Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Transl Psychiatry ; 14(1): 151, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504095

RESUMO

Integrating CYP2D6 genotyping and therapeutic drug monitoring (TDM) is crucial for guiding individualized atomoxetine therapy in children with attention-deficit/hyperactivity disorder (ADHD). The aim of this retrospective study was (1) to investigate the link between the efficacy and tolerability of atomoxetine in children with ADHD and plasma atomoxetine concentrations based on their CYP2D6 genotypes; (2) to offer TDM reference range recommendations for atomoxetine based on the CYP2D6 genotypes of children receiving different dosage regimens. This retrospective study covered children and adolescents with ADHD between the ages of 6 and <18, who visited the psychological and behavioral clinic of Children's Hospital of Nanjing Medical University from June 1, 2021, to January 31, 2023. The demographic information and laboratory examination data, including CYP2D6 genotype tests and routine TDM of atomoxetine were obtained from the hospital information system. We used univariate analysis, Mann-Whitney U nonparametric test, Kruskal-Wallis test, and the receiver operating characteristic (ROC) curve to investigate outcomes of interest. 515 plasma atomoxetine concentrations of 385 children (325 boys and 60 girls) with ADHD between 6 and 16 years of age were included for statistical analysis in this study. Based on genotyping results, >60% of enrolled children belonged to the CYP2D6 extensive metabolizer (EM), while <40% fell into the intermediate metabolizer (IM). CYP2D6 IMs exhibited higher dose-corrected plasma atomoxetine concentrations by 1.4-2.2 folds than those CYP2D6 EMs. Moreover, CYP2D6 IMs exhibited a higher response rate compare to EMs (93.55% vs 85.71%, P = 0.0132), with higher peak plasma atomoxetine concentrations by 1.67 times than those of EMs. Further ROC analysis revealed that individuals under once daily in the morning (q.m.) dosing regimen exhibited a more effective response to atomoxetine when their levels were ≥ 268 ng/mL (AUC = 0.710, P < 0.001). In addition, CYP2D6 IMs receiving q.m. dosing of atomoxetine were more likely to experience adverse reactions in the central nervous system and gastrointestinal system when plasma atomoxetine concentrations reach 465 and 509 ng/mL, respectively. The findings in this study provided promising treatment strategy for Chinese children with ADHD based on their CYP2D6 genotypes and plasma atomoxetine concentration monitoring. A peak plasma atomoxetine concentration higher than 268 ng/mL might be requisite for q.m. dosing. Assuredly, to validate and reinforce these initial findings, it is necessary to collect further data in controlled studies with a larger sample size.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Criança , Feminino , Humanos , Masculino , Inibidores da Captação Adrenérgica/efeitos adversos , Cloridrato de Atomoxetina/efeitos adversos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Citocromo P-450 CYP2D6/genética , Monitoramento de Medicamentos , Genótipo , Propilaminas/efeitos adversos , Estudos Retrospectivos , Lactente , Pré-Escolar
2.
Cell Mol Neurobiol ; 44(1): 25, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393376

RESUMO

Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.


Assuntos
Ferroptose , AVC Isquêmico , Humanos , Antioxidantes , Apoptose , Ferro , Peroxidação de Lipídeos
3.
Int Immunopharmacol ; 127: 111396, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38134597

RESUMO

Microglia, resident brain immune cells, is critical in inflammation, apoptosis, neurogenesis and neurological recovery during cerebral ischemia/reperfusion (I/R) injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a novel identified endoplasmic reticulum stress-inducible neurotrophic factor, can alleviate I/R injury by reducing the inflammatory reaction, but its specific regulatory mechanism on microglia after ischemic stroke has not been fully clarified. To mimic the process of ischemia/reperfusion in vivo and in vitro, middle cerebral artery occlusion/reperfusion (MCAO/R) was induced in C57BL/6J mice and oxygen glucose deprivation/reoxygenation (OGD/R) model was established in BV-2 cells. Moreover, MANF small interfering RNA (siRNA) was used to silence the expression of endogenous MANF, while recombination human MANF protein (rhMANF) acted as an exogenous supplement. Seventy-two hours after MCAO/R, 2,3,5-triphenyltetrazolium staining, neurological scores, brain water content, immunohistochemical staining, immunofluorescent staining, flow cytometry, hematoxylin and eosin staining, quantitative real-time PCR and western blot are applied to evaluate the protective effect and possible mechanism of MANF on cerebral I/R injury. In vitro, cell viability, inflammatory cytokines and the expression of MANF, A20, NF-κB and the markers of microglia were analyzed. The results showed that MANF decreased brain infarct volume, neurological scores, and brain water content. In addition, MANF promoted the polarization of microglia to an anti-inflammatory phenotype both in vivo and in vitro, which are related to A20/NF-κB pathway. In summary, MANF may offer novel therapeutic approaches for ischemic stroke in the process of microglia polarization.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , Humanos , NF-kappa B/metabolismo , Microglia , Ratos Sprague-Dawley , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Água/farmacologia , Isquemia Encefálica/tratamento farmacológico
4.
Oxid Med Cell Longev ; 2023: 6916819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144707

RESUMO

Microglia are activated following cerebral ischemic insult. P-glycoprotein (P-gp) is an efflux transporter on microvascular endothelial cells and upregulated after cerebral ischemia. This study evaluated the effects and possible mechanisms of P-gp on microglial polarization/activation in mice after ischemic stroke. P-gp-specific siRNA and adeno-associated virus (p-AAV) were used to silence and overexpress P-gp, respectively. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) were performed in mice and cerebral microvascular endothelial cells (bEnd.3) in vitro, respectively. OGD/R-injured bEnd.3 cells were cocultured with mouse microglial cells (BV2) in Transwell. Influences on acute ischemic stroke outcome, the expression of inflammatory cytokines, and chemokines and chemokines receptors, microglial polarization, glucocorticoid receptor (GR) nuclear translocation, and GR-mediated mRNA decay (GMD) activation were evaluated via reverse transcription real-time polymerase chain reaction, western blot, or immunofluorescence. Silencing P-gp markedly alleviated experimental ischemia injury as indicated by reduced cerebral infarct size, improved neurological deficits, and reduced the expression of interleukin-6 (IL-6) and IL-12 expression. Silencing P-gp also mitigated proinflammatory microglial polarization and the expression of C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 expression, whereas promoted anti-inflammatory microglia polarization. Additionally, P-gp silencing promoted GR nuclear translocation and the expression of GMD relative proteins in endothelial cells. Conversely, overexpressing P-gp via p-AAV transfection offset all these effects. Furthermore, silencing endothelial GR counteracted all effects mediated by silencing or overexpressing P-gp. Elevated P-gp expression aggravated inflammatory response and brain damage after ischemic stroke by augmenting proinflammatory microglial polarization in association with increased endothelial CCL2 release due to GMD inhibition by P-gp.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Camundongos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Isquemia/metabolismo , AVC Isquêmico/metabolismo , Microglia/metabolismo , Traumatismo por Reperfusão/metabolismo
5.
Phytomedicine ; 121: 155104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797433

RESUMO

BACKGROUND: Damaged mitophagy and impaired angiogenesis involve in the pathogenic development of ischemic stroke. Active fraction of Polyrhachis vicina (Roger) (AFPR) showed great potential on neurological disease with it's remarkable anti-inflammatory and anti-oxidative effects. PURPOSE: This study designed to clarify the correlation between Pink1/Parkin-mediated mitophagy and angiogenesis after stroke, and to elucidate the role of SIRT3 in regulating mitophagy and angiogenesis, and to address the mechanism of AFPR on promoting mitophagy and angiogenesis in microvessels endothelium of ischemic brain. STUDY DESIGN: A cerebral ischemia/reperfusion (CIR) rat model was developed by middle cerebral artery occlusion procedure. bEnd.3 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic CIR process. Neurological function, mitophagy and angiogenesis related indicators were measured. SIRT3 siRNA and 3-MA were used to verify the interaction between SIRT3-mediated mitophagy and angiogenesis. METHODS: CIR rats were orally treated with AFPR (8 and 4 g raw drug /kg) and Nimodipine (10.8 mg/kg) for 12 days to mimic the recovery phase post-stroke. The neurological function assessment, TTC staining, HE staining, TUNEL staining and Nissl staining were performed to assess neuroprotective effects of AFPR against CIR. Then CD31-labeled microvessel density in brain was visualized and quantified by immunofluorescence staining. Mitochondrial ultrastructure was assessed by transmission electron microscope scanning. Expressions of relative proteins,e.g. SIRT3, Pink1, Parkin, LC3-II, p62, VEGFA, involving in mitophagy and angiogenesis, were detected by Western blotting analysis. In vitro, bEnd.3 cells were cultured with AFPR or in combination of autophagy inhibitor 3-MA during the reoxygenation. Then cell viability, and LDH releasing were measured. Angiogenic indicators,such as migration and tube formation activity, VEGFA level were determined. To assess effects of AFPR on mitophagy, mitophagy-related proteins were detected, as well as the autophagosome engulfment and lysosome degradation of mitochondria. To address the role of SIRT3, deacetylation activity of SIRT3 was validated by detecting acetylated FOXO3A level with co-immunoprecipitation (Co-IP) assay. Pre-treatment of siRNA or combination use of 3-MA were used to verify the detailed mechanism. RESULTS: AFPR remarkably reduced neurological scores and infarct size, alleviated neuron apoptosis in cortex, and increased Nissl density in hippocampus of CIR rats. In addition, AFPR significantly promoted angiogenesis by increasing microvessels density and VEGFA expressions, increased SIRT3 expression, and activated Pink1/Parkin mediated mitophagy. In bEnd.3 cells, the combination use of 3-MA and AFPR further demonstrated that AFPR might promote angiogenesis after OGD/R injury through activating Pink1/Parkin mediated mitophagy. Co-IP assay suggested AFPR reduced acetylated FOXO3A level. This might be correlated with an elevation of SIRT3 expression and it's deacetylation activity. SIRT3 siRNA pretreatment significantly abolished the activation of mitophagy through Pink1/Parkin axis, eventually inhibited angiogenesis. CONCLUSION: AFPR promoted angiogenesis through activating mitophagy after cerebral ischemia reperfusion, which might partially involved in the amelioration of SIRT3-mediated regulation on Pink1/Parkin axis. Our study will shed new light on the role of SIRT3 in ischemic brain, especially in regulating mitophagy and angiogenesis after stroke.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Sirtuína 3 , Ratos , Camundongos , Animais , Mitofagia , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Isquemia Encefálica/patologia , Traumatismo por Reperfusão/metabolismo , Oxigênio , Ubiquitina-Proteína Ligases/metabolismo , Infarto Cerebral , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/farmacologia
6.
Cell Mol Neurobiol ; 43(6): 2567-2589, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36988770

RESUMO

Tripartite motif (TRIM) protein superfamily is a group of E3 ubiquitin ligases characterized by the conserved RING domain, the B-box domain, and the coiled-coil domain (RBCC). It is widely involved in various physiological and pathological processes, such as intracellular signal transduction, cell cycle regulation, oncogenesis, and innate immune response. Central nervous system (CNS) diseases are composed of encephalopathy and spinal cord diseases, which have a high disability and mortality rate. Patients are often unable to take care of themselves and their life quality can be seriously declined. Initially, the function research of TRIM proteins mainly focused on cancer. However, in recent years, accumulating attention is paid to the roles they play in CNS diseases. In this review, we integrate the reported roles of TRIM proteins in the pathological process of CNS diseases and related signaling pathways, hoping to provide theoretical bases for further research in treating CNS diseases targeting TRIM proteins. TRIM proteins participated in CNS diseases. TRIM protein family is characterized by a highly conserved RBCC domain, referring to the RING domain, the B-box domain, and the coiled-coil domain. Recent research has discovered the relations between TRIM proteins and various CNS diseases, especially Alzheimer's disease, Parkinson's disease, and ischemic stroke.


Assuntos
Doenças do Sistema Nervoso Central , Ubiquitina-Proteína Ligases , Humanos , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Domínios Proteicos
7.
Genomics ; 115(2): 110594, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863417

RESUMO

Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re­oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re­oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.


Assuntos
Exossomos , AVC Isquêmico , MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Astrócitos/metabolismo , Exossomos/genética , Exossomos/metabolismo , AVC Isquêmico/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo
8.
Eur J Clin Pharmacol ; 79(3): 349-370, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645468

RESUMO

PURPOSE: There is marked heterogeneity in treatment response of atomoxetine in patients with attention deficit/hyperactivity disorder (ADHD), especially for the pediatric population. This review aims to evaluate current evidence to characterize the dose-exposure relationship, establish clinically relevant metrics for systemic exposure to atomoxetine, define a therapeutic exposure range, and to provide a dose-adaptation strategy before implementing personalized dosing for atomoxetine in children with ADHD. METHODS: A comprehensive search was performed across electronic databases (PubMed and Embase) covering the period of January 1, 1985 to July 10, 2022, to summarize recent advances in the pharmacokinetics, pharmacogenomics/pharmacogenetics (PGx), therapeutic drug monitoring (TDM), physiologically based pharmacokinetics (PBPK), and population pharmacokinetics (PPK) of atomoxetine in children with ADHD. RESULTS: Some factors affecting the pharmacokinetics of atomoxetine were summarized, including food, CYP2D6 and CYP2C19 phenotypes, and drug‒drug interactions (DDIs). The association between treatment response and genetic polymorphisms of genes encoding pharmacological targets, such as norepinephrine transporter (NET/SLC6A2) and dopamine ß hydroxylase (DBH), was also discussed. Based on well-developed and validated assays for monitoring plasma concentrations of atomoxetine, the therapeutic reference range in pediatric patients with ADHD proposed by several studies was summarized. However, supporting evidence on the relationship between systemic atomoxetine exposure levels and clinical response was far from sufficient. CONCLUSION: Personalizing atomoxetine dosage may be even more complex than anticipated thus far, but elucidating the best way to tailor the non-stimulant to a patient's individual need will be achieved by combining two strategies: detailed research in linking the pharmacokinetics and pharmacodynamics in pediatric patients, and better understanding in nature and causes of ADHD, as well as environmental stressors.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Humanos , Cloridrato de Atomoxetina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Polimorfismo Genético , Interações Medicamentosas , Farmacogenética , Inibidores da Captação Adrenérgica/uso terapêutico
9.
Arch Toxicol ; 97(2): 377-392, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36418572

RESUMO

Vincristine (VCR), an effective antitumor drug, has been utilized in several polytherapy regimens for acute lymphoblastic leukemia, neuroblastoma and rhabdomyosarcoma. However, clinical evidence shows that the metabolism of VCR varies greatly among patients. The traditional based body surface area (BSA) administration method is prone to insufficient exposure to VCR or severe VCR-induced peripheral neurotoxicity (VIPN). Therefore, reliable strategies are urgently needed to improve efficacy and reduce VIPN. Due to the unpredictable pharmacokinetic changes of VCR, therapeutic drug monitoring (TDM) may help to ensure its efficacy and to manage VIPN. At present, there is a lot of supporting evidence for the suitability of applying TDM to VCR therapy. Based on the consensus guidelines drafted by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), this review aimed to summarize various available data to evaluate the potential utility of VCR TDM for cancer patients. Of note, valuable evidence has accumulated on pharmacokinetics variability, pharmacodynamics, drug exposure-clinical response relationship, biomarkers for VIPN prediction, and assays for VCR monitoring. However, there are still many relevant clinical pharmacological questions that cannot yet be answered merely based on insufficient evidence. Currently, we cannot recommend a therapeutic exposure range and cannot yet provide a dose-adaptation strategy for clinicians and patients. In areas where the evidence is not yet sufficient, more research is needed in the future. The precision medicine of VCR cannot rely on TDM alone and needs to consider the clinical, environmental, genetic background and patient-specific factors as a whole.


Assuntos
Neuroblastoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Adulto , Vincristina/efeitos adversos , Monitoramento de Medicamentos , Medicina de Precisão
10.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203348

RESUMO

Ischemic stroke is one of the most significant causes of morbidity and mortality worldwide. However, there is a dearth of effective drugs and treatment methods for ischemic stroke. Significant numbers of circular RNAs (circRNAs) exhibit abnormal expression following ischemic stroke and are considered potential therapeutic targets. CircRNAs have emerged as promising biomarkers due to their stable expression in peripheral blood and their potential significance in ischemic stroke diagnosis and prognosis. This review provides a summary of 31 circRNAs involved in the pathophysiological processes of apoptosis, autophagy, inflammation, oxidative stress, and angiogenesis following ischemic stroke. Furthermore, we discuss the mechanisms of action of said circRNAs and their potential clinical applications. Ultimately, circRNAs exhibit promise as both therapeutic targets and biomarkers for ischemic stroke.


Assuntos
AVC Isquêmico , RNA Circular , Humanos , RNA Circular/genética , AVC Isquêmico/diagnóstico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/genética , Apoptose , Autofagia , Biomarcadores
11.
Aging Dis ; 13(5): 1546-1561, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36186136

RESUMO

P-glycoprotein (P-gp) is expressed on brain microvessel endothelial cells of blood-brain barrier (BBB) and elevated after cerebral ischemia. In this study, we explored the influence and potential mechanisms of P-gp on BBB function in experimental ischemic stroke in vivo and in vitro. Middle cerebral artery occlusion/reperfusion (MCAO/R) was created in mice. Oxygen-glucose deprivation/reoxygenation (OGD/R) was performed in brain microvascular vessel-derived endothelial cells (bEnd.3) to mimic ischemia/reperfusion injury in vitro. P-gp-specific siRNA and pharmacological inhibitor cyclosporine A were used to inhibit P-gp, whereas pcDNA3.1 was utilized to overexpress P-gp. Twenty-four hours after reperfusion, acute ischemic stroke outcome, BBB integrity and permeability, autophagic proteins and relative signaling pathways were evaluated. P-gp levels were markedly elevated in mouse brain and endothelial cells following MCAO/R and OGD/R, respectively. P-gp siRNA silencing or pharmacologically inhibiting (cyclosporine A) reduced infarct volume and brain edema, attenuated brain pathology, and improved neurological behavior in association with attenuated accumulation of neutrophils and macrophages, reduced expression levels of inflammatory cytokines (TNF-α and IL-1ß), matrix metalloproteinases (MMP-2 and MMP-9) and adhesion molecules (ICAM-1 and VCAM-1). P-gp silence also counteracted BBB leakage, restored the expressions of tight junction proteins (Claudin-5, Occludin and ZO-1), activated autophagic proteins (upregulated LC3-II/LC3-I and Beclin 1, and downregulated P62), and diminished Akt/mTOR signal activity in mice following MCAO/R. In the endothelial cell OGD/R assay, P-gp silence downregulated the expressions of inflammatory cytokines and adhesion molecules, inhibited leukocytes adhesion and migration, increased tight junction protein levels, and activated autophagy, all were reversible by forceful P-gp expression. Additionally, treatment with an autophagy inhibitor (3-methyladenine) abolished protections against ischemic stroke and tight junction proteins reduction followed by P-gp silence. In conclusion, increased P-gp expression after ischemic injury resulted in BBB dysfunction and hyperpermeability by suppressing Akt/mTOR-induced endothelial autophagy.

12.
Cell Mol Neurobiol ; 42(3): 501-519, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32865676

RESUMO

Stroke has become the most disabling and the second most fatal disease in the world. It has been a top priority to reveal the pathophysiology of stroke at cellular and molecular levels. A large number of long non-coding RNAs (lncRNAs) are identified to be abnormally expressed after stroke. Here, we summarize 35 lncRNAs associated with stroke, and clarify their functions on the prognosis through signal transduction and predictive values as biomarkers. Changes in the expression of these lncRNAs mediate a wide range of pathological processes in stroke, including apoptosis, inflammation, angiogenesis, and autophagy. Based on the exploration of the functions and mechanisms of lncRNAs in stroke, more timely, accurate predictions and more effective, safer treatments for stroke could be developed.


Assuntos
RNA Longo não Codificante , Acidente Vascular Cerebral , Apoptose , Biomarcadores , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
13.
Arch Physiol Biochem ; 128(6): 1579-1590, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32608276

RESUMO

Inflammation in the central nervous system (CNS) contributes to disease pathologies by disrupting the integrity of the blood-brain barrier (BBB). Tight junctions (TJ) are a key component of the BBB. Following hypoxic-ischaemic or mechanical injury to the brain, inflammatory mediators are released such as cytokines, chemokines, and growth factors. Simultaneously, matrix metalloproteinases (MMPs) are released which can degrade TJ proteins. Subsequently, the function and morphology of the BBB are disrupted, which allows immune cells an opportunity to enter into the brain parenchyma. This review summarises the information on the role of TJ protein families in the BBB and provides a comprehensive summary of the mechanisms whereby inflammation breaks down the BBB by increasing degradation of TJ proteins.


Assuntos
Barreira Hematoencefálica , Junções Íntimas , Humanos , Barreira Hematoencefálica/metabolismo , Junções Íntimas/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Citocinas/metabolismo , Metaloproteinases da Matriz/metabolismo
14.
Microvasc Res ; 140: 104297, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890690

RESUMO

Angiogenesis caused by acute vascular occlusion occurs in various ischemic diseases. The in vitro tube formation assay by endothelial cells is a rapid, quantitative method for drug discovery on angiogenesis. Tube formation assay on Matrigel has been widely used to identify the angiogenesis, however, there are some problems to limit its application. In this study, we found for the first time that sodium dithionite (SD) could induce endothelial cell tube formation without Matrigel under hypoxia condition. To further verify our findings, the angiogenesis related proteins and mRNA at different time points after tube formation were measured both in primary human large-vessel endothelial cell (HUVECs) and murine microvascular endothelial cell line (Bend.3). In conclusion, compared with traditional tube formation on Matrigel, the novel model exhibits the following advantages: (1) Combination oxygen glucose deprivation with sodium dithionite (OGD-SD) model is operated more easily than traditional tube formation. (2) OGD-SD can be used for not only cell imaging, but also immunofluorescence, protein extraction and gene analysis. (3) OGD-SD is more applicable to acute hypoxia model of endothelial cell in vitro. (4) OGD-SD may be more suitable to identify molecular mechanism of compound that intervenes processes of pro-tube formation, tube formation and tube disconnection.


Assuntos
Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Neovascularização Patológica , Neovascularização Fisiológica , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Bioensaio , Hipóxia Celular , Linhagem Celular , Movimento Celular , Ditionita/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Glucose/deficiência , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais
15.
Front Pharmacol ; 12: 771487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955843

RESUMO

Vincristine (VCR) is the first-line chemotherapeutic medication often co-administered with other drugs to treat childhood acute lymphoblastic leukemia. Dose-dependent neurotoxicity is the main factor restricting VCR's clinical application. VCR-induced peripheral neuropathy (VIPN) sometimes results in dose reduction or omission, leading to clinical complications or affecting the patient's quality of life. With regard to the genetic basis of drug responses, preemptive pharmacogenomic testing and simultaneous blood level monitoring could be helpful for the transformation of various findings into individualized therapies. In this review, we discussed the potential associations between genetic variants in genes contributing to the pharmacokinetics/pharmacodynamics of VCR and VIPN incidence and severity in patients with acute lymphoblastic leukemia. Of note, genetic variants in the CEP72 gene have great potential to be translated into clinical practice. Such a genetic biomarker may help clinicians diagnose VIPN earlier. Besides, genetic variants in other genes, such as CYP3A5, ABCB1, ABCC1, ABCC2, TTPA, ACTG1, CAPG, SYNE2, SLC5A7, COCH, and MRPL47, have been reported to be associated with the VIPN, but more evidence is needed to validate the findings in the future. In fact, a variety of complex factors jointly determine the VIPN. In implementing precision medicine, the combination of genetic, environmental, and personal variables, along with therapeutic drug monitoring, will allow for a better understanding of the mechanisms of VIPN, improving the effectiveness of VCR treatment, reducing adverse reactions, and improving patients' quality of life.

16.
Mol Neurobiol ; 58(12): 6520-6539, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562185

RESUMO

Ischemic stroke is an inflammation-related disease, during which process activation of NLRP3 inflammasome and subsequent pyroptosis play crucial roles. Platelet-activating factor (PAF) is a potent phospholipid regulator of inflammation which exerts its effect via binding specific PAF receptor (PAFR). However, whether PAFR contributes to pyroptosis during ischemia/reperfusion (I/R) injury remains to be elucidated. To explore the underlying effect of PAFR on ischemic stroke from the perspective of pyroptosis, mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) injury and primary cultures of mice cerebral cortical neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury to mimic I/R in vivo and in vitro, after which indexes associated with pyroptosis were analyzed. Intriguingly, our results indicated that inhibition of PAFR with its inhibitor XQ-1H or PAFR siRNA exerted a neuroprotective effect against I/R injury both in vivo and in vitro. Furthermore, inflammasome activation and pyroptosis after ischemic challenge were attenuated by XQ-1H or PAFR siRNA. Besides, the protection of XQ-1H was abolished by PAF stimulaiton to some extent. Moreover, XQ-1H or PAFR siRNA alleviated the neuronal pyroptosis induced by LPS and nigericin (an NLRP3 activator) in cortical neurons. Taken together, this study firstly demonstrates that PAFR is involved in neuronal pyroptosis after I/R injury, and XQ-1H, a specific PAFR inhibitor, has a promising prospect in attenuating I/R injury from the perspective of anti-pyroptosis.


Assuntos
Ginkgolídeos/farmacologia , Lactonas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Traumatismo por Reperfusão/metabolismo , Animais , Modelos Animais de Doenças , Inflamassomos/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
17.
J Stroke Cerebrovasc Dis ; 30(9): 105987, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34273708

RESUMO

OBJECTIVES: The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS: This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS: The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS: Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ginkgolídeos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Lactonas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Edema Encefálico/prevenção & controle , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais
18.
Chem Biodivers ; 18(9): e2100308, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34259387

RESUMO

Engelhardia roxburghiana Wall. is a traditional Chinese medicine used for treating cardiovascular diseases. Our previous study has implicated potential effects of total flavonoids of Engelhardia roxburghiana Wall. (TFER) against hyperlipidemia. The aim of the study is to uncover the effects and underlying mechanisms of TFER on foam cells formation after atherosclerosis. We used high fat diet (HFD) induced Apoe-/- mice and oxidized density lipoprotein (ox-LDL) induced THP-1 cells to mimic process of atherosclerosis in vivo and in vitro, respectively. Lipid accumulation, inflammation response, autophagosomes formation and expressions of autophagy related target genes were assessed. Our present study demonstrated TFER (500 mg/kg) alleviated macrophage infiltration and lipid accumulation in thoracic aortas of HFD-treated mice. In ox-LDL-treated THP-1 cells, MDC staining and Western blot analysis all indicated that the TFER (200 µg/ml) reduced foam cells formation and IL-1ß releasing, activated autophagy through suppressing AKT/mTOR signaling, significantly regulating expressions of AKT, p-AKT, mTOR, p-mTOR, Beclin 1, LC3-II, p62. It is suggested that TFER alleviated atherosclerosis progression in vivo and in vitro through reducing foam cells formation and inflammatory responses, and the possible mechanism may be due to the activation of macrophage autophagy by inhibiting AKT and mTOR phosphorylation.


Assuntos
Aterosclerose/tratamento farmacológico , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Juglandaceae/química , Folhas de Planta/química , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células THP-1 , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
19.
J Physiol Biochem ; 77(4): 511-529, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33942252

RESUMO

Stroke is a common disease with high mortality and disability worldwide. Different forms of cell deaths, including apoptosis and necrosis, occur in ischemic or hemorrhagic brain tissue, among which pyroptosis, a newly discovered inflammation-related programmed cell death, is generally divided into two main pathways, the canonical inflammasome pathway and the non-canonical inflammasome pathway. Caspase-mediated pyroptosis requires the assembly of inflammasomes such as NLRP3, which leads to the release of inflammatory cytokines IL-1ß and IL-18 through the pores formed in the plasma membrane by GSDMD followed by neuroinflammation. Recently, pyroptosis and its relationship with inflammation have attracted more and more attention in the study of cerebral ischemia or hemorrhage. In addition, many inhibitors of pyroptosis targeting caspase, NLRP3, and the upstream pathway have been found to reduce brain tissue damage after stroke. In this review, we mainly introduce the pathology of stroke, the molecular mechanism, and process of pyroptosis, as well as the pivotal roles of pyroptosis in stroke, in order to provide new insights for the treatment of stroke.


Assuntos
Piroptose , Acidente Vascular Cerebral , Caspases , Humanos , Inflamassomos , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/tratamento farmacológico
20.
Life Sci ; 272: 119234, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607158

RESUMO

Stroke still ranks as a most lethal disease worldwide. Angiogenesis during the chronic phase of ischemic stroke can alleviate ischemic injury and attenuate neurological deficit. XQ-1H is a new compound derived from the structure modification of ginkgolide B, which exerts anti-inflammation and neuroprotection against cerebral ischemic injury during the acute or subacute phase. However, whether XQ-1H facilitates angiogenesis and neural functional recovery during the chronic phase remains unclear. This research was designed to explore whether XQ-1H promotes angiogenesis after ischemic stroke and to preliminarily elucidate the mechanism. In vitro, XQ-1H was found to facilitate proliferation, migration and tube formation in bEnd.3 cells. In vivo, XQ-1H raised the CD31 positive microvessel number and increased focal cerebral blood flow in mice exposed to cerebral ischemic injury, and improved the neurological function. Mechanism studies revealed that XQ-1H exerted angiogenesis promoting effect via the PI3K/Akt/GSK3ß/ß-catenin/VEGF signal pathway, which was reversed by LY294002 (the specific inhibitor of PI3K/Akt). In conclusion, XQ-1H exerts angiogenetic effect both in vivo and in vitro, which is a potential agent against ischemic stroke during chronic phase.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Ginkgolídeos/metabolismo , Ginkgolídeos/farmacologia , Lactonas/metabolismo , Lactonas/farmacologia , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , China , Glicogênio Sintase Quinase 3 beta/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA