Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Redox Biol ; 75: 103265, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39003920

RESUMO

Unveiling of the mechanism involved in the occurrence and development of trauma-induced heterotopic ossification (tHO) is highly demanding due to current ineffective clinical treatment for it. Previous studies proposed that hydrogen sulfide (H2S) was vital for fate determination of stem cells, suggesting a potential role in the regulation of tHO development. In the current study, We found that expression of metabolic enzyme within sulfur conversion pathway was enhanced after tendon injury, leading to H2S accumulation within the tHO region. Increased production of endogenous H2S was shown to promote aberrant osteogenic activity of tendon-derived stem cells (TDSCs), which accelerated tHO formation. The inhibition of metabolic enzyme of H2S production or directly absorption of H2S could abolished osteogenic induction of TDSCs and the formation of tHO. Mechanistically, through RNA sequencing combined with rescue experiments, we demonstrated that activation of Ca2+/ERK pathway was the downstream molecular event of H2S-induced osteogenic commitment of TDSCs and tHO. For treatment strategy exploration, zine oxide nanoparticles (ZnO) as an effective H2S elimination material was validated to ideally halt the tHO formation in this study. Furthermore, in terms of chirality of nanoparticles, D-ZnO or L-ZnO nanoparticles showed superiority over R-ZnO nanoparticles in both clearing of H2S and inhibition of tHO. Our study not only revealed the mechanism of tHO through the endogenous gas signaling event from a new perspective, but also presented a applicable platform for elimination of the inordinate gas production, thus aiding the development of clinical treatment for tHO.

2.
Adv Mater ; : e2405892, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036824

RESUMO

Implantable bioelectronic devices, designed for both monitoring and modulating living organisms, require functional and biological adaptability. Pure silk is innovatively employed, which is known for its excellent biocompatibility, to engineer water-triggered, geometrically reconfigurable membranes, on which functions can be integrated by Micro Electro Mechanical System (MEMS) techniques and specially functionalized silk. These devices can undergo programmed shape deformations within 10 min once triggered by water, and thus establishing stable bioelectronic interfaces with natively fitted geometries. As a testament to the applicability of this approach, a twining peripheral nerve electrode is designed, fabricated, and rigorously tested, demonstrating its efficacy in nerve modulation while ensuring biocompatibility for successful implantation.

3.
iScience ; 27(7): 110214, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040049

RESUMO

Two-dimensional (2D) materials, especially graphene-based materials, have important implications for tissue regeneration and biomedicine due to their large surface area, transport properties, ease of functionalization, biocompatibility, and adsorption capacity. Despite remarkable progress in the field of tissue regeneration and biomedicine, there are still problems such as unclear long-term stability, lack of in vivo experimental data, and detection accuracy. This paper reviews recent applications of graphene-based materials in tissue regeneration and biomedicine and discusses current issues and prospects for the development of graphene-based materials with respect to promoting the regeneration of tendons, neuronal cells, bone, chondrocytes, blood vessels, and skin, as well as applications in sensing, detection, anti-microbial activity, and targeted drug delivery.

4.
Adv Mater ; : e2404842, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767289

RESUMO

Revascularization after rotator cuff repair is crucial for tendon-to-bone healing. The chirality of materials has been reported to influence their performance in tissue repair. However, data on the use of chiral structures to optimize biomaterials as a revascularization strategy remain scarce. Here, calcium silicate hydrate (CSO) films with hierarchical chirality on the atomic to micrometer scale are developed. Interestingly, levorotatory CSO (L-CSO) films promote the migration and angiogenesis of endothelial cells, whereas dextral and racemic CSO films do not induce the same effects. Molecular analysis demonstrates that L-chirality can be recognized by integrin receptors and leads to the formation of focal adhesion, which activates mechanosensitive ion channel transient receptor potential vanilloid 4 to conduct Ca2+ influx. Consequently, the phosphorylation of serum response factor is biased by Ca2+ influx to promote the vascular endothelial growth factor receptor 2 signaling pathway, resulting in enhanced angiogenesis. After implanted in a rat rotator cuff tear model, L-CSO films strongly enhance vascularization at the enthesis, promoting collagen maturation, increasing bone and fibrocartilage formation, and eventually improving the biomechanical strength. This study reveals the mechanism through which chirality influences angiogenesis in endothelial cells and provides a critical theoretical foundation for the clinical application of chiral biomaterials.

5.
Cell Prolif ; 57(1): e13521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340819

RESUMO

Trauma-induced heterotopic ossification (HO) is a complex disorder after musculoskeletal injury and characterized by aberrant extraskeletal bone formation. Recent studies shed light on critical role of dysregulated osteogenic differentiation in aberrant bone formation. Krupel-like factor 2 (KLF2) and peroxisome proliferator-activated receptor gamma (PPARγ) are master adapter proteins that link cellular responses to osteogenesis; however, their roles and relationships in HO remain elusive. Using a murine burn/tenotomy model in vivo, we identified elevated KLF2 and reduced PPARγ levels in tendon stem/progenitor cells (TSPCs) during trauma-induced HO formation. Both KLF2 inhibition and PPARγ promotion reduced mature HO, whereas the effects of PPARγ promotion were abolished by KLF2 overexpression. Additionally, mitochondrial dysfunction and reactive oxygen species (ROS) production also increased after burn/tenotomy, and improvements in mitochondrial function (ROS scavenger) could alleviate HO formation, but were abolished by KLF2 activation and PPARγ suppression by affecting redox balance. Furthermore, in vitro, we found increased KLF2 and decreased PPARγ levels in osteogenically induced TSPCs. Both KLF2 inhibition and PPARγ promotion relieved osteogenesis by improving mitochondrial function and maintaining redox balance, and effects of PPARγ promotion were abolished by KLF2 overexpression. Our findings suggest that KLF2/PPARγ axis exerts regulatory effects on trauma-induced HO through modulation of mitochondrial dysfunction and ROS production in TSPCs by affecting redox balance. Targeting KLF2/PPARγ axis and mitochondrial dysfunction can represent attractive approaches to therapeutic intervention in trauma-induced HO.


Assuntos
Queimaduras , Doenças Mitocondriais , Ossificação Heterotópica , Camundongos , Animais , Osteogênese , PPAR gama , Espécies Reativas de Oxigênio , Ossificação Heterotópica/tratamento farmacológico , Queimaduras/complicações
6.
J Bone Joint Surg Am ; 106(5): 389-396, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38090967

RESUMO

BACKGROUND: There are few methods for accurately assessing the risk of total hip arthroplasty (THA) in patients with osteoarthritis. A novel and reliable method that could play a substantial role in research and clinical routine should be investigated. The purpose of the present study was to develop a deep-learning model that can reliably predict the risk of THA with use of radiographic images and clinical symptom data. METHODS: This retrospective, multicenter, case-control study assessed hip joints on weighted-bearing anteroposterior pelvic radiographs obtained from Osteoarthritis Initiative (OAI) participants. Participants who underwent THA were matched to controls according to age, sex, body mass index, and ethnicity. Cases and controls were uniformly split into training, validation, and testing data sets at proportions of 72% (n = 528), 14% (n = 104), and 14% (n = 104), respectively. Images and clinical symptom data were passed through a detection model and a deep convolutional neural network (DCNN) model to predict the probability of THA within 9 years as well as the most likely time period for THA (0 to 2 years, 3 to 5 years, 6 to 9 years). Model performance was assessed with use of the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity in the testing set. RESULTS: A total of 736 participants were evaluated, including 184 cases and 552 controls. The prediction model achieved an overall accuracy, sensitivity, and specificity of 91.35%, 92.59% and 86.96%, respectively, with an AUC of 0.944, for THA within 9 years. The AUC of the DCNN model for assessing the most likely time period was 0.907 for 0 to 2 years, 0.916 for 3 to 5 years, and 0.841 for 6 to 9 years. Gradient-weighted class activation mapping closely corresponded to regions affecting the prediction of the DCNN model. CONCLUSIONS: The proposed DCNN model is a reliable and valid method to predict the probability of THA-within limitations. It could assist clinicians in patient counseling and decision-making regarding the timing of the intervention. In the future, by increasing the size of the data set, enhancing the ethnic and socioeconomic diversity of the participants, and improving the follow-up rate, the quality of the conclusions can be further improved. LEVEL OF EVIDENCE: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Artroplastia de Quadril , Aprendizado Profundo , Osteoartrite , Humanos , Estudos Retrospectivos , Estudos de Casos e Controles
7.
Small ; : e2308599, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054626

RESUMO

The occurrence of osteoarthritis (OA) is highly associated with the inflammatory hypoxic microenvironment. Yet currently no attention has been paid to fabricating hypoxia-responsive platforms for OA treatment. Herein, an injectable hydrogel microsphere system (HAM-SA@HCQ) focusing on the hypoxic inflamed joint is prepared with methacrylate-modified sulfonated azocalix[4]arene (SAC4A-MA), methacrylated hyaluronic acid (HA-MA), and dithiol-terminated matrix metalloproteinase 13 (MMP-13) sensitive peptide via a microfluidic device and photo crosslinking technique, followed by encapsulation of the anti-inflammatory drug hydroxychloroquine (HCQ) through host-guest interaction. Owing to the hydrophobic deep cavity, phenolic units, and azo bonds of SAC4A-MA, the hydrogel microspheres show strong drug loading capacity, prominent reactive oxygen species (ROS) scavenging capability, and specific hypoxia-responsive drug release ability. In the OA tissue microenvironment, the hydrogel microspheres undergo degradation by excessive MMP-13 and release HCQ under the hypoxia condition, which synergizes with the ROS-scavenging calixarene to inhibit the inflammatory response of macrophages. After being injected into the OA-inflamed joint, the HAM-SA@HCQ can significantly attenuate the oxidative stress, downregulate the expression of hypoxia-induced factor-1α and inflammatory cytokines, and prevent the cartilage from being destroyed.

8.
BMJ Open ; 13(12): e075502, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110382

RESUMO

INTRODUCTION: Exaggerated inflammatory response is one of the main mechanisms underlying heterotopic ossification (HO). It has been suggested that the antifibrinolytic drug tranexamic acid (TXA) can exert a significant anti-inflammatory effect during orthopaedic surgery. However, no prospective studies have yet investigated the effects of TXA on HO recurrence in patients following open elbow arthrolysis (OEA). METHODS AND ANALYSIS: Here, we present a protocol for a single-centre, randomised, double-blind, placebo-controlled trial to investigate the effectiveness of TXA on HO recurrence after OEA in a single hospital. A minimum sample size of 138 eligible and consenting participants randomised into treatment and control groups in a 1:1 manner will be included. Patients will receive 2 g of intravenous TXA (experimental group) or placebo (normal saline, control group) administered before skin incision. The primary outcome is HO recurrence rate within 12 months after surgery. The secondary outcomes are the serum immune-inflammatory cytokines including erythrocyte sedimentation rate, C reactive protein, interleukin (IL)-6, IL-1ß, IL-13 at the first and third day postoperatively, and elbow range of motion and functional score at 1.5, 6, 9 and 12 months after surgery. After completion of the trial, the results will be reported in accordance with the extensions of the Consolidated Standards of Reporting Trials Statement for trials. The results of this study should determine whether TXA can reduce the rates of HO occurrence after OEA. ETHICS AND DISSEMINATION: Ethical approval has been granted by the Medical Ethics Committee of the Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (reference number 2022-123-(1)). The results of this study will be disseminated through presentations at academic conferences and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: ChiCTR2300068106.


Assuntos
Antifibrinolíticos , Artropatias , Procedimentos Ortopédicos , Ossificação Heterotópica , Ácido Tranexâmico , Humanos , Ácido Tranexâmico/uso terapêutico , Cotovelo/cirurgia , China , Antifibrinolíticos/uso terapêutico , Método Duplo-Cego , Ossificação Heterotópica/tratamento farmacológico , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/cirurgia , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Heliyon ; 9(11): e21411, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954299

RESUMO

Background: Inadequate repair capacity and disturbed immune compartments are the main pathological causes of tendinopathy. Transplantation of mesenchymal stem cells (MSCs) become an effective clinic option to alleviate tendinopathy. Interleukin-1ß (IL-1ß) could confer on MSCs enhanced immunoregulatory capability to remodel the repair microenvironment favoring tissue repair. Therefore, IL-1ß activated UC-MSCs (1ßUC-MSCs) may exert favorable efficacy in promoting tendon repair in a preclinical tendinopathy rat model. Methods: Tendon-derived stem cells (TDSCs) were isolated and characterized. In vitro, the levels of immunoregulatory-related cytokines such as IL-1ß, IL-6, IL-10, and TGF-ß secreted by 1ßUC-MSCs and unprimed UC-MSCs was measured. And tendon-specific markers expressed by TDSCs cultured with primed cultured medium (CM) or unprimed CM were detected. In vivo, Achilles tendinopathy was induced by 30 µL collagenase I injection in Sprague Dawley rats. One week later, the rats were randomly injected with UC-MSCs primed with IL-1ß (106 cells per tendon), UC-MSCs, or PBS. After rats were sacrificed, histological evaluation, electron microscopy, biomechanical tests, gait performance were conducted to evaluate the structural and functional recovery of Achilles tendons. The inflammation and metabolic state of the extracellular matrix, and the potential mechanism were assessed by immunohistochemical staining and Western blot. Results: UC-MSCs were activated by IL-1ß to secrete higher levels of IL-10 and TGF-ß while the secretion levels of IL-6 and IL-1ß were not changed significantly, promoting a higher expression level of COL I and TNMD in TDSCs under proinflammatory environment. In vivo, the transplanted 1ßUC-MSCs could survive up to 5 weeks after injection with tenogenic differentiation and improved tendon healing histologically semi-quantified by modified Bonar scores. This structural regeneration was further confirmed by observation of ultrastructural morphology, and led to good functional recovery including improved biomechanical properties and gait performance. During this process, the inflammatory response and metabolism of the extracellular matrix was improved through TGF-ß/IL-10 pathway. Conclusion: This study demonstrated that the transplantation of UC-MSCs activated by IL-1ß exhibited satisfactory ability for promoting tendon functional repair in a tendinopathy rat model. During this process, the balance of inflammatory response and extracellular matrix metabolism was remodeled, and the TGF-ß/Smad2/3 and IL-10 signaling pathways were activated simultaneously. We cautiously conclude that the IL-1ß primed UC-MSCs could be a promising strategy for enhancing the ability of MSCs to treat tendinopathy.

10.
J Mater Chem B ; 11(48): 11552-11561, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37982207

RESUMO

Low efficiency of nerve growth and unstable release of loaded drugs have become a major problem in repairing peripheral nerve injury. Many intervention strategies were focused on simple drug loading, but have still been less effective. The key challenge is to establish a controlled release microenvironment to enable adequate nerve regeneration. In this study, we fabricate a multilayered compound nerve scaffold by electrospinning: with an anti-adhesive outer layer of polycaprolactone and an ECM-like inner layer consisting of a melatonin-loaded alginate hydrogel. We characterized the scaffold, and the loaded melatonin can be found to undergo controlled release. We applied them to a 15 mm rat model of sciatic nerve injury. After 16 weeks, the animals in each group were evaluated and compared for recovery of motor function, electrophysiology, target organ atrophy status, regenerative nerve morphology and relative protein expression levels of neural markers, inflammatory oxidative stress, and angiogenesis. We identify that the scaffold can improve functional ability evidenced by an increased sciatic functional index and nerve electrical conduction level. The antioxidant melatonin loaded in the scaffold reduces inflammation and oxidative stress in the reinnervated nerves, confirmed by increased HO-1 and decreased TNF-α levels in regenerating nerves. The relative expression of fast-type myosin was elevated in the target gastrocnemius muscle. An improvement in angiogenesis facilitates neurite extension and axonal sprouting. This scaffold can effectively restore the ECM-like microenvironment and improve the quality of nerve regeneration by controlled melatonin release, thus enlightening the design criteria on nerve scaffolds for peripheral nerve injury in the future.


Assuntos
Melatonina , Traumatismos dos Nervos Periféricos , Ratos , Animais , Melatonina/farmacologia , Hidrogéis/farmacologia , Nervo Isquiático/fisiologia , Preparações de Ação Retardada/farmacologia , Alicerces Teciduais , Regeneração Nervosa , Matriz Extracelular
11.
Biofabrication ; 16(1)2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37832555

RESUMO

Neural tissues react to injuries through the orchestration of cellular reprogramming, generating specialized cells and activating gene expression that helps with tissue remodeling and homeostasis. Simplified biomimetic models are encouraged to amplify the physiological and morphological changes during neural regeneration at cellular and molecular levels. Recent years have witnessed growing interest in lab-on-a-chip technologies for the fabrication of neural interfaces. Neural system-on-a-chip devices are promisingin vitromicrophysiological platforms that replicate the key structural and functional characteristics of neural tissues. Microfluidics and microelectrode arrays are two fundamental techniques that are leveraged to address the need for microfabricated neural devices. In this review, we explore the innovative fabrication, mechano-physiological parameters, spatiotemporal control of neural cell cultures and chip-based neurogenesis. Although the high variability in different constructs, and the restriction in experimental and analytical access limit the real-life applications of microphysiological models, neural system-on-a-chip devices have gained considerable translatability for modeling neuropathies, drug screening and personalized therapy.


Assuntos
Microtecnologia , Tecido Nervoso , Dispositivos Lab-On-A-Chip , Microfluídica , Técnicas de Cultura de Células
12.
Plast Reconstr Surg ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37737820

RESUMO

BACKGROUND: Heterotopic ossification (HO), a common complication after elbow trauma, causes severe limb disability, Surgical resection is usually performed for post-traumatic elbow HO (PTEHO) to regain mobility. Though it was heavily reported, there has been no long-term (minimum 5-year) follow-up. PATIENTS AND METHODS: 173 patients who underwent PTEHO resection were followed up for minimum 5 years in 4 hospitals between January/2015 and August/2016. Demographics, disease characteristics, preoperative and minimum 5-year assessments were collected. After controlling for potential variables when dividing long-term ROM into <120° and ≥120°, risk factors for ROM recovery to modern functional arc were identified through multivariable regression analysis. RESULTS: Clinically important improvements in ROM of 39°â†’124° were obtained at final follow-up, and 74.6% achieved modern functional arc (≥120°). Mayo Elbow Performance Index (MEPI) had clinically important increases of 69→93 points at final follow-up, and 96.5% reported excellent-to-good. Pain (Numerical Rating Scale, 1.9→0.6 points) and ulnar nerve symptoms were improved. Total complication rate was 15.6%, including new-onset ulnar nerve symptoms (5.8%), HO recurrence with clinical symptoms (6.9%), elbow instability (1.7%), and joint infection (1.2%). Previously reported high body mass index (BMI, p=0.002) and long disease duration (p=0.033) were equally identified as risk factors for not achieving modern functional arc, meanwhile tobacco use (p=0.024) and ankylosed HO (p<0.001) were found to be new risk factors. CONCLUSION: Surgical resection yields satisfactory outcomes for PTEHO at long-term of minimum 5 years. High BMI, tobacco use, long disease duration, and ankylosed HO would negatively affect ROM recovery to modern functional arc (≥120°). LEVEL OF EVIDENCE: Level IV, therapeutic study.

13.
Bioact Mater ; 30: 169-183, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37593145

RESUMO

Osteoarthritis (OA) is the most common disabling joint disease with no effective disease modifying drugs. Extracellular vesicles released by several types of mesenchymal stem cells could promote cartilage repair and ameliorate OA pathology in animal models, representing a novel therapeutic strategy. In this study, we demonstrated that extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUC-EVs) could maintain chondrocyte homeostasis and alleviate OA, and further revealed a novel molecular mechanism of this therapeutic effect. miR-223, which could directly bind with the 3'UTR of NLRP3 mRNA, was found to be a key miRNA for hUC-EVs to exert beneficial effects on inflammation inhibiting and cartilage protecting. For enhancing the effect on mitigating osteoarthritis, exogenous miR-223 was loaded into hUC-EVs by electroporation, and a collagen II-targeting peptide (WYRGRL) was modified onto the surface of hUC-EVs by genetic engineering to achieve a more targeted and efficient RNA delivery to the cartilage. The dual-engineered EVs showed a maximal effect on inhibiting the NLRP3 inflammasome activation and chondrocyte pyroptosis, and offered excellent results for the treatment of OA. This study provides a novel theoretical basis and a promising therapeutic strategy for the application of engineered extracellular vesicles in OA treatment.

14.
IUBMB Life ; 75(12): 1003-1016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37503658

RESUMO

Tendinopathy is a condition characterized by chronic, complex, and multidimensional pathological changes in the tendons. The etiology of tendinopathy is the combination of several factors, and diabetes mellitus (DM) is a risk factor. Increasing evidence has shown that the diabetic microenvironment plays an important role in tendinopathy. However, the mechanism causing tendinopathy in patients with DM remains unclear. Our study found that ferroptosis played an important role in tendinopathy in patients with DM. In vitro, high glucose and high fat treatment was used to simulate the DM microenvironment. Results showed that such a mechanism significantly increased ferroptosis, which was characterized by mass cell death, lipid peroxide accumulation, mitochondrial morphological changes, mitochondrial membrane potential decline, iron overload, and the activation of ferroptosis-related genes, in tendon-derived stem cells cultured in vitro. In the animal studies, db/db mice were used in the DM model, and the db mice had severe tendon injury and high ACSL4 and TfR1 expressions. These phenomena could be alleviated by the ferroptosis inhibitor ferrostatin-1. In conclusion, ferroptosis is associated with tendinopathy in patients with DM, and ferroptosis targeting may be a novel approach for treating diabetic tendinopathy. Our results can provide a new strategy for managing tendinopathy clinically in patients with DM.


Assuntos
Diabetes Mellitus , Ferroptose , Hipercolesterolemia , Tendinopatia , Humanos , Camundongos , Animais , Ferroptose/genética , Tendões/metabolismo , Diabetes Mellitus/patologia , Hipercolesterolemia/metabolismo , Tendinopatia/patologia , Células-Tronco/metabolismo
15.
J Bone Joint Surg Am ; 105(14): 1093-1100, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37339180

RESUMO

BACKGROUND: Heterotopic ossification (HO) is a common complication of elbow trauma that can affect limb mobility. Inflammation is an initiating factor for HO formation. Tranexamic acid (TXA) can reduce the inflammatory response after orthopaedic surgery. However, evidence regarding the effectiveness of TXA use for HO prevention after elbow trauma surgery is lacking. METHODS: This retrospective observational propensity-score-matched (PSM) cohort study was conducted from July 1, 2019, to June 30, 2021, at the National Orthopedics Clinical Medical Center, Shanghai, People's Republic of China. A total of 640 patients who underwent surgery following elbow trauma were evaluated. The present study excluded patients with an age of <18 years; those with a history of elbow fracture; those with a central nervous system injury, spinal cord injury, burn injury, or destructive injury; and those who had been lost to follow-up. After 1:1 matching on the basis of sex, age, dominant arm, injury type, open injury, comminuted fracture, ipsilateral trauma, time from injury to surgery, and nonsteroidal anti-inflammatory drug use, the TXA group and the no-TXA group comprised 241 patients each. RESULTS: In the PSM population, the prevalence of HO was 8.71% in the TXA group and 16.18% in the no-TXA group (with rates of 2.07% and 5.80% for clinically important HO, respectively). Logistic regression analyses showed that TXA use was associated with a lower rate of HO (odds ratio [OR], 0.49; 95% CI, 0.28 to 0.86; p = 0.014) than no TXA use, as well as with a lower rate of clinically important HO (OR, 0.34; 95% CI, 0.11 to 0.91; p = 0.044). None of the baseline covariates significantly affected the relationship between TXA use and HO rate (p > 0.05 for all). Sensitivity analyses supported these findings. CONCLUSIONS: TXA prophylaxis may be an appropriate method for the prevention of HO following elbow trauma. LEVEL OF EVIDENCE: Therapeutic Level III . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Traumatismos do Braço , Ossificação Heterotópica , Ácido Tranexâmico , Humanos , Adolescente , Ácido Tranexâmico/uso terapêutico , Estudos de Coortes , Cotovelo , Estudos Retrospectivos , Fatores de Risco , Prevalência , China/epidemiologia , Ossificação Heterotópica/epidemiologia , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/prevenção & controle
16.
Stem Cell Rev Rep ; 19(7): 2311-2328, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37284914

RESUMO

BACKGROUND: Heterotopic ossification (HO) is one of the most intractable conditions following injury to the musculoskeletal system. In recent years, much attention has been paid to the role of lncRNA in musculoskeletal disorders, but its role in HO was still unclear. Therefore, this study attempted to determine the role of lncRNA MEG3 in the formation of post-traumatic HO and further explore the underlying mechanisms. RESULTS: On the basis of high-throughput sequencing and qPCR validation, elevated expression of the lncRNA MEG3 was shown during traumatic HO formation. Accordingly, in vitro experiments demonstrated that lncRNA MEG3 promoted aberrant osteogenic differentiation of tendon-derived stem cells (TDSCs). Mechanical exploration through RNA pulldown, luciferase reporter gene assay and RNA immunoprecipitation assay identified the direct binding relationship between miR-129-5p and MEG3, or miR-129-5p and TCF4. Further rescue experiments confirmed the miR-129-5p/TCF4/ß-catenin axis to be downstream molecular cascade responsible for the osteogenic-motivating effects of MEG3 on the TDSCs. Finally, experiments in a mouse burn/tenotomy model corroborated the promoting effects of MEG3 on the formation of HO through the miR-129-5p/TCF4/ß-catenin axis. CONCLUSIONS: Our study demonstrated that the lncRNA MEG3 promoted osteogenic differentiation of TDSCs and thus the formation of heterotopic ossification, which could be a potential therapeutic target.

17.
FASEB J ; 37(7): e23057, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367700

RESUMO

Heterotopic ossification occurs as a pathological ossification condition characterized by ectopic bone formation within soft tissues following trauma. Vascularization has long been established to fuel skeletal ossification during tissue development and regeneration. However, the feasibility of vascularization as a target of heterotopic ossification prevention remained to be further clarified. Here, we aimed to identify whether verteporfin as a widely used FDA-approved anti-vascularization drug could effectively inhibit trauma-induced heterotopic ossification formation. In the current study, we found that verteporfin not only dose dependently inhibited the angiogenic activity of human umbilical vein endothelial cells (HUVECs) but also the osteogenic differentiation of tendon stem cells (TDSCs). Moreover, YAP/ß-catenin signaling axis was downregulated by the verteporfin. Application of lithium chloride, an agonist of ß-catenin, recovered TDSCs osteogenesis and HUVECs angiogenesis that was inhibited by verteporfin. In vivo, verteporfin attenuated heterotopic ossification formation by decelerating osteogenesis and the vessels densely associated with osteoprogenitors formation, which could also be readily reversed by lithium chloride, as revealed by histological analysis and Micro-CT scan in a murine burn/tenotomy model. Collectively, this study confirmed the therapeutic effect of verteporfin on angiogenesis and osteogenesis in trauma-induced heterotopic ossification. Our study sheds light on the anti-vascularization strategy with verteporfin as a candidate treatment for heterotopic ossification prevention.


Assuntos
Tendão do Calcâneo , Ossificação Heterotópica , Camundongos , Humanos , Animais , Osteogênese , Tendão do Calcâneo/patologia , Verteporfina/farmacologia , beta Catenina , Células Endoteliais/patologia , Cloreto de Lítio/farmacologia , Ossificação Heterotópica/tratamento farmacológico , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/prevenção & controle
18.
Gels ; 9(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37232972

RESUMO

Treating chronic wounds is a global challenge. In diabetes mellitus cases, long-time and excess inflammatory responses at the injury site may delay the healing of intractable wounds. Macrophage polarization (M1/M2 types) can be closely associated with inflammatory factor generation during wound healing. Quercetin (QCT) is an efficient agent against oxidation and fibrosis that promotes wound healing. It can also inhibit inflammatory responses by regulating M1-to-M2 macrophage polarization. However, its limited solubility, low bioavailability, and hydrophobicity are the main issues restricting its applicability in wound healing. The small intestinal submucosa (SIS) has also been widely studied for treating acute/chronic wounds. It is also being extensively researched as a suitable carrier for tissue regeneration. As an extracellular matrix, SIS can support angiogenesis, cell migration, and proliferation, offering growth factors involved in tissue formation signaling and assisting wound healing. We developed a series of promising biosafe novel diabetic wound repair hydrogel wound dressings with several effects, including self-healing properties, water absorption, and immunomodulatory effects. A full-thickness wound diabetic rat model was constructed for in vivo assessment of QCT@SIS hydrogel, in which hydrogels achieved a markedly increased wound repair rate. Their effect was determined by the promotion of the wound healing process, the thickness of granulation tissue, vascularization, and macrophage polarization during wound healing. At the same time, we injected the hydrogel subcutaneously into healthy rats to perform histological analyses of sections of the heart, spleen, liver, kidney, and lung. We then tested the biochemical index levels in serum to determine the biological safety of the QCT@SIS hydrogel. In this study, the developed SIS showed convergence of biological, mechanical, and wound-healing capabilities. Here, we focused on constructing a self-healing, water-absorbable, immunomodulatory, and biocompatible hydrogel as a synergistic treatment paradigm for diabetic wounds by gelling the SIS and loading QCT for slow drug release.

19.
Adv Sci (Weinh) ; 10(19): e2207383, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37204068

RESUMO

Heterotopic ossification (HO) represents an unwanted ossific wound healing response to the soft tissue injury which caused catastrophic limb dysfunction. Recent studies established the involvement of inflammation and cellular senescence in the tissue healing process, though their role in HO still remained to be clarified. Here, a novel crosstalk where the pyroptotic macrophages aroused tendon-derived stem cells (TDSCs) senescence is revealed to encourage osteogenic healing during trauma-induced HO formation. Macrophage pyroptosis blockade reduces the senescent cell burden and HO formation in NLRP3 knockout mice. Pyroptosis-driven IL-1ß and extracellular vesicles (EVs) secretion from macrophages are determined to motivate TDSCs senescence and resultant osteogenesis. Mechanistically, pyroptosis in macrophages enhances the exosomal release of high mobility group protein 1 (HMGB1), which directly bounds TLR9 in TDSCs to trigger morbid signaling. NF-κB signaling is confirmed to be the converging downstream pathway of TDSCs in response to HMGB1-containing EVs and IL-1ß. This study adds insights into aberrant regeneration-based theory for HO formation and boosts therapeutic strategy development.


Assuntos
Proteína HMGB1 , Ossificação Heterotópica , Animais , Camundongos , Senescência Celular , Proteína HMGB1/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA