Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(5): 3219-3228, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591182

RESUMO

The extent to which climate change and other factors will influence building energy use and population exposures to indoor pollutants is not well understood. Here, we develop and apply nationally representative residential energy and indoor pollutant model sets to estimate energy use, indoor pollutant concentrations, and associated chronic health outcomes across the U.S. residential building stock in the mid-21st century. The models incorporate expected changes in meteorological and ambient air quality conditions associated with IPCC RCP 8.5 and assumptions for changes in housing characteristics and population movements while keeping other less predictable factors constant. Site and source energy consumption for residential space-conditioning are predicted to decrease by ∼37-43 and ∼20-31%, respectively, in the 2050s compared to those in a 2010s reference scenario. Population-average indoor concentrations of pollutants of ambient origin are expected to decrease, except for O3. Holding indoor emission factors constant, indoor concentrations of pollutants with intermittent indoor sources are expected to decrease by <5% (PM2.5) to >30% (NO2); indoor concentrations of pollutants with persistent indoor sources (e.g., volatile organic compounds (VOCs)) are predicted to increase by ∼15-45%. We estimate negligible changes in disability-adjusted life-years (DALYs) lost associated with residential indoor pollutant exposures, well within uncertainty, although the attribution among pollutants is predicted to vary.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Ambientais , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Habitação , Compostos Orgânicos Voláteis/análise
2.
Indoor Air ; 29(4): 656-669, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077624

RESUMO

Particle air filters used in central residential forced-air systems are most commonly evaluated for their size-resolved removal efficiency for particles 0.3-10 µm using laboratory tests. Little information exists on the removal efficiency of commercially available residential filters for particles smaller than 0.3 µm or for integral measures of mass-based aerosol concentrations (eg, PM2.5 ) or total number concentrations (eg, ultrafine particles, or UFPs) that are commonly used in regulatory monitoring and building measurements. Here, we measure the size-resolved removal efficiency of 50 new commercially available residential HVAC filters installed in a recirculating central air-handling unit in an unoccupied apartment unit using alternating upstream/downstream measurements with incense and NaCl as particle sources. Size-resolved removal efficiencies are then used to estimate integral measures of PM2.5 and total UFP removal efficiency for the filters assuming they are challenged by 201 residential indoor particle size distributions (PSDs) gathered from the literature. Total UFP and PM2.5 removal efficiencies generally increased with manufacturer-reported filter ratings and with filter thickness, albeit with numerous exceptions. PM2.5 removal efficiencies were more influenced by the assumption for indoor PSD than total UFP removal efficiencies. Filters with the same ratings but from different manufacturers often had different removal efficiencies for PM2.5 and total UFPs.


Assuntos
Filtros de Ar/normas , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Material Particulado/análise , Ar Condicionado , Monitoramento Ambiental , Calefação , Habitação , Humanos , Tamanho da Partícula , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA