Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Commun ; 15(1): 4965, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862518

RESUMO

Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing ß-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.


Assuntos
Anemia Falciforme , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Anemia Falciforme/terapia , Anemia Falciforme/genética , Edição de Genes/métodos , Animais , Células-Tronco Hematopoéticas/metabolismo , Humanos , Feminino , Camundongos , Terapia Genética/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Transplante de Células-Tronco Hematopoéticas , Globinas beta/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Mutação , Talassemia beta/terapia , Talassemia beta/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes
2.
Mol Ther Nucleic Acids ; 32: 229-246, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090420

RESUMO

Sickle cell disease (SCD) is due to a mutation in the ß-globin gene causing production of the toxic sickle hemoglobin (HbS; α2ßS 2). Transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) transduced with lentiviral vectors (LVs) expressing an anti-sickling ß-globin (ßAS) is a promising treatment; however, it is only partially effective, and patients still present elevated HbS levels. Here, we developed a bifunctional LV expressing ßAS3-globin and an artificial microRNA (amiRNA) specifically downregulating ßS-globin expression with the aim of reducing HbS levels and favoring ßAS3 incorporation into Hb tetramers. Efficient transduction of SCD HSPCs by the bifunctional LV led to a substantial decrease of ßS-globin transcripts in HSPC-derived erythroid cells, a significant reduction of HbS+ red cells, and effective correction of the sickling phenotype, outperforming ßAS gene addition and BCL11A gene silencing strategies. The bifunctional LV showed a standard integration profile, and neither HSPC viability, engraftment, and multilineage differentiation nor the erythroid transcriptome and miRNAome were affected by the treatment, confirming the safety of this therapeutic strategy. In conclusion, the combination of gene addition and gene silencing strategies can improve the efficacy of current LV-based therapeutic approaches without increasing the mutagenic vector load, thus representing a novel treatment for SCD.

3.
Blood ; 141(10): 1169-1179, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36508706

RESUMO

ß-Thalassemia (BT) is one of the most common genetic diseases worldwide and is caused by mutations affecting ß-globin production. The only curative treatment is allogenic hematopoietic stem/progenitor cells (HSPCs) transplantation, an approach limited by compatible donor availability and immunological complications. Therefore, transplantation of autologous, genetically-modified HSPCs is an attractive therapeutic option. However, current gene therapy strategies based on the use of lentiviral vectors are not equally effective in all patients and CRISPR/Cas9 nuclease-based strategies raise safety concerns. Thus, base editing strategies aiming to correct the genetic defect in patients' HSPCs could provide safe and effective treatment. Here, we developed a strategy to correct one of the most prevalent BT mutations (IVS1-110 [G>A]) using the SpRY-ABE8e base editor. RNA delivery of the base editing system was safe and led to ∼80% of gene correction in the HSPCs of patients with BT without causing dangerous double-strand DNA breaks. In HSPC-derived erythroid populations, this strategy was able to restore ß-globin production and correct inefficient erythropoiesis typically observed in BT both in vitro and in vivo. In conclusion, this proof-of-concept study paves the way for the development of a safe and effective autologous gene therapy approach for BT.


Assuntos
Talassemia beta , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Edição de Genes , Sistemas CRISPR-Cas , Mutação , Globinas beta/genética
4.
Nat Commun ; 13(1): 6618, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333351

RESUMO

Sickle cell disease and ß-thalassemia affect the production of the adult ß-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG transcriptional start sites either reduce binding of the LRF repressor or recruit the KLF1 activator. Here, we use base editing to generate a variety of mutations in the -200 region of the HBG promoters, including potent combinations of four to eight γ-globin-inducing mutations. Editing of patient hematopoietic stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and rescues the pathological phenotype. Creation of a KLF1 activator binding site is the most potent strategy - even in long-term repopulating hematopoietic stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing avoids the generation of insertions, deletions and large genomic rearrangements and results in higher γ-globin levels. Our results demonstrate that base editing of HBG promoters is a safe, universal strategy for treating ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Talassemia beta , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , Talassemia beta/genética , Talassemia beta/terapia , Anemia Falciforme/genética , Células-Tronco Hematopoéticas/metabolismo
5.
Mol Ther ; 30(1): 145-163, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34418541

RESUMO

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene leading to polymerization of the sickle hemoglobin (HbS) and deformation of red blood cells. Autologous transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically modified using lentiviral vectors (LVs) to express an anti-sickling ß-globin leads to some clinical benefit in SCD patients, but it requires high-level transgene expression (i.e., high vector copy number [VCN]) to counteract HbS polymerization. Here, we developed therapeutic approaches combining LV-based gene addition and CRISPR-Cas9 strategies aimed to either knock down the sickle ß-globin and increase the incorporation of an anti-sickling globin (AS3) in hemoglobin tetramers, or to induce the expression of anti-sickling fetal γ-globins. HSPCs from SCD patients were transduced with LVs expressing AS3 and a guide RNA either targeting the endogenous ß-globin gene or regions involved in fetal hemoglobin silencing. Transfection of transduced cells with Cas9 protein resulted in high editing efficiency, elevated levels of anti-sickling hemoglobins, and rescue of the SCD phenotype at a significantly lower VCN compared to the conventional LV-based approach. This versatile platform can improve the efficacy of current gene addition approaches by combining different therapeutic strategies, thus reducing the vector amount required to achieve a therapeutic VCN and the associated genotoxicity risk.


Assuntos
Anemia Falciforme , Edição de Genes , Anemia Falciforme/genética , Anemia Falciforme/terapia , Proteína 9 Associada à CRISPR/genética , Hemoglobina Fetal/genética , Edição de Genes/métodos , Humanos , Globinas beta/genética
6.
Sci Adv ; 6(7)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32917636

RESUMO

Sickle cell disease (SCD) is caused by a single amino acid change in the adult hemoglobin (Hb) ß chain that causes Hb polymerization and red blood cell (RBC) sickling. The co-inheritance of mutations causing fetal γ-globin production in adult life hereditary persistence of fetal Hb (HPFH) reduces the clinical severity of SCD. HPFH mutations in the HBG γ-globin promoters disrupt binding sites for the repressors BCL11A and LRF. We used CRISPR-Cas9 to mimic HPFH mutations in the HBG promoters by generating insertions and deletions, leading to disruption of known and putative repressor binding sites. Editing of the LRF-binding site in patient-derived hematopoietic stem/progenitor cells (HSPCs) resulted in γ-globin derepression and correction of the sickling phenotype. Xenotransplantation of HSPCs treated with gRNAs targeting the LRF-binding site showed a high editing efficiency in repopulating HSPCs. This study identifies the LRF-binding site as a potent target for genome-editing treatment of SCD.


Assuntos
Anemia Falciforme , Talassemia beta , Anemia Falciforme/genética , Anemia Falciforme/terapia , Sítios de Ligação , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edição de Genes/métodos , Humanos , Fenótipo , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/terapia , gama-Globinas/genética , gama-Globinas/metabolismo
7.
iScience ; 23(4): 101018, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32283524

RESUMO

Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors.

8.
Cell Rep ; 26(5): 1242-1257.e7, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699352

RESUMO

Lentiviruses are among the most promising viral vectors for in vivo gene delivery. To overcome the risk of insertional mutagenesis, integrase-deficient lentiviral vectors (IDLVs) have been developed. We show here that strong and persistent specific cytotoxic T cell (CTL) responses are induced by IDLVs, which persist several months after a single injection. These responses were associated with the induction of mild and transient maturation of dendritic cells (DCs) and with the production of low levels of inflammatory cytokines and chemokines. They were independent of the IFN-I, TLR/MyD88, interferon regulatory factor (IRF), retinoic acid induced gene I (RIG-I), and stimulator of interferon genes (STING) pathways but require NF-κB signaling in CD11c+ DCs. Despite the lack of integration of IDLVs, the transgene persists for 3 months in the spleen and liver of IDLV-injected mice. These results demonstrate that the capacity of IDLVs to trigger persistent adaptive responses is mediated by a weak and transient innate response, along with the persistence of the vector in tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/metabolismo , Integrases/deficiência , Lentivirus/enzimologia , Proteínas de Membrana/metabolismo , Animais , Diferenciação Celular , Células Dendríticas/citologia , Células HeLa , Humanos , Imunidade , Integrases/metabolismo , Interferons/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Ovalbumina/imunologia , Transdução de Sinais , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Transcriptoma/genética , Transgenes
9.
Mol Ther ; 27(1): 137-150, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30424953

RESUMO

Editing the ß-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of ß-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the ß-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with ß-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9+ HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the ß-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/terapia , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/citologia , Hemoglobinopatias/genética , Hemoglobinopatias/metabolismo , Hemoglobinopatias/terapia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/terapia
10.
Mol Ther Methods Clin Dev ; 10: 268-280, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30140714

RESUMO

Autologous transplantation of hematopoietic stem cells transduced with a lentiviral vector (LV) expressing an anti-sickling HBB variant is a potential treatment for sickle cell disease (SCD). With a clinical trial as our ultimate goal, we generated LV constructs containing an anti-sickling HBB transgene (HBBAS3), a minimal HBB promoter, and different combinations of DNase I hypersensitive sites (HSs) from the locus control region (LCR). Hematopoietic stem progenitor cells (HSPCs) from SCD patients were transduced with LVs containing either HS2 and HS3 (ß-AS3) or HS2, HS3, and HS4 (ß-AS3 HS4). The inclusion of the HS4 element drastically reduced vector titer and infectivity in HSPCs, with negligible improvement of transgene expression. Conversely, the LV containing only HS2 and HS3 was able to efficiently transduce SCD bone marrow and Plerixafor-mobilized HSPCs, with anti-sickling HBB representing up to ∼60% of the total HBB-like chains. The expression of the anti-sickling HBB and the reduced incorporation of the ßS-chain in hemoglobin tetramers allowed up to 50% reduction in the frequency of RBC sickling under hypoxic conditions. Together, these results demonstrate the ability of a high-titer LV to express elevated levels of a potent anti-sickling HBB transgene ameliorating the SCD cell phenotype.

11.
Blood ; 131(17): 1960-1973, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29519807

RESUMO

Naturally occurring, large deletions in the ß-globin locus result in hereditary persistence of fetal hemoglobin, a condition that mitigates the clinical severity of sickle cell disease (SCD) and ß-thalassemia. We designed a clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) strategy to disrupt a 13.6-kb genomic region encompassing the δ- and ß-globin genes and a putative γ-δ intergenic fetal hemoglobin (HbF) silencer. Disruption of just the putative HbF silencer results in a mild increase in γ-globin expression, whereas deletion or inversion of a 13.6-kb region causes a robust reactivation of HbF synthesis in adult erythroblasts that is associated with epigenetic modifications and changes in chromatin contacts within the ß-globin locus. In primary SCD patient-derived hematopoietic stem/progenitor cells, targeting the 13.6-kb region results in a high proportion of γ-globin expression in erythroblasts, increased HbF synthesis, and amelioration of the sickling cell phenotype. Overall, this study provides clues for a potential CRISPR/Cas9 genome editing approach to the therapy of ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Sistemas CRISPR-Cas , Hemoglobina Fetal , Edição de Genes , Loci Gênicos , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Linhagem Celular , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Globinas beta/metabolismo
12.
Haematologica ; 103(5): 778-786, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29472357

RESUMO

Sickle cell disease is characterized by chronic anemia and vaso-occlusive crises, which eventually lead to multi-organ damage and premature death. Hematopoietic stem cell transplantation is the only curative treatment but it is limited by toxicity and poor availability of HLA-compatible donors. A gene therapy approach based on the autologous transplantation of lentiviral-corrected hematopoietic stem and progenitor cells was shown to be efficacious in one patient. However, alterations of the bone marrow environment and properties of the red blood cells hamper the harvesting and immunoselection of patients' stem cells from bone marrow. The use of Filgrastim to mobilize large numbers of hematopoietic stem and progenitor cells into the circulation has been associated with severe adverse events in sickle cell patients. Thus, broader application of the gene therapy approach requires the development of alternative mobilization methods. We set up a phase I/II clinical trial whose primary objective was to assess the safety of a single injection of Plerixafor in sickle cell patients undergoing red blood cell exchange to decrease the hemoglobin S level to below 30%. The secondary objective was to measure the efficiency of mobilization and isolation of hematopoietic stem and progenitor cells. No adverse events were observed. Large numbers of CD34+ cells were mobilized extremely quickly. Importantly, the mobilized cells contained high numbers of hematopoietic stem cells, expressed high levels of stemness genes, and engrafted very efficiently in immunodeficient mice. Thus, Plerixafor can be safely used to mobilize hematopoietic stem cells in sickle cell patients; this finding opens up new avenues for treatment approaches based on gene addition and genome editing. Clinicaltrials.gov identifier: NCT02212535.


Assuntos
Anemia Falciforme/terapia , Transfusão de Sangue , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/administração & dosagem , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Fármacos Anti-HIV/administração & dosagem , Antígenos CD34/metabolismo , Antidrepanocíticos/administração & dosagem , Benzilaminas , Estudos de Casos e Controles , Células Cultivadas , Estudos de Coortes , Ciclamos , Células-Tronco Hematopoéticas/citologia , Humanos , Hidroxiureia/administração & dosagem
13.
Nucleic Acids Res ; 44(17): 8097-111, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27229139

RESUMO

Bookmarking factors are transcriptional regulators involved in the mitotic transmission of epigenetic information via their ability to remain associated with mitotic chromatin. The mechanisms through which bookmarking factors bind to mitotic chromatin remain poorly understood. HNF1ß is a bookmarking transcription factor that is frequently mutated in patients suffering from renal multicystic dysplasia and diabetes. Here, we show that HNF1ß bookmarking activity is impaired by naturally occurring mutations found in patients. Interestingly, this defect in HNF1ß mitotic chromatin association is rescued by an abrupt decrease in temperature. The rapid relocalization to mitotic chromatin is reversible and driven by a specific switch in DNA-binding ability of HNF1ß mutants. Furthermore, we demonstrate that importin-ß is involved in the maintenance of the mitotic retention of HNF1ß, suggesting a functional link between the nuclear import system and the mitotic localization/translocation of bookmarking factors. Altogether, our studies have disclosed novel aspects on the mechanisms and the genetic programs that account for the mitotic association of HNF1ß, a bookmarking factor that plays crucial roles in the epigenetic transmission of information through the cell cycle.


Assuntos
Epigênese Genética , Fator 1-beta Nuclear de Hepatócito/genética , Mutação/genética , Animais , Células Cultivadas , Cromatina/metabolismo , DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Cães , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Fator 1-beta Nuclear de Hepatócito/química , Heterozigoto , Humanos , Rim/citologia , Células Madin Darby de Rim Canino , Mitose/genética , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Quinazolinas/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Temperatura
14.
J Immunol ; 193(4): 1787-98, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024388

RESUMO

Deciphering the mechanisms that allow the induction of strong immune responses is crucial to developing efficient vaccines against infectious diseases and cancer. Based on the discovery that the adenylate cyclase from Bordetella pertussis binds to the CD11b/CD18 integrin, we developed a highly efficient detoxified adenylate cyclase-based vector (CyaA) capable of delivering a large variety of Ags to the APC. This vector allows the induction of protective and therapeutic immunity against viral and tumoral challenges as well as against transplanted tumors in the absence of any added adjuvant. Two therapeutic vaccine candidates against human papilloma viruses and melanoma have been developed recently, based on the CyaA vector, and are currently in clinical trials. We took advantage of one of these highly purified vaccines, produced under good manufacturing practice-like conditions, to decipher the mechanisms by which CyaA induces immune responses. In this study, we demonstrate that CyaA binds both human and mouse CD11b(+) dendritic cells (DCs) and induces their maturation, as shown by the upregulation of costimulatory and MHC molecules and the production of proinflammatory cytokines. Importantly, we show that DCs sense CyaA through the TLR4/Toll/IL-1R domain-containing adapter-inducing IFN-ß pathway, independent of the presence of LPS. These findings show that CyaA possesses the intrinsic ability to not only target DCs but also to activate them, leading to the induction of strong immune responses. Overall, this study demonstrates that Ag delivery to CD11b(+) DCs in association with TLR4/Toll/IL-1R domain-containing adapter-inducing IFN-ß activation is an efficient strategy to promote strong specific CD8(+) T cell responses.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Toxina Adenilato Ciclase/imunologia , Antígeno CD11b/imunologia , Células Dendríticas/imunologia , Animais , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Bordetella pertussis/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/citologia , Feminino , Interferon beta/imunologia , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Tirosina/genética
15.
Appl Environ Microbiol ; 80(18): 5854-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038093

RESUMO

Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.


Assuntos
Antígenos de Bactérias/metabolismo , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/metabolismo , Vesículas Secretórias/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Transporte Proteico , Salmonella typhimurium/genética
16.
Neuro Oncol ; 15(1): 83-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23172372

RESUMO

Medulloblastoma is the most common malignant brain tumor in children, and a substantial number of patients die as a result of tumor progression. Overexpression of CDK6 is present in approximately one-third of medulloblastomas and is an independent poor prognostic marker for this disease. MicroRNA (miR)-124 inhibits expression of CDK6 and prevents proliferation of glioblastoma and medulloblastoma cells in vitro. We examined the effects of miR-124 overexpression on medulloblastoma cells both in vitro and in vivo and compared cell lines that have low and high CDK6 expression. MiR-124 overexpression inhibits the proliferation of medulloblastoma cells, and this effect is mediated mostly through the action of miR-124 upon CDK6. We further show that induced expression of miR-124 potently inhibits growth of medulloblastoma xenograft tumors in rodents. Further testing of miR-124 will help define the ultimate therapeutic potential of preclinical models of medulloblastoma in conjunction with various delivery strategies for treatment.


Assuntos
Ciclo Celular , Proliferação de Células , Neoplasias Cerebelares/prevenção & controle , Meduloblastoma/prevenção & controle , MicroRNAs/genética , Animais , Apoptose , Western Blotting , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
PLoS One ; 7(11): e48644, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133649

RESUMO

Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS) have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV) hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP) and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5) of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice). The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042). Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia). However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.


Assuntos
Lentivirus/genética , Vacinas Antimaláricas/uso terapêutico , Malária/imunologia , Malária/prevenção & controle , Animais , Epitopos/química , Feminino , Vetores Genéticos , Células HEK293 , Hepatócitos/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Genéticos , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/química , Esporozoítos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA