Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552609

RESUMO

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de Vida
2.
Nat Commun ; 14(1): 5195, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673892

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Animais , Camundongos , RNA , Epigênese Genética , Sequências Reguladoras de Ácido Nucleico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Metiltransferases , Proteínas de Ligação a RNA/genética
3.
Nature ; 616(7957): 553-562, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37055640

RESUMO

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Mutação , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Estudos de Coortes , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Filogenia , Carcinoma de Pequenas Células do Pulmão/patologia , Biópsia Líquida
4.
Front Cardiovasc Med ; 9: 948281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337898

RESUMO

Aim: Adult mammalian cardiomyocytes are incapable of significant proliferation, limiting regeneration after myocardial injury. Overexpression of the transcription factor Myc has been shown to drive proliferation in the adult mouse heart, but only when combined with Cyclin T1. As constitutive HRas activity has been shown to stabilise Cyclin T1 in vivo, we aimed to establish whether Myc and HRas could also act cooperatively to induce proliferation in adult mammalian cardiomyocytes in vivo. Methods and results: Using a genetically modified mouse model, we confirmed that constitutive HRas activity (HRas G 12 V ) increased Cyclin T1 expression. HRas G 12 V and constitutive Myc expression together co-operate to drive cell-cycle progression of adult mammalian cardiomyocytes. However, stimulation of endogenous cardiac proliferation by the ectopic expression of HRas G 12 V and Myc also induced cardiomyocyte death, while Myc and Cyclin T1 expression did not. Conclusion: Co-expression of Cyclin T1 and Myc may be a therapeutically tractable approach for cardiomyocyte neo-genesis post injury, while cell death induced by HRas G 12 V and Myc expression likely limits this option as a regenerative therapeutic target.

5.
Nat Commun ; 13(1): 6782, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351945

RESUMO

Germ-line hypomorphism of the pleiotropic transcription factor Myc in mice, either through Myc gene haploinsufficiency or deletion of Myc enhancers, delays onset of various cancers while mice remain viable and exhibit only relatively mild pathologies. Using a genetically engineered mouse model in which Myc expression may be systemically and reversibly hypomorphed at will, we asked whether this resistance to tumour progression is also emplaced when Myc hypomorphism is acutely imposed in adult mice. Indeed, adult Myc hypomorphism profoundly blocked KRasG12D-driven lung and pancreatic cancers, arresting their evolution at the early transition from indolent pre-tumour to invasive cancer. We show that such arrest is due to the incapacity of hypomorphic levels of Myc to drive release of signals that instruct the microenvironmental remodelling necessary to support invasive cancer. The cancer protection afforded by long-term adult imposition of Myc hypomorphism is accompanied by only mild collateral side effects, principally in haematopoiesis, but even these are circumvented if Myc hypomorphism is imposed metronomically whereas potent cancer protection is retained.


Assuntos
Genes ras , Neoplasias Pancreáticas , Camundongos , Animais , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral
6.
Nat Commun ; 13(1): 6360, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289203

RESUMO

Chromosomal instability is a major challenge to patient stratification and targeted drug development for high-grade serous ovarian carcinoma (HGSOC). Here we show that somatic copy number alterations (SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene expression and methylation status. We identify five prevalent clonal driver SCNAs (chromosomal amplifications encompassing MYC, PIK3CA, CCNE1, KRAS and TERT) from multi-regional HGSOC data and reason that their strong selection should prioritise them as key biomarkers for targeted therapies. We use primary HGSOC spheroid models to test interactions between in vitro targeted therapy and SCNAs. MYC chromosomal copy number is associated with in-vitro and clinical response to paclitaxel and in-vitro response to mTORC1/2 inhibition. Activation of the mTOR survival pathway in the context of MYC-amplified HGSOC is statistically associated with increased prevalence of SCNAs in genes from the PI3K pathway. Co-occurrence of amplifications in MYC and genes from the PI3K pathway is independently observed in squamous lung cancer and triple negative breast cancer. In this work, we show that identifying co-occurrence of clonal driver SCNA genes could be used to tailor therapeutics for precision medicine.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Variações do Número de Cópias de DNA , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Paclitaxel/uso terapêutico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
8.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33653688

RESUMO

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Assuntos
Adenoma de Células das Ilhotas Pancreáticas/fisiopatologia , Carcinogênese/metabolismo , Receptores Frizzled/metabolismo , Adenoma de Células das Ilhotas Pancreáticas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Feminino , Receptores Frizzled/genética , Receptores Frizzled/fisiologia , Genes myc/genética , Genes myc/fisiologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
9.
Hepatology ; 73(3): 1028-1044, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32460431

RESUMO

BACKGROUND AND AIMS: Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS: Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS: Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo , Animais , Perfilação da Expressão Gênica , Hepatócitos/fisiologia , Humanos , Lipidômica , Lipogênese , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL
10.
J Lipid Res ; 61(11): 1390-1399, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32753459

RESUMO

Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Colesterol/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Transporte Biológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos
11.
Nat Commun ; 11(1): 1827, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286286

RESUMO

It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.


Assuntos
Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica , Animais , Proliferação de Células/genética , Cromatina/metabolismo , Ciclina T/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional/genética
12.
Cancer Discov ; 10(4): 588-607, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31941709

RESUMO

The signature features of pancreatic ductal adenocarcinoma (PDAC) are its fibroinflammatory stroma, poor immune activity, and dismal prognosis. We show that acute activation of Myc in indolent pancreatic intraepithelial neoplasm (PanIN) epithelial cells in vivo is, alone, sufficient to trigger immediate release of instructive signals that together coordinate changes in multiple stromal and immune-cell types and drive transition to pancreatic adenocarcinomas that share all the characteristic stromal features of their spontaneous human counterpart. We also demonstrate that this Myc-driven PDAC switch is completely and immediately reversible: Myc deactivation/inhibition triggers meticulous disassembly of advanced PDAC tumor and stroma and concomitant death of tumor cells. Hence, both the formation and deconstruction of the complex PDAC phenotype are continuously dependent on a single, reversible Myc switch. SIGNIFICANCE: We show that Myc activation in indolent Kras G12D-induced PanIN epithelium acts as an immediate pleiotropic switch, triggering tissue-specific signals that instruct all the diverse signature stromal features of spontaneous human PDAC. Subsequent Myc deactivation or inhibition immediately triggers a program that coordinately disassembles PDAC back to PanIN.See related commentary by English and Sears, p. 495.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Carcinoma Ductal Pancreático/patologia , Genes myc , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética
13.
FEBS J ; 286(24): 4824-4831, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860788

RESUMO

Gerard Evan is Head of Department and Sir William Dunn Professor at the Department of Biochemistry, University of Cambridge, UK. Driven by his innate passion to understand how things work, Gerard has devoted much of his career to understanding the molecular basis of cancer, particularly the roles played by oncogenes such as Myc. His work has helped elucidate the complex role that this gene plays in cell proliferation and apoptosis, and paved new avenues for the treatment of aggressive cancers. In this interview, Gerard provides an overview of what is known about the role of Myc in normal and cancer cells and provides a persuasive argument for the application of 'impersonalised therapy' involving Myc inhibition as part of future chemotherapeutic drug regimes.


Assuntos
Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(44): 22399-22408, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611367

RESUMO

Cells with higher levels of Myc proliferate more rapidly and supercompetitively eliminate neighboring cells. Nonetheless, tumor cells in aggressive breast cancers typically exhibit significant and stable heterogeneity in their Myc levels, which correlates with refractoriness to therapy and poor prognosis. This suggests that Myc heterogeneity confers some selective advantage on breast tumor growth and progression. To investigate this, we created a traceable MMTV-Wnt1-driven in vivo chimeric mammary tumor model comprising an admixture of low-Myc- and reversibly switchable high-Myc-expressing clones. We show that such tumors exhibit interclonal mutualism wherein cells with high-Myc expression facilitate tumor growth by promoting protumorigenic stroma yet concomitantly suppress Wnt expression, which renders them dependent for survival on paracrine Wnt provided by low-Myc-expressing clones. To identify any therapeutic vulnerabilities arising from such interdependency, we modeled Myc/Ras/p53/Wnt signaling cross talk as an executable network for low-Myc, for high-Myc clones, and for the 2 together. This executable mechanistic model replicated the observed interdependence of high-Myc and low-Myc clones and predicted a pharmacological vulnerability to coinhibition of COX2 and MEK. This was confirmed experimentally. Our study illustrates the power of executable models in elucidating mechanisms driving tumor heterogeneity and offers an innovative strategy for identifying combination therapies tailored to the oligoclonal landscape of heterogenous tumors.


Assuntos
Heterogeneidade Genética , Neoplasias Mamárias Experimentais/genética , Modelos Teóricos , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Cancer Discov ; 9(9): 1268-1287, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31263025

RESUMO

Activating KRAS mutations are found in nearly all cases of pancreatic ductal adenocarcinoma (PDAC), yet effective clinical targeting of oncogenic KRAS remains elusive. Understanding of KRAS-dependent PDAC-promoting pathways could lead to the identification of vulnerabilities and the development of new treatments. We show that oncogenic KRAS induces BNIP3L/NIX expression and a selective mitophagy program that restricts glucose flux to the mitochondria and enhances redox capacity. Loss of Nix restores functional mitochondria to cells, increasing demands for NADPH reducing power and decreasing proliferation in glucose-limited conditions. Nix deletion markedly delays progression of pancreatic cancer and improves survival in a murine (KPC) model of PDAC. Although conditional Nix ablation in vivo initially results in the accumulation of mitochondria, mitochondrial content eventually normalizes via increased mitochondrial clearance programs, and pancreatic intraepithelial neoplasia (PanIN) lesions progress to PDAC. We identify the KRAS-NIX mitophagy program as a novel driver of glycolysis, redox robustness, and disease progression in PDAC. SIGNIFICANCE: NIX-mediated mitophagy is a new oncogenic KRAS effector pathway that suppresses functional mitochondrial content to stimulate cell proliferation and augment redox homeostasis. This pathway promotes the progression of PanIN to PDAC and represents a new dependency in pancreatic cancer.This article is highlighted in the In This Issue feature, p. 1143.


Assuntos
Carcinoma Ductal Pancreático/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Proteínas de Membrana/genética , Camundongos , Mitofagia , Mutação , NADP/metabolismo , Transplante de Neoplasias , Oxirredução , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Supressoras de Tumor/genética
16.
Nat Commun ; 9(1): 3327, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127402

RESUMO

Patients diagnosed with lung squamous cell carcinoma (LUSC) have limited targeted therapies. We report here the identification and characterisation of BCL11A, as a LUSC oncogene. Analysis of cancer genomics datasets revealed BCL11A to be upregulated in LUSC but not in lung adenocarcinoma (LUAD). Experimentally we demonstrate that non-physiological levels of BCL11A in vitro and in vivo promote squamous-like phenotypes, while its knockdown abolishes xenograft tumour formation. At the molecular level we found that BCL11A is transcriptionally regulated by SOX2 and is required for its oncogenic functions. Furthermore, we show that BCL11A and SOX2 regulate the expression of several transcription factors, including SETD8. We demonstrate that shRNA-mediated or pharmacological inhibition of SETD8 selectively inhibits LUSC growth. Collectively, our study indicates that BCL11A is integral to LUSC pathology and highlights the disruption of the BCL11A-SOX2 transcriptional programme as a novel candidate for drug development.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Transporte/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Loci Gênicos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Oncogenes , Organoides/patologia , Ligação Proteica , Proteínas Repressoras
17.
Cell ; 171(6): 1301-1315.e14, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195074

RESUMO

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.


Assuntos
Adenocarcinoma/imunologia , Adenoma/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Animais , Carcinogênese , Quimiocinas CC/imunologia , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-23/imunologia , Neoplasias Pulmonares/patologia , Proteínas Inflamatórias de Macrófagos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Microambiente Tumoral
19.
Sci Rep ; 7(1): 9932, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855541

RESUMO

While genetically engineered mice have made an enormous contribution towards the elucidation of human disease, it has hitherto not been possible to tune up or down the level of expression of any endogenous gene. Here we describe compound genetically modified mice in which expression of the endogenous E2f3 gene may be either reversibly elevated or repressed in adult animals by oral administration of tetracycline. This technology is, in principle, applicable to any endogenous gene, allowing direct determination of both elevated and reduced gene expression in physiological and pathological processes. Applying this switchable technology to the key cell cycle transcription factor E2F3, we demonstrate that elevated levels of E2F3 drive ectopic proliferation in multiple tissues. By contrast, E2F3 repression has minimal impact on tissue proliferation or homeostasis in the majority of contexts due to redundancy of adult function with E2F1 and E2F2. In the absence of E2F1 and E2F2, however, repression of E2F3 elicits profound reduction of proliferation in the hematopoietic compartments that is rapidly lethal in adult animals.


Assuntos
Fator de Transcrição E2F3/genética , Engenharia Genética/métodos , Tetraciclina/administração & dosagem , Animais , Proliferação de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Regiões Promotoras Genéticas , Tetraciclina/farmacologia , Regulação para Cima
20.
Dev Cell ; 41(3): 274-286.e5, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457793

RESUMO

The proneural transcription factor Neurogenin3 (Ngn3) plays a critical role in pancreatic endocrine cell differentiation, although regulation of Ngn3 protein is largely unexplored. Here we demonstrate that Ngn3 protein undergoes cyclin-dependent kinase (Cdk)-mediated phosphorylation on multiple serine-proline sites. Replacing wild-type protein with a phosphomutant form of Ngn3 increases α cell generation, the earliest endocrine cell type to be formed in the developing pancreas. Moreover, un(der)phosphorylated Ngn3 maintains insulin expression in adult ß cells in the presence of elevated c-Myc and enhances endocrine specification during ductal reprogramming. Mechanistically, preventing multi-site phosphorylation enhances both Ngn3 stability and DNA binding, promoting the increased expression of target genes that drive differentiation. Therefore, multi-site phosphorylation of Ngn3 controls its ability to promote pancreatic endocrine differentiation and to maintain ß cell function in the presence of pro-proliferation cues and could be manipulated to promote and maintain endocrine differentiation in vitro and in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Pâncreas/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA