Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Eur J Pain ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381488

RESUMO

BACKGROUND AND OBJECTIVE: Functional magnetic resonance imaging, in conjunction with models of peripheral and/or central sensitization, has been used to assess analgesic efficacy in healthy humans. This review aims to summarize the use of these techniques to characterize brain mechanisms of hyperalgesia/allodynia and to evaluate the efficacy of analgesics. DATABASES AND DATA TREATMENT: Searches were performed (PubMed-Medline, Cochrane, Web of Science and Clinicaltrials.gov) to identify and review studies. A co-ordinate based meta-analysis (CBMA) was conducted to quantify neural activity that was reported across multiple independent studies in the hyperalgesic condition compared to control, using GingerALE software. RESULTS: Of 217 publications, 30 studies met the inclusion criteria. They studied nine different models of hyperalgesia/allodynia assessed in the primary (14) or secondary hyperalgesia zone (16). Twenty-three studies focused on neural correlates of hyperalgesic conditions and showed consistent changes in the somatosensory cortex, prefrontal cortices, insular cortex, anterior cingulate cortex, thalamus and brainstem. The CBMA on 12 studies that reported activation coordinates for a contrast comparing the hyperalgesic state to control produced six activation clusters (significant at false discovery rate of 0.05) with more peaks for secondary (17.7) than primary zones (7.3). Seven studies showed modulation of brain activity by analgesics in five of the clusters but also in four additional regions. CONCLUSIONS: This meta-analysis revealed substantial but incomplete overlap between brain areas related to neural mechanisms of hyperalgesia and those reflecting the efficacy of analgesic drugs. Studies testing in the secondary zone were more sensitive to evaluate analgesic efficacy on central sensitization at brainstem or thalamocortical levels. SIGNIFICANCE: Experimental pain models that provide a surrogate for features of pathological pain conditions in healthy humans and functional imaging techniques are both highly valuable research tools. This review shows that when used together, they provide a wealth of information about brain activity during pain states and analgesia. These tools are promising candidates to help bridge the gap between animal and human studies, to improve translatability and provide opportunities for identification of new targets for back-translation to animal studies.

2.
Pain ; 165(1): 216-224, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578447

RESUMO

ABSTRACT: Paradoxical heat sensation (PHS) is the perception of warmth when the skin is cooled. Paradoxical heat sensation rarely occurs in healthy individuals but more frequently in patients suffering from lesions or disease of the peripheral or central nervous system. To further understand mechanisms and epidemiology of PHS, we evaluated the occurrence of PHS in relation to disease aetiology, pain levels, quantitative sensory testing parameters, and Neuropathic Pain Symptom Inventory (NPSI) items in patients with nervous system lesions. Data of 1090 patients, including NPSI scores from 404 patients, were included in the analysis. We tested 11 quantitative sensory testing parameters for thermal and mechanical detection and pain thresholds, and 10 NPSI items in a multivariate generalised linear model with PHS, aetiology, and pain (yes or no) as fixed effects. In total, 30% of the neuropathic patients reported PHS in contrast to 2% of healthy individuals. The frequency of PHS was not linked to the presence or intensity of pain. Paradoxical heat sensation was more frequent in patients living with polyneuropathy compared with central or unilateral peripheral nerve lesions. Patients who reported PHS demonstrated significantly lower sensitivity to thermal perception, with lower sensitivity to normally painful heat and cold stimuli. Neuropathic Pain Symptom Inventory scores were lower for burning and electric shock-like pain quality for patients with PHS. Our findings suggest that PHS is associated with loss of small thermosensory fibre function normally involved in cold and warm perception. Clinically, presence of PHS could help screening for loss of small fibre function as it is straightforward to measure or self-reported by patients.


Assuntos
Hipestesia , Neuralgia , Humanos , Hipestesia/etiologia , Temperatura Alta , Limiar da Dor/fisiologia , Sensação Térmica , Sensação
3.
Temperature (Austin) ; 10(2): 248-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332303

RESUMO

A paradoxical heat sensation (PHS) is the misperception of warmth when the skin is cooled. PHS is uncommon in healthy individuals but common in patients with neuropathy and is associated with reduced thermal sensitivity. Identifying conditions that contribute to PHS may indirectly help us understand why some patients experience PHS. We hypothesized that pre-warming increased the number of PHS and that pre-cooling had minimal effect on PHS. We tested 100 healthy participants' thermal sensitivity on the dorsum of their feet by measuring detection and pain thresholds to cold and warm stimuli and PHS. PHS was measured using the thermal sensory limen (TSL) procedure from the quantitative sensory testing protocol of the German Research Network on Neuropathic Pain and by using a modified TSL protocol (mTSL). In the mTSL we examined the participants' thermal detection and PHS after pre-warming of 38°C and 44°C and pre-cooling of 26°C and 20°C. Compared to a baseline condition, the number of PHS responders was significantly increased after pre-cooling (20°C: RR = 1.9 (1.1; 3.3), p = 0.023 and 26°C: RR = 1.9 (1.2; 3.2), p = 0.017), but not significantly after pre-warming (38°C: RR = 1.5 (0.86; 2.8), p = 0.21 and 44°C: RR = 1.7 (.995; 2.9), p = 0.078). Pre-warming and pre-cooling increased the detection threshold of both cold and warm temperatures. We discussed these findings in relation to thermal sensory mechanisms and possible PHS mechanisms. In conclusion, PHS and thermosensation are closely related and pre-cooling can induce PHS responses in healthy individuals.

4.
Neurosci Lett ; 802: 137169, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898653

RESUMO

Paradoxical heat sensation (PHS) and the thermal grill illusion (TGI) are both related to the perception of warmth or heat from innocuous cold stimuli. Despite being described as similar perceptual phenomena, recent findings suggested that PHS is common in neuropathy and related to sensory loss, while TGI is more frequently observed in healthy individuals. To clarify the relationship between these two phenomena, we conducted a study in a cohort of healthy individuals to investigate the association between PHS and TGI. We examined the somatosensory profiles of 60 healthy participants (34 females, median age 25 years) using the quantitative sensory testing (QST) protocol from the German Research Network on Neuropathic Pain. The number of PHS was measured using a modified thermal sensory limen (TSL) procedure where the skin was transiently pre-warmed, or pre-cooled before the PHS measure. This procedure also included a control condition with a pre-temperature of 32 °C. The number of TGI responses was quantified during simultaneous application of warm and cold innocuous stimuli. All participants had normal thermal and mechanical thresholds compared to the reference values from the QST protocol. Only two participants experienced PHS during the QST procedure. In the modified TSL procedure, we found no statistically significant differences in the number of participants reporting PHS in the control condition (N = 6) vs. pre-warming (N = 3; min = 35.7 °C, max = 43.5 °C) and pre-cooling (N = 4, min = 15.0 °C, max = 28.8 °C) conditions. Fourteen participants experienced TGI, and only one participant reported both TGI and PHS. Individuals with TGI had normal or even increased thermal sensation compared to individuals without TGI. Our findings demonstrate a clear distinction between individuals experiencing PHS or TGI, as there was no overlap observed when using identical warm and cold temperatures that were alternated either temporally or spatially. While PHS was previously related to sensory loss, our study revealed that TGI is associated with normal thermal sensitivity. This suggests that an efficient thermal sensory function is essential in generating the illusory sensation of pain of the TGI.


Assuntos
Ilusões , Neuralgia , Feminino , Humanos , Adulto , Limiar da Dor/fisiologia , Temperatura Alta , Ilusões/fisiologia , Temperatura Baixa , Sensação Térmica/fisiologia , Sensação
5.
J Neurol ; 270(2): 1076-1094, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36355188

RESUMO

Neuropathic pain is difficult to treat, and an understanding of the risk factors for its onset and resolution is warranted. This study aimed to develop and externally validate two clinical risk models to predict onset and resolution of chronic neuropathic pain. Participants of Generation Scotland: Scottish Family Health Study (GS; general Scottish population; n = 20,221) and Genetic of Diabetes Audit and Research in Tayside Scotland (GoDARTS; n = 5236) were sent a questionnaire on neuropathic pain and followed- -up 18 months later. Chronic neuropathic pain was defined using DN4 scores (≥ 3/7) and pain for 3 months or more. The models were developed in GS using logistic regression with backward elimination based on the Akaike information criterion. External validation was conducted in GoDARTS and assessed model discrimination (ROC and Precision-Recall curves), calibration and clinical utility (decision curve analysis [DCA]). Analysis revealed incidences of neuropathic pain onset (6.0% in GS [236/3903] and 10.7% in GoDARTS [61/571]) and resolution (42.6% in GS [230/540] and 23.7% in GoDARTS [56/236]). Psychosocial and lifestyle factors were included in both onset and resolved prediction models. In GoDARTS, these models showed adequate discrimination (ROC = 0.636 and 0.699), but there was evidence of miscalibration (Intercept = - 0.511 and - 0.424; slope = 0.623 and 0.999). The DCA indicated that the models would provide clinical benefit over a range of possible risk thresholds. To our knowledge, these are the first externally validated risk models for neuropathic pain. The findings are of interest to patients and clinicians in the community, who may take preventative or remedial measures.


Assuntos
Neuralgia , Humanos , Neuralgia/diagnóstico , Neuralgia/epidemiologia , Fatores de Risco , Escócia/epidemiologia , Modelos Logísticos
6.
Biol Psychol ; 170: 108325, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35358604

RESUMO

The ability to sense, monitor, and control respiration - e.g., respiratory interoception (henceforth, respiroception) is a core homeostatic ability. Beyond the regulation of gas exchange, enhanced awareness of respiratory sensations is directly related to psychiatric symptoms such as panic and anxiety. Indeed, chronic breathlessness (dyspnea) is associated with a fourfold increase in the risk of developing depression and anxiety, and the regulation of the breath is a key aspect of many mindfulness-based approaches to the treatment of mental illness. Physiologically speaking, the ability to accurately monitor respiratory sensations is important for optimizing cardiorespiratory function during athletic exertion, and can be a key indicator of illness. Given the important role of respiroception in mental and physical health, it is unsurprising that there is increased interest in the quantification of respiratory psychophysiology across different perceptual and metacognitive levels of the psychological hierarchy. Compared to other more popular modalities of interoception, such as in the cardiac domain, there are relatively few methods available for measuring aspects of respiroception. Existing inspiratory loading tasks are difficult to administer and frequently require expensive medical equipment, or offer poor granularity in their quantification of respiratory-related perceptual ability. To facilitate the study of respiroception, we here present a new, fully automated and computer-controlled apparatus and psychophysiological method, which can flexibly and easily measure respiratory-related interoceptive sensitivity, bias and metacognition, in as little as 30 min of testing, using easy to make 3D printable parts.


Assuntos
Interocepção , Metacognição , Ansiedade , Conscientização , Dispneia , Frequência Cardíaca/fisiologia , Humanos , Interocepção/fisiologia , Metacognição/fisiologia , Taxa Respiratória
7.
Trials ; 23(1): 163, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183242

RESUMO

BACKGROUND: Few new drugs have been developed for chronic pain. Drug development is challenged by uncertainty about whether the drug engages the human target sufficiently to have a meaningful pharmacodynamic effect. IMI2-PainCare-BioPain-RCT1 is one of four similarly designed studies that aim to link different functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics. This study focusses on biomarkers derived from nerve excitability testing (NET) using threshold tracking of the peripheral nervous system. METHODS: This is a multisite single-dose, subject and assessor-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD), and pharmacokinetic (PK) study in healthy subjects. Biomarkers derived from NET of large sensory and motor fibers and small sensory fibers using perception threshold tracking will be obtained before and three times after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol) and placebo, given as a single oral dose with at least 1 week apart. Motor and sensory NET will be assessed on the right wrist in a non-sensitized normal condition while perception threshold tracking will be performed bilaterally on both non-sensitized and sensitized forearm skin. Cutaneous high-frequency electrical stimulation is used to induce hyperalgesia. Blood samples will be taken for pharmacokinetic purposes and pain ratings as well as predictive psychological traits will be collected. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split across the two primary outcomes: strength-duration time constant (SDTC; a measure of passive membrane properties and nodal persistent Na+ conductance) of large sensory fibers and SDTC of large motor fibers comparing lacosamide and placebo. The key secondary endpoint is the SDTC measured in small sensory fibers. Remaining treatment arm effects on key NET outcomes and PK modelling are other prespecified secondary or exploratory analyses. DISCUSSION: Measurements of NET using threshold tracking protocols are sensitive to membrane potential at the site of stimulation. Sets of useful indices of axonal excitability collectively may provide insights into the mechanisms responsible for membrane polarization, ion channel function, and activity of ionic pumps during the process of impulse conduction. IMI2-PainCare-BioPain-RCT1 hypothesizes that NET can serve as biomarkers of target engagement of analgesic drugs in this compartment of the nociceptive system for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. TRIAL REGISTRATION: This trial was registered 25/06/2019 in EudraCT ( 2019-000942-36 ).


Assuntos
Dor , Nervos Periféricos , Biomarcadores , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Lacosamida , Estudos Multicêntricos como Assunto , Pregabalina , Ensaios Clínicos Controlados Aleatórios como Assunto , Tapentadol
8.
Biol Psychol ; 168: 108239, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902450

RESUMO

Interoception - the physiological sense of our inner bodies - has risen to the forefront of psychological and psychiatric research. Much of this research utilizes tasks that attempt to measure the ability to accurately detect cardiac signals. Unfortunately, these approaches are confounded by well-known issues limiting their validity and interpretation. At the core of this controversy is the role of subjective beliefs about the heart rate in confounding measures of interoceptive accuracy. Here, we recast these beliefs as an important part of the causal machinery of interoception, and offer a novel psychophysical "heart rate discrimination" method to estimate their accuracy and precision. By applying this task in 223 healthy participants, we demonstrate that cardiac interoceptive beliefs are more biased, less precise, and are associated with poorer metacognitive insight relative to an exteroceptive control condition. Our task, provided as an open-source python package, offers a robust approach to quantifying cardiac beliefs.


Assuntos
Interocepção , Metacognição , Conscientização/fisiologia , Voluntários Saudáveis , Coração , Frequência Cardíaca/fisiologia , Humanos , Interocepção/fisiologia
9.
BMJ Open ; 11(5): e042887, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952538

RESUMO

PURPOSE: Neuropathic pain is a common disorder of the somatosensory system that affects 7%-10% of the general population. The disorder places a large social and economic burden on patients as well as healthcare services. However, not everyone with a relevant underlying aetiology develops corresponding pain. DOLORisk Dundee, a European Union-funded cohort, part of the multicentre DOLORisk consortium, was set up to increase current understanding of this variation in onset. In particular, the cohort will allow exploration of psychosocial, clinical and genetic predictors of neuropathic pain onset. PARTICIPANTS: DOLORisk Dundee has been constructed by rephenotyping two pre-existing Scottish population cohorts for neuropathic pain using a standardised 'core' study protocol: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) (n=5236) consisting of predominantly type 2 diabetics from the Tayside region, and Generation Scotland: Scottish Family Health Study (GS:SFHS; n=20 221). Rephenotyping was conducted in two phases: a baseline postal survey and a combined postal and online follow-up survey. DOLORisk Dundee consists of 9155 participants (GoDARTS=1915; GS:SFHS=7240) who responded to the baseline survey, of which 6338 (69.2%; GoDARTS=1046; GS:SFHS=5292) also responded to the follow-up survey (18 months later). FINDINGS TO DATE: At baseline, the proportion of those with chronic neuropathic pain (Douleur Neuropathique en 4 Questions questionnaire score ≥3, duration ≥3 months) was 30.5% in GoDARTS and 14.2% in Generation Scotland. Electronic record linkage enables large scale genetic association studies to be conducted and risk models have been constructed for neuropathic pain. FUTURE PLANS: The cohort is being maintained by an access committee, through which collaborations are encouraged. Details of how to do this will be available on the study website (http://dolorisk.eu/). Further follow-up surveys of the cohort are planned and funding applications are being prepared to this effect. This will be conducted in harmony with similar pain rephenotyping of UK Biobank.


Assuntos
Neuralgia , Estudos de Coortes , Estudos de Associação Genética , Humanos , Estudos Longitudinais , Neuralgia/etiologia , Escócia/epidemiologia
10.
Cogn Emot ; 35(4): 705-721, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33342362

RESUMO

Emotion alters how we feel, see, and experience the world. In the domain of memory, the emotional valence and arousal of memorised stimuli can modulate both the acuity and content of episodic recall. However, no experiment has investigated whether arousal and valence also influence metacognition for memory (i.e. the process of self-monitoring memories). In a pre-registered study, we applied a novel psychophysiological design together with computational models of metacognition to assess the influence of stimulus valence and arousal on the sensitivity, bias, and efficiency of metamemory. To estimate the role of physiological arousal in mediating these effects, we recorded cardiac measures through pulse oximetry. We found that negative valence substantially decreased both memory performance and subjective confidence, in particular for low arousal words. Simultaneously, we found that emotional valence modulated both heart rate and heart-rate variability (HRV) during recognition memory. Exploratory trial-level analyses further revealed that subjective confidence was encoded in instantaneous heart-rate fluctuations and that this relationship was also modulated by emotional valence. Our results demonstrate that recognition memory and metacognition are influenced by the emotional valence of encoded items and that this correlation is in part related to cardiac activity.


Assuntos
Metacognição , Nível de Alerta , Emoções , Humanos , Rememoração Mental , Reconhecimento Psicológico
11.
Behav Brain Sci ; 43: e91, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32460937

RESUMO

The Bayesian brain hypothesis, as formalized by the free-energy principle, is ascendant in cognitive science. But, how does the Bayesian brain obtain prior beliefs? Veissière and colleagues argue that sociocultural interaction is one important source. We offer a complementary model in which "interoceptive self-inference" guides the estimation of expected uncertainty both in ourselves and in our social conspecifics.


Assuntos
Encéfalo , Ciência Cognitiva , Teorema de Bayes , Humanos , Incerteza
12.
Neurosci Biobehav Rev ; 108: 472-479, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783059

RESUMO

Heat and pain illusions (synthetic heat and the thermal grill illusion) can be generated by simultaneous cold and warm stimulation on the skin at temperatures that would normally be perceived as innocuous in isolation. Historically, two key questions have dominated the literature: which specific pathway conveys the illusory perceptions of heat and pain, and where, specifically, does the illusory pain originate in the central nervous system? Two major theories - the addition and disinhibition theories - have suggested distinct pathways, as well as specific spinal or supraspinal mechanisms. However, both theories fail to fully explain experimental findings on illusory heat and pain phenomena. We suggest that the disagreement between previous theories and experimental evidence can be solved by abandoning the assumption of one-to-one relations between pathways and perceived qualities. We argue that a population coding framework, based on distributed activity across non-nociceptive and nociceptive pathways, offers a more powerful explanation of illusory heat and pain. This framework offers new hypotheses regarding the neural mechanisms underlying temperature and pain perception.


Assuntos
Ilusões/fisiologia , Modelos Biológicos , Nociceptividade/fisiologia , Dor/fisiopatologia , Sensação Térmica/fisiologia , Humanos
13.
Ann Neurol ; 84(3): 463-472, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30063258

RESUMO

OBJECTIVE: A common symptom of neuropathy is the misperception of heat and pain from cold stimuli. Similar cold allodynic sensations can be experimentally induced using the thermal grill illusion (TGI) in humans. It is currently unclear whether this interaction between thermosensory and nociceptive signals depends on spinal or supraspinal integration mechanisms. To address this issue, we developed a noninvasive protocol to assess thermosensory integration across spinal segments. METHODS: We leveraged anatomical knowledge regarding dermatomes and their spinal projections to investigate potential contributions of spinal integration to the TGI. We simultaneously stimulated a pair of skin locations on the arm or lower back using 1 cold (∼20°C) and 1 warm thermode (∼40°C). The 2 thermodes were always separated by a fixed physical distance on the skin, but elicited neural activity across a varying number of spinal segments, depending on which dermatomal boundaries the 2 stimuli spanned. RESULTS: Participants consistently overestimated the actual cold temperature on the skin during combined cold and warm stimulation, confirming the TGI effect. The TGI was present when cold and warm stimuli were delivered within the same dermatome, or across dermatomes corresponding to adjacent spinal segments. In striking contrast, no TGI effect was found when cold and warm stimuli projected to nonadjacent spinal segments. INTERPRETATION: These results demonstrate that the strength of the illusion is modulated by the segmental distance between cold and warm afferents. This suggests that both temperature perception and thermal-nociceptive interactions depend upon low-level convergence mechanisms operating within a single spinal segment and its immediate neighbors. Ann Neurol 2018;84:463-472.


Assuntos
Ilusões/fisiologia , Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Adulto , Temperatura Baixa/efeitos adversos , Feminino , Temperatura Alta/efeitos adversos , Humanos , Masculino , Medição da Dor , Caracteres Sexuais , Coluna Vertebral/fisiologia , Sensação Térmica/fisiologia , Adulto Jovem
14.
Cognition ; 178: 236-243, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886058

RESUMO

Our perception of where touch occurs on our skin shapes our interactions with the world. Most accounts of cutaneous localisation emphasise spatial transformations from a skin-based reference frame into body-centred and external egocentric coordinates. We investigated another possible method of tactile localisation based on an intrinsic perception of 'skin space'. The arrangement of cutaneous receptive fields (RFs) could allow one to track a stimulus as it moves across the skin, similarly to the way animals navigate using path integration. We applied curved tactile motions to the hands of human volunteers. Participants identified the location midway between the start and end points of each motion path. Their bisection judgements were systematically biased towards the integrated motion path, consistent with the characteristic inward error that occurs in navigation by path integration. We thus showed that integration of continuous sensory inputs across several tactile RFs provides an intrinsic mechanism for spatial perception.


Assuntos
Percepção Espacial , Percepção do Tato , Adulto , Feminino , Mãos/fisiologia , Humanos , Julgamento , Masculino , Estimulação Física , Fenômenos Fisiológicos da Pele , Processamento Espacial , Tato , Adulto Jovem
15.
Sci Rep ; 7: 43316, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256532

RESUMO

Empathy is a key component of our ability to engage and interact with others. In recent years, the neural mechanisms underlying affective and cognitive empathy have garnered intense interest. This work demonstrates that empathy for others depends upon a distributed network of regions such as the insula, parietal cortex, and somatosensory areas, which are also activated when we ourselves experience an empathized-with emotion (e.g., pain). Individuals vary markedly in their ability to empathize with others, which predicts the tendency to help others and relates to individual differences in the neuroanatomy of these areas. Here, we use a newly developed, high-resolution (800 µm isotropic), quantitative MRI technique to better elucidate the neuroanatomical underpinnings of individual differences in empathy. Our findings extend previous studies of the neuroanatomical correlates of cognitive and affective empathy. In particular, individual differences in cognitive empathy were associated with markers of myeloarchitectural integrity of the insular cortex, while affective empathy was predicted by a marker of iron content in second somatosensory cortex. These results indicate potential novel biomarkers of trait empathy, suggesting that microstructural features of an empathy and body-related network are crucial for understanding the mental and emotional states of others.


Assuntos
Córtex Cerebral/fisiologia , Empatia/fisiologia , Ferro/metabolismo , Bainha de Mielina/fisiologia , Lobo Parietal/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Individualidade , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/ultraestrutura , Neuroimagem , Dor/psicologia , Lobo Parietal/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Inquéritos e Questionários
16.
J Neurophysiol ; 117(5): 1959-1968, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250150

RESUMO

Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1-4 Hz) and gamma (55-90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas.NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage.


Assuntos
Córtex Cerebral/fisiologia , Ritmo Delta , Ritmo Gama , Sensação Térmica , Adulto , Temperatura Baixa , Potenciais Somatossensoriais Evocados , Feminino , Humanos , Masculino
17.
Neuroimage ; 153: 109-121, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28341164

RESUMO

The neural processing and experience of pain are influenced by both expectations and attention. For example, the amplitude of event-related pain responses is enhanced by both novel and unexpected pain, and by moving the focus of attention towards a painful stimulus. Under predictive coding, this congruence can be explained by appeal to a precision-weighting mechanism, which mediates bottom-up and top-down attentional processes by modulating the influence of feedforward and feedback signals throughout the cortical hierarchy. The influence of expectation and attention on pain processing can be mapped onto changes in effective connectivity between or within specific neuronal populations, using a canonical microcircuit (CMC) model of hierarchical processing. We thus implemented a CMC within dynamic causal modelling for magnetoencephalography in human subjects, to investigate how expectation violation and attention to pain modulate intrinsic (within-source) and extrinsic (between-source) connectivity in the somatosensory hierarchy. This enabled us to establish whether both expectancy and attentional processes are mediated by a similar precision-encoding mechanism within a network of somatosensory, frontal and parietal sources. We found that both unexpected and attended pain modulated the gain of superficial pyramidal cells in primary and secondary somatosensory cortex. This modulation occurred in the context of increased lateralized recurrent connectivity between somatosensory and fronto-parietal sources, driven by unexpected painful occurrences. Finally, the strength of effective connectivity parameters in S1, S2 and IFG predicted individual differences in subjective pain modulation ratings. Our findings suggest that neuromodulatory gain control in the somatosensory hierarchy underlies the influence of both expectation violation and attention on cortical processing and pain perception.


Assuntos
Atenção/fisiologia , Modelos Neurológicos , Percepção da Dor/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Mapeamento Encefálico , Eletrochoque , Feminino , Lobo Frontal/fisiologia , Humanos , Magnetoencefalografia , Masculino , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Adulto Jovem
18.
Neuroimage ; 149: 415-423, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179164

RESUMO

The ability to introspectively evaluate our experiences to form accurate metacognitive beliefs, or insight, is an essential component of decision-making. Previous research suggests individuals vary substantially in their level of insight, and that this variation is related to brain volume and function, particularly in the anterior prefrontal cortex (aPFC). However, the neurobiological mechanisms underlying these effects are unclear, as qualitative, macroscopic measures such as brain volume can be related to a variety of microstructural features. Here we leverage a high-resolution (800µm isotropic) multi-parameter mapping technique in 48 healthy individuals to delineate quantitative markers of in vivo histological features underlying metacognitive ability. Specifically, we examined how neuroimaging markers of local grey matter myelination and iron content relate to insight as measured by a signal-theoretic model of subjective confidence. Our results revealed a pattern of microstructural correlates of perceptual metacognition in the aPFC, precuneus, hippocampus, and visual cortices. In particular, we extend previous volumetric findings to show that right aPFC myeloarchitecture positively relates to metacognitive insight. In contrast, decreased myelination in the left hippocampus correlated with better metacognitive insight. These results highlight the ability of quantitative neuroimaging to reveal novel brain-behaviour correlates and may motivate future research on their environmental and developmental underpinnings.


Assuntos
Hipocampo/fisiologia , Metacognição/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Adulto Jovem
19.
Elife ; 52016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27776633

RESUMO

Human perception is invariably accompanied by a graded feeling of confidence that guides metacognitive awareness and decision-making. It is often assumed that this arises solely from the feed-forward encoding of the strength or precision of sensory inputs. In contrast, interoceptive inference models suggest that confidence reflects a weighted integration of sensory precision and expectations about internal states, such as arousal. Here we test this hypothesis using a novel psychophysical paradigm, in which unseen disgust-cues induced unexpected, unconscious arousal just before participants discriminated motion signals of variable precision. Across measures of perceptual bias, uncertainty, and physiological arousal we found that arousing disgust cues modulated the encoding of sensory noise. Furthermore, the degree to which trial-by-trial pupil fluctuations encoded this nonlinear interaction correlated with trial level confidence. Our results suggest that unexpected arousal regulates perceptual precision, such that subjective confidence reflects the integration of both external sensory and internal, embodied states.


Assuntos
Nível de Alerta , Tomada de Decisões , Emoções , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
20.
Neuroimage ; 127: 34-43, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26584870

RESUMO

The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace.


Assuntos
Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Percepção do Tato/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA