase in milk production increases the chance of disease by 10%. With each additional buffalo in the herd, there will be a 0.007% greater chance for the occurrence of paratuberculosis. Conclusion: This study concluded that tuberculin testing can be used in conjunction with ELISA to screen animals for paratuberculosis in countries with scarce resources, such as Pakistan. The efficacy of disease diagnosis can be improved by combining multiple tests.

10.
Eur J Heart Fail ; 26(4): 1065-1077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606485

RESUMO

AIMS: Patients with heart failure and mildly reduced or preserved ejection fraction have limited therapeutic options. The ALT-FLOW Early Feasibility Study evaluated safety, haemodynamics and outcomes for the APTURE transcatheter shunt system, a novel left atrium to coronary sinus shunt in these patients. METHODS AND RESULTS: Safety and shunt implantation success was evaluated for all 116 enrolled patients. An analysis population of implanted patients with a left ventricular ejection fraction (LVEF) >40% (n = 95) was chosen to assess efficacy via paired comparison between baseline and follow-up haemodynamic (3 and 6 months), and echocardiographic, clinical and functional outcomes (6 months and 1 year). Health status and quality of life outcomes were assessed using the Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OSS). The primary safety endpoint, major adverse cardiac, cerebral, and renal events, and reintervention through 30 days, occurred in 3/116 patients (2.6%). All implanted shunts were patent at 1 year. In patients with LVEF >40%, the mean (95% confidence interval) reduction in exercise pulmonary capillary wedge pressure (PCWP) at 20 W was -5.7 (-8.6, -2.9) mmHg at 6 months (p < 0.001). At baseline, 8% had New York Heart Association class I-II status and improved to 68% at 1 year (p < 0.001). KCCQ-OSS at baseline was 39 (35, 43) and improved at 6 months and 1 year by 25 (20-30) and 27 (22-32) points, respectively (both p < 0.0001). No adverse changes in haemodynamic and echocardiographic indices of right heart function were observed at 1 year. Overall, the reduction in PCWP at 20 W and improvement in KCCQ-OSS in multiple subgroups were consistent with those observed for the entire population. CONCLUSIONS: In patients with heart failure and LVEF >40%, the APTURE shunt demonstrated an acceptable safety profile with significant sustained improvements in haemodynamic and patient-centred outcomes, underscoring the need for further evaluation of the APTURE shunt in a randomized trial.


Assuntos
Seio Coronário , Estudos de Viabilidade , Átrios do Coração , Insuficiência Cardíaca , Volume Sistólico , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/terapia , Feminino , Masculino , Volume Sistólico/fisiologia , Idoso , Átrios do Coração/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Seio Coronário/fisiopatologia , Resultado do Tratamento , Pessoa de Meia-Idade , Ecocardiografia/métodos , Qualidade de Vida , Cateterismo Cardíaco/métodos , Estudos Prospectivos , Função Ventricular Esquerda/fisiologia , Seguimentos , Hemodinâmica/fisiologia
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124264, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38603961

RESUMO

Design and eco-friendly fabrication of affordable and sustainable materials for the treatment of wastewater consisting of dyes, antibiotics, and other harmful substances has always been demanding. Untreated wastewater being released from industries imposes serious threats to our ecosystem, seeking convenient approaches to diminish this alarming issue. Here in this work, we synthesized MgO/CuO nanocomposites from a plant extract of Ammi visnaga L. and then employed these nanocomposites for the treatment of organic dye (methylene blue). We characterized the synthesized nanocomposites by dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). DLS presented information about the explicit size of nanocomposites, while the surface charge was examined by zeta potential. XRD provided detailed information about the crystalline behavior and the information regarding surface morphology and size was extracted by SEM, TEM, and AFM. Moreover, the fabricated nanocomposites were used as a photocatalyst in the treatment of methylene blue. The overall catalytic reaction took an hour to complete, and the value of percentage degradation was 98 %. Substantially, a detailed account of the kinetics, rate of reaction, and mechanism is also fostered in the context. The presented study can assist scientists and researchers around the world to reproduce the results and use them to apply them on a broader scale.

12.
Int J Biol Macromol ; 265(Pt 1): 130616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447842

RESUMO

The use of single-walled carbon nanotubes (SWCNTs) in biomedical applications is limited due to their inability to disperse in aqueous solutions. In this study, dispersed -COOH functionalized CNTs with N-succinylated chitosan (CS), greatly increasing the water solubility of CNTs and forming a uniformly dispersed nanocomposite solution of CNTs@CS. Coupling reagent EDC/NHS was used as a linker with the -COOH groups present on the N-succinylated chitosan which significantly improved the affinity of the CNTs for biomolecules. Myoglobin (Mb) is a promising biomarker for the precise assessment of cardiovascular risk, type 2 diabetes, metabolic syndrome, hypertension and several types of cancer. A high level of Mb can be used to diagnose the mentioned pathogenic diseases. The CNTs@CS-FET demonstrates superior sensing performance for Mb antigen fortified in buffer, with a wide linear range of 1 to 4000 ng/mL. The detection limit of the developed Mb immunosensor was estimated to be 4.2 ng/mL. The novel CNTs@CS-FET immunosensor demonstrates remarkable capability in detecting Mb without being affected by interferences from nonspecific antigens. Mb spiked serum showed a recovery rate of 100.262 to 118.55 % indicating great promise for Mb detection in clinical samples. The experimental results confirmed that the CNTs@CS-FET immunosensor had excellent selectivity, reproducibility and storage stability.


Assuntos
Técnicas Biossensoriais , Quitosana , Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Nanocompostos , Nanotubos de Carbono , Humanos , Mioglobina , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio , Biomarcadores , Técnicas Eletroquímicas/métodos
13.
J R Soc Interface ; 21(212): 20230695, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503339

RESUMO

Quantitative assessment of growth and survival is a suitable technique in studying biochemical, genetic and physiological processes in the cells. The budding yeast Saccharomyces cerevisiae is one of the most widely used eukaryotic model organisms for studying cellular mechanisms and processes in evolutionarily distant species, including humans. Yeast growth can be evaluated on both liquid and solid media by measuring cell suspension turbidity and colony forming units, respectively. Several software tools utilizing different parameters have been proposed to quantify yeast growth on solid media. Here, we developed a Matlab-based application which provides a rapid and robust quantitative yeast growth analysis from spot plating assay. Spot plating assay is a typical procedure to evaluate yeast growth in low-throughput laboratory settings, including growth on different nutrient sources or treatment with specific stressors. The app has a one-step installation process, a self-explanatory interface and shorter analysis steps compared with previous established methods, providing a useful tool for both expert and non-expert yeast researchers.


Assuntos
Saccharomyces cerevisiae , Software , Humanos , Saccharomyces cerevisiae/genética , Proliferação de Células
14.
Circulation ; 149(15): e1090-e1107, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38450477

RESUMO

Balloon pulmonary angioplasty continues to gain traction as a treatment option for patients with chronic thromboembolic pulmonary disease with and without pulmonary hypertension. Recent European Society of Cardiology guidelines on pulmonary hypertension now give balloon pulmonary angioplasty a Class 1 recommendation for inoperable and residual chronic thromboembolic pulmonary hypertension. Not surprisingly, chronic thromboembolic pulmonary hypertension centers are rapidly initiating balloon pulmonary angioplasty programs. However, we need a comprehensive, expert consensus document outlining critical concepts, including identifying necessary personnel and expertise, criteria for patient selection, and a standardized approach to preprocedural planning and establishing criteria for evaluating procedural efficacy and safety. Given this lack of standards, the balloon pulmonary angioplasty skill set is learned through peer-to-peer contact and training. This document is a state-of-the-art, comprehensive statement from key thought leaders to address this gap in the current clinical practice of balloon pulmonary angioplasty. We summarize the current status of the procedure and provide a consensus opinion on the role of balloon pulmonary angioplasty in the overall care of patients with chronic thromboembolic pulmonary disease with and without pulmonary hypertension. We also identify knowledge gaps, provide guidance for new centers interested in initiating balloon pulmonary angioplasty programs, and highlight future directions and research needs for this emerging therapy.


Assuntos
Angioplastia com Balão , Hipertensão Pulmonar , Embolia Pulmonar , Tromboembolia , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Embolia Pulmonar/complicações , Embolia Pulmonar/terapia , American Heart Association , Doença Crônica , Artéria Pulmonar , Endarterectomia
15.
RSC Adv ; 14(9): 6165-6177, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38375010

RESUMO

Sorption-based atmospheric water harvesting (SBAWH) is a highly promising approach for extracting water from the atmosphere thanks to its sustainability, exceptional energy efficiency, and affordability. In this work, ZnFe2O4 and Zn0.4Co0.6Fe2O4 were evaluated for moisture adsorption. The desired materials were synthesized by a surfactant-assisted sol-gel method. Synthesized samples were characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), and point of zero charge (PZC). Crystallinity and phase composition were evaluated by XRD analysis. Several parameters were determined using XRD analysis: lattice parameter, unit cell volume, crystallite size, and bulk density. The morphology of synthesized materials was assessed via SEM, and unveiled the acquisition of consistent, homogeneous, and uniform crystals. Elemental composition was determined through EDX spectroscopy. Water adsorption on the surface was evaluated by FTIR spectroscopy. The magnetic properties of synthesized ZnFe2O4 and cobalt-doped ZnFe2O4 ferrites were investigated using VSM. The negative charge on the Zn0.4Co0.6Fe2O4 surface was explored using PZC. Adsorption studies on synthesized materials were conducted with the help of an atmospheric water harvesting (AWH) plant created by our team. Moisture adsorption isotherms of synthesized materials were determined using a gravimetric method under varying temperature and relative humidity (45-95%) conditions. The moisture content (Mc) of Zn0.4Co0.6Fe2O4 and ZnFe2O4 was 597 mg g-1 and 104 mg g-1, respectively. Key thermodynamic properties, including isosteric heat of adsorption (Qst), change in Gibbs free energy (ΔG), and change in sorption entropy (ΔS), were evaluated. Qst was negative, which confirmed the sorption of water vapors on the material surface. ΔG and ΔS indicated that water-vapor adsorption was spontaneous and exothermic. A second-order kinetics study was carried out on synthesized materials, demonstrating their chemisorption behavior. The latter was due to the oxygen defects created by replacement of Co2+ and Fe3+ at tetrahedral and octahedral sites. Water vapors in the atmosphere became attached to the surface and deprotonation occurred, and the hydroxyl ions were formed. Water vapor attached to these hydroxyl ions. A second-order kinetics study was carried out to confirm the chemisorption behavior of synthesized materials.

16.
Environ Res ; 250: 118487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365055

RESUMO

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Assuntos
Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Incrustação Biológica/prevenção & controle
17.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339591

RESUMO

The intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network (VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing capabilities. As a cloud extension, the fog processes' infrastructure is close to VANET, fostering an environment favorable to smart cars with IT equipment and effective task management oversight. Vehicle processing power, bandwidth, time, and high-speed mobility are all limited in VANET. It is critical to satisfy the vehicles' requirements for minimal latency and fast reaction times while offloading duties to the fog layer. We proposed a fuzzy logic-based task scheduling system in VANET to minimize latency and improve the enhanced response time when offloading tasks in the IoV. The proposed method effectively transfers workloads to the fog computing layer while considering the constrained resources of car nodes. After choosing a suitable processing unit, the algorithm sends the job and its associated resources to the fog layer. The dataset is related to crisp values for fog computing for system utilization, latency, and task deadline time for over 5000 values. The task execution, latency, deadline of task, storage, CPU, and bandwidth utilizations are used for fuzzy set values. We proved the effectiveness of our proposed task scheduling framework via simulation tests, outperforming current algorithms in terms of task ratio by 13%, decreasing average turnaround time by 9%, minimizing makespan time by 15%, and effectively overcoming average latency time within the network parameters. The proposed technique shows better results and responses than previous techniques by scheduling the tasks toward fog layers with less response time and minimizing the overall time from task submission to completion.

18.
Mol Biol Rep ; 51(1): 104, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224417

RESUMO

BACKGROUND: Autosomal Recessive Primary Microcephaly (MCPH) is a rare, neurodevelopmental disorder associated with mild to severe mental retardation. It is characterized by reduced cerebral cortex that ultimately leads to reduction in skull size less than - 3 S.D below the mean for normal individuals having same age and sex. Till date, 30 known loci have been reported for MCPH. METHODS: In the present study, Sanger sequencing was performed followed by linkage analysis to validate the mutation in ASPM gene of the consanguineous Pakistani clans. Bioinformatics tools were also used to confirm the pathogenicity of the diseased variant in the gene. MRI scan was used to compare the brain structure of both the affected individuals (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). RESULTS: Our study described a consanguineous family with two patients with a known ASPM (MCPH5) variant c.8508_8509delGA causing a frameshift mutation in exon 18 which located in calmodulin-binding IQ domain of the ASPM protein. The salient feature of this study is that a single variant led to significantly distinct changes in the architecture of brain of both siblings which is further confirmed by MRI results. The computation analysis showed that the change in the conservation of this residue cause this variant highly pathogenic. Carrier screening and genetic counselling were also remarkable features of this study (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023). CONCLUSION: This study explores the extraordinary influence of a single ASPM variant on divergent brain structure in consanguineous siblings and enable us to reduce the incidence of further microcephalic cases in this Pakistani family (Aslam et al. in Kinnaird's 2nd International Conference on Science, Technology and Innovation, Lahore, 2023).


Assuntos
Encéfalo , Irmãos , Humanos , Consanguinidade , Paquistão , Encéfalo/diagnóstico por imagem , Proteínas do Tecido Nervoso
19.
Int J Biol Macromol ; 256(Pt 1): 128312, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000589

RESUMO

In this study, we developed a label-free and ultrasensitive electrochemical biosensor for the detection of transferrin (Tf), an important serum biomarker of atransferrinemia. The biosensor was fabricated by using glassy carbon electrode (GCE) and modified with gold nanoparticles (AuNPs) via electroless deposition. The electrochemical characteristics of the GCE-AuNPs biosensors were characterized using cyclic voltammetry and electrochemical impedance spectroscopy analysis. Differential pulse voltammetry was used for quantitative evaluation of the Tf-antigen by recording the increase in the anodic peak current of GCE-AuNPs biosensor. The GCE-AuNPs biosensor demonstrates superior sensing performance for Tf-antigen fortified in buffer, with a wide linear range of 0.1 to 5000 µg/mL and a limit of detection of 0.18 µg/mL. The studied GCE-AuNPs biosensor showed excellent sensitivity, selectivity, long-term storage stability and simple sensing steps without pretreatment of clinical samples. This GCE-AuNPs biosensor indicates great potential for developing a Tf detection platform, which would be helpful in the early diagnosis of atransferrinemia. The developed GCE-AuNPs biosensor holds great potential in biomedical research related to point of care for the early diagnosis and monitoring of diseases associated with aberrant serum transferrin levels. These findings suggest that the GCE-AuNPs biosensor has great potential for detecting other serum biomarkers.


Assuntos
Técnicas Biossensoriais , Erros Inatos do Metabolismo dos Metais , Nanopartículas Metálicas , Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Transferrina , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
20.
RSC Adv ; 13(50): 35468-35480, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38058556

RESUMO

In recent years, energy storage and conversion tools have evolved significantly in response to rising energy demands. Owing to their large surface area, superior electric and chemical stabilities, and thermal conductivities, barium copper phosphate (BaCuPO4) materials are promising electrode materials for electrochemical energy storage systems. In this study, the synthesis of nanostructures (NSs) using hydrothermal and chemical precipitation methods and exploring the electrochemical characteristics of BaCuPO4 in asymmetric supercapacitors provides a comparative investigation. Systematic characterization shows that nanomaterials prepared by applying the hydrothermal method have a more crystalline and large surface area than chemical precipitation. In the three cell arrangements, the hydrothermally prepared BaCuPO4 NSs delivered a high specific capacity (764.4 C g-1) compared to the chemical precipitation route (660 C g-1). Additionally, the supercapattery associated with the two electrode assemblages delivers an optimum specific capacity of 77 C g-1. The energy and power density of BaCuPO4//AC NSs were 52.13 W h kg-1 and 950 W kg-1, respectively. A durability test was also performed with BaCuPO4//AC NSs for 5000 consecutive cycles. Further, the coulombic efficiency and capacity retention of BaCuPO4//AC after 5000 cycles were 81% and 92%, respectively. Bimetallic phosphate is comparatively suggested for future perspectives towards HER to overcome the performance of single metal phosphate materials. This is the first approach, we are aware of, for investigating the electrochemical behavior of BaCuPO4, and our results suggest that it may be useful as an electrode material in electrochemical systems requiring high energy and rate capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA