Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chem Sci ; 15(19): 7324-7331, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756789

RESUMO

To facilitate the understanding of the dynamic distribution and activity of lysosomal enzymes, it is highly desirable to develop high-fidelity near-infrared (NIR) activatable fluorescent probes. Here, we propose a general acceptor engineering strategy to construct NIR probes with lysosome-targeting capability. Upon isosteric replacement and additional functionalization, the ß-gal-activatable probe OELyso-Gal exhibited excellent lysosome-targeting capability and favorable responsive performance to the enzyme of interest. Notably, the steric hindrance effect from acceptor engineering is modest, which renders the probe unprecedented affinity to enzymes. Upon the introduction of acceptor engineering, the lysosome-targeting probe became more sensitive to ß-gal in cells and tissues, boosting the discrimination of high ß-gal-expressing ovarian cancer tumours from low ß-gal-expressing tissues. Furthermore, the superiority of OELyso-Gal was validated in real-time visualization of ovarian cancer in tumour-bearing mice. This elegant acceptor engineering strategy provides inspirational insights into the development of customized fluorescent probes for monitoring disease-associated biomarkers within subcellular organelles.

2.
Biomater Res ; 27(1): 112, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941059

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a prominent global cancer with high mortality rates among human beings. Efficient diagnosis and treatment have always been a challenge for CRC management. Fluorescence guided cancer therapy, which combines diagnosis with therapy into one platform, has brought a new chance for achieving precise cancer theranostics. Among this, photosensitizers, applied in photodynamic therapy (PDT), given the integration of real-time imaging capacity and efficacious treatment feasibility, show great potential to serve as remarkable tools. Although much effort has been put into constructing photosensitizers for locating and destroying CRC cells, it is still in high need to develop novel photosensitizers to attain specific detection and fulfil effective therapy. METHODS: Probe HTI was rational synthesized for the diagnosis and treatment of CRC. Spectrometric determination was carried out first, followed by the 1O2 generation ability test. Then, HTI was displayed in distinguishing CRC cells from normal cells Further, the PDT effect of the photosensitizer was studied in vitro. Additionally, HTI was used in CRC BALB/c nude mice model to validate its viscosity labelling and tumor suppression characteristics. RESULTS: We successfully fabricated a mitochondrial targeting probe, HTI, together with remarkable viscosity sensitivity, ultralow background interference, and excellent 1O2 generation capacity. HTI was favorably applied to the viscosity detection, displaying a 11-fold fluorescent intensity enhancement in solvents from 1.57 cp to 2043 cp. Then, it was demonstrated that HTI could distinguish CRC cells from normal cells upon the difference in mitochondrial viscosity. Moreover, HTI was qualified for producing 1O2 with high efficiency in cells, supported by the sparkling signals of DCFH after incubation with HTI under light irradiation. More importantly, the viscosity labelling and tumor suppression performance in CRC CDX model was determined, enriching the multifunctional validation of HTI in vivo. CONCLUSIONS: In this study, HTI was demonstrated to show a sensitive response to mitochondrial viscosity and possess a high 1O2 generation capacity. Both in vitro cell imaging and in vivo tumor treatment trials proved that HTI was effectively served as a robust scaffold for tumor labeling and CRC cells clearance. This breakthrough discovery held immense potential for advancing the early diagnosis and management of CRC through PDT. By leveraging HTI's properties, medical professionals could benefit from improved diagnostic accuracy and targeted treatment in CRC management, ultimately leading to enhanced patient outcomes.

3.
Molecules ; 28(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836679

RESUMO

Partridge tea has high medicinal value due to its rich content of terpenoids, phenols, flavonoids, and other related bioactive components. In order to study the best drying method for partridge tea, four treatments, including outdoor sun drying (OD), indoor shade drying (ID), hot-air drying (HAD), and low-temperature freeze-drying (LTD), were performed. The results showed that the OD and HAD treatments favored the retention of the red color of their products, while the ID and LTD treatments were more favorable for the retention of the green color. The HS-SPME-GC-MS results showed that a total of 82 compounds were identified in the four drying treatments of partridge tea, and the most abundant compounds were terpenoids (88.34-89.92%). The HAD-treated tea had the highest terpenoid content (89.92%) and high levels of flavor compounds typical of partridge tea (52.28%). OPLS-DA and PCA showed that α-copaene, ß-bourbonene, caryophyllene, α-guaiene, and δ-cadinene could be considered candidate marker compounds for judging the aroma quality of partridge tea with different drying treatments. This study will not only provide a basis for processing and flavor quality control but also for spice and seasoning product development in partridge tea.


Assuntos
Mallotus (Planta) , Compostos Orgânicos Voláteis , Odorantes/análise , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Terpenos/análise , Carne/análise , Chá
4.
Cancer Immunol Res ; 11(10): 1367-1383, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37566399

RESUMO

The deregulation of Annexin A1 (ANXA1), a regulator of inflammation and immunity, leads to cancer growth and metastasis. However, whether ANXA1 is involved in cancer immunosuppression is still unclear. Here, we report that ANXA1 knockdown (i) dramatically downregulates programmed cell death-ligand 1 (PD-L1) expression in breast cancer, lung cancer, and melanoma cells; (ii) promotes T cell-mediated killing of cancer cells in vitro; and (iii) inhibits cancer immune escape in immune-competent mice via downregulating PD-L1 expression and increasing the number and killing activity of CD8+ T cells. Mechanistically, ANXA1 functioned as a sponge molecule for interaction of PARP1 and Stat3. Specifically, binding of ANXA1 to PARP1 decreased PARP1's binding to Stat3, which reduced poly(ADP-ribosyl)ation and dephosphorylation of Stat3 and thus, increased Stat3's transcriptional activity, leading to transcriptionally upregulated expression of PD-L1 in multiple cancer cells. In clinical samples, expression of ANXA1 and PD-L1 was significantly higher in breast cancer, non-small cell lung cancer, and skin cutaneous melanoma compared with corresponding normal tissues and positively correlated in cancer tissues. Moreover, using both ANXA1 and PD-L1 proteins for predicting efficacy of anti-PD-1 immunotherapy and patient prognosis was superior to using individual proteins. Our data suggest that ANXA1 promotes cancer immune escape via binding PARP1 and upregulating Stat3-induced expression of PD-L1, that ANXA1 is a potential new target for cancer immunotherapy, and combination of ANXA1 and PD-L1 expression is a potential marker for predicting efficacy of anti-PD-1 immunotherapy in multiple cancers.


Assuntos
Anexina A1 , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Feminino , Antígeno B7-H1 , Anexina A1/genética , Anexina A1/uso terapêutico , Linhagem Celular Tumoral , Evasão Tumoral , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Melanoma Maligno Cutâneo
5.
Langmuir ; 39(12): 4245-4256, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36913208

RESUMO

There are many treatments for nasopharyngeal carcinoma (NPC), but none of them are very effective. Radiotherapy is used extensively in NPC treatment, but radioresistance is a major problem. Graphene oxide (GO) has been previously studied in cancer treatment, and this study is aimed to explore its role in radiosensitization of NPC. Therefore, graphene oxide nanosheets were prepared, and the relationship between GO and radioresistance was explored. The GO nanosheets were synthesized by a modified Hummers' method. The morphologies of the GO nanosheets were characterized by field-emission environmental scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The morphological changes and radiosensitivity of C666-1 and HK-1 cells with or without the GO nanosheets were observed by an inverted fluorescence microscopy and laser scanning confocal microscopy (LSCM). Colony formation assay and Western Blot were applied for analysis of NPC radiosensitivity. The as-synthesized GO nanosheets have lateral dimensions (sizes ∼1 µm) and exhibit a thin wrinkled two-dimensional lamellar structure with slight folds and crimped edges (thickness values ∼1 nm). C666-1 cells with the GO was significantly changed the morphology of cells postirradiation. The full field of view visualized by a microscope showed the shadow of dead cells or cell debris. The synthesized graphene oxide nanosheets inhibited cell proliferation, promoted cell apoptosis, and inhibited the expression of Bcl-2 in C666-1 and HK-1 cells but increased the level of Bax. The GO nanosheets could affect the cell apoptosis and reduce the pro-survival protein Bcl-2 related to the intrinsic mitochondrial pathway. The GO nanosheets could enhance radiosensitivity, which might be a radioactive material in NPC cells.


Assuntos
Grafite , Neoplasias Nasofaríngeas , Humanos , Grafite/farmacologia , Grafite/química , Microscopia Eletrônica de Transmissão , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia
6.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37001908

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) therapy targeting programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) shows promising clinical benefits. However, the relatively low response rate highlights the need to develop an alternative strategy to target PD-1/PD-L1 immune checkpoint. Our study focuses on the role and mechanism of annexin A1 (ANXA1)-derived peptide A11 degrading PD-L1 and the effect of A11 on tumor immune evasion in multiple cancers. METHODS: Binding of A11 to PD-L1 was identified by biotin pull-down coupled with mass spectrometry analysis. USP7 as PD-L1's deubiquitinase was found by screening a human deubiquitinase cDNA library. The role and mechanism of A11 competing with USP7 to degrade PD-L1 were analyzed. The capability to enhance the T cell-mediated tumor cell killing activity and antitumor effect of A11 via suppressing tumor immune evasion were investigated. The synergistic antitumor effect of A11 and PD-L1 mAb (monoclonal antibody) via suppressing tumor immune evasion were also studied in mice. The expression and clinical significance of USP7 and PD-L1 in cancer tissues were evaluated by immunohistochemistry. RESULTS: A11 decreases PD-L1 protein stability and levels by ubiquitin proteasome pathway in breast cancer, lung cancer and melanoma cells. Mechanistically, A11 competes with PD-L1's deubiquitinase USP7 for binding PD-L1, and then degrades PD-L1 by inhibiting USP7-mediated PD-L1 deubiquitination. Functionally, A11 promotes T cell ability of killing cancer cells in vitro, inhibits tumor immune evasion in mice via increasing the population and activation of CD8+ T cells in tumor microenvironment, and A11 and PD-1 mAb possess synergistic antitumor effect in mice. Moreover, expression levels of both USP7 and PD-L1 are significantly higher in breast cancer, non-small cell lung cancer and skin melanoma tissues than those in their corresponding normal tissues and are positively correlated in cancer tissues, and both proteins for predicting efficacy of PD-1 mAb immunotherapy and patient prognosis are superior to individual protein. CONCLUSION: Our results reveal that A11 competes with USP7 to bind and degrade PD-L1 in cancer cells, A11 exhibits obvious antitumor effects and synergistic antitumor activity with PD-1 mAb via inhibiting tumor immune evasion and A11 can serve as an alternative strategy for ICIs therapy in multiple cancers.


Assuntos
Anexina A1 , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Animais , Camundongos , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Anexina A1/metabolismo , Linfócitos T CD8-Positivos , Antígeno B7-H1 , Evasão Tumoral , Receptor de Morte Celular Programada 1 , Peptidase 7 Específica de Ubiquitina/metabolismo , Anticorpos Monoclonais/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Peptídeos/metabolismo , Microambiente Tumoral
7.
ACS Appl Mater Interfaces ; 14(37): 41671-41683, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36083296

RESUMO

The formation of microbial biofilms is acknowledged as a major virulence factor in a range of persistent local infections. Failures to remove biofilms with antibiotics foster the emergence of antibiotic-resistant bacteria and result in chronic infections. As a result, the construction of effective biofilm-inhibiting and biofilm-eradicating chemicals is urgently required. Herein, we designed a water-soluble probe APDIS for membrane-active fluorescence and broad-spectrum antimicrobial actions, particularly against methicillin-resistant Staphylococcus aureus (MRSA), which shows multidrug resistance. In vitro and in vivo experiments demonstrate its high antibacterial effects comparable to vancomycin. Furthermore, it inhibits biofilm formation by effectively killing planktonic bacteria at low inhibitory concentrations, without toxicity to mammalian cells. More importantly, this probe can efficiently penetrate through biofilm barriers and exterminate bacteria that are enclosed within biofilms and startle existing biofilms. In the mouse model of implant-related biofilm infections, this probe exhibits strong antibiofilm activity against MRSA biofilms, thus providing a novel theranostic strategy to disrupt biofilms in vivo effectively. Our results indicate that this probe has the potential to be used for the development of a combinatorial theranostic platform with synergistic enhanced effects for the treatment of multidrug-resistant bacterial infections and antibiofilm medications.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Biofilmes , Mamíferos , Camundongos , Testes de Sensibilidade Microbiana , Medicina de Precisão , Vancomicina/farmacologia , Fatores de Virulência/farmacologia , Água
8.
Front Endocrinol (Lausanne) ; 13: 962775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992123

RESUMO

Research has shown that dendrobium officinale polysaccharide (DOP) can promote follicular development and inhibit the apoptosis of ovarian granular cells in PCOS rats. However, DOP cannot be absorbed directly by the stomach and small intestine but is degraded into short-chain fatty acids by gut microbiota in the large intestine and regulates the composition of gut microbiota. How DOP improved ovarian function in PCOS rats through the blood-brain barrier is unclear. In this study, we generated letrozole-induced PCOS rat models and studied the therapeutic effect and mechanism of DOP. 16S rRNA amplicon sequencing analysis, GC-MS short-chain fatty acid detection, and Gene Expression Omnibus database searching were conducted to screen the significantly changed pathways, and a series of experiments, such as enzyme-linked immunosorbent assay, RT-qPCR, Western blot, and immunohistochemistry, were performed. We found that DOP treatment could improve ovarian morphology and endocrine disorders, restore the normal estrus cycle, increase gut microbiota α diversity, and alter ß diversity and enrichment of butyrate-producing bacterium in PCOS rats. In addition, compared with PCOS rats, those treated with DOP exhibited higher butyrate and polypeptide YY levels, possibly due to the regulation of G protein-coupled receptor 41 expression. These results indicated that DOP relieved the symptoms of PCOS rats which may be related to the mechanism of butyrate dependent gut-brain-ovary axis protection.


Assuntos
Dendrobium , Síndrome do Ovário Policístico , Animais , Encéfalo/metabolismo , Butiratos/farmacologia , Butiratos/uso terapêutico , Dendrobium/química , Dendrobium/metabolismo , Ácidos Graxos Voláteis , Feminino , Humanos , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , RNA Ribossômico 16S , Ratos
9.
Int J Biol Macromol ; 213: 404-415, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35661666

RESUMO

Polygonatum sibiricum polysaccharides (PSPs) have the function of nourishing the nerves and beneficial intelligence, but the underlying mechanisms remain unclear. Here we initially isolated and purified a monomeric polysaccharide named PSP-1 from PSPs. UV and IR were utilized for characterizing PSP-1. The molecular weight of PSP-1 was 18.796 kDa. Utilizing 5xFAD mice as a research model, we identified that the initial time of PSP-1 oral administration was 3 months of age for mice by determining the 16S rRNA of fecal samples from wild type (WT) and 5xFAD mice at 3 months or 6 months of age. A 3-month course of PSP-1 improved the pathological behaviors related to memory and cognition, prevented synaptic loss, enhanced microglial phagocytosis of Aß plaques, and decreased the concentrations of Aß1-40 and Aß1-42 in the brains of 5xFAD mice. Moreover, PSP-1 reconstructed the gut microbiota composition, including reducing the relative abundance of Helicobacter, and increasing Akkermansia muciniphila. The gut barrier integrity damage, the inflammatory responses, and the intestinal Aß deposition were prevented by the PSP-1 treatment. The present study identified a monomeric polysaccharide purified from PSPs that significantly attenuates the cognitive deficits in 5xFAD mice, which could be partly explained by the reshaped gut microbiome.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Polygonatum , Doença de Alzheimer/tratamento farmacológico , Animais , Cognição , Carboidratos da Dieta , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , RNA Ribossômico 16S/genética
10.
Front Pharmacol ; 13: 895573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694267

RESUMO

The antiparasitic drug nitazoxanide (NTZ) has received considerable attention for its potential in cancer therapy. In this study, we demonstrate that tizoxanide (TIZ), an active metabolite of NTZ, exhibits antiglioma activity in vitro and in vivo by inducing G2/M cell cycle arrest and apoptosis. In vitro, TIZ dose-dependently inhibited the proliferation of U87, U118, and A172 human glioblastoma (GBM) cells at 48 h with IC50 values of 1.10, 2.31, and 0.73 µM, respectively. Treatment with TIZ (1 and 10 µM) also dose-dependently inhibited the colony formation of these GBM cells and accumulated ROS damage in the nucleus. In silico target fishing combined with network pharmacological disease spectrum analyses of GBM revealed that cycle-dependent kinase 1 (CDK1) is the most compatible target for TIZ and molecular docking by Molecule Operating Environment (MOE) software confirmed it. Mechanistically, TIZ inhibited the phosphorylation of CDK1 at Thr161 and decreased the activity of the CDK1/cyclin B1 complex, arresting the cell cycle at the G2/M phase. TIZ may induce apoptosis via the ROS-mediated apoptotic pathway. In vivo, TIZ suppressed the growth of established subcutaneous and intracranial orthotopic xenograft models of GBM without causing obvious side effects and prolonged the survival of nude mice bearing glioma. Taken together, our results demonstrated that TIZ might be a promising chemotherapy drug in the treatment of GBM.

11.
Cell Death Dis ; 13(4): 338, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414060

RESUMO

Given that triple-negative breast cancer (TNBC) lacks specific receptors (estrogen and progesterone receptors and human epidermal growth factor receptor 2) and cannot be treated with endocrine therapy, chemotherapy has remained the mainstay of treatment. Drug resistance is reportedly the main obstacle to the clinical use of doxorubicin (DOX) in this patient population. Accordingly, screening molecules related to chemoresistance and studying their specific mechanisms has clinical significance for improving the efficacy of chemotherapy in TNBC patients. Thioredoxin-interacting protein (TXNIP) is a metabolism-related protein that plays a tumor suppressor role in various malignant tumors; however, the specific role of TXNIP in tumor chemoresistance has not been reported. In the present study, we explored the potential molecular mechanism of TXNIP in the chemoresistance of TNBC for the first time. The results showed that TXNIP inhibited the proliferation of TNBC drug-resistant cells and promoted apoptosis in vitro and in vivo. Furthermore, TXNIP promoted the synthesis of reactive oxygen species (ROS) and the accumulation of DNA damage caused by DOX and increased γ-H2AX levels in a time and dose-dependent manner. Moreover, ROS scavenger pretreatment could block DNA damage induced by TXNIP and restore the resistance of TNBC resistant cells to DOX to a certain extent. In addition, we found that the small molecule c-Myc inhibitor 10058-F4 promoted TXNIP expression, increased ROS synthesis in cells, and could enhance the cytotoxicity of chemotherapy drugs in vitro and in vivo when combined with DOX. These results indicated that c-Myc inhibitor 10058-F4 could induce TXNIP upregulation in TNBC drug-resistant cells, and the upregulated TXNIP increased the accumulation of ROS-dependent DNA damage, thereby decreasing chemotherapy resistance of TNBC. Our findings reveal a new mechanism of mediating drug resistance and provide a new drug combination strategy to overcome DOX resistance in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/uso terapêutico , Linhagem Celular Tumoral , Dano ao DNA , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
12.
Int J Biol Sci ; 18(5): 1878-1895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342334

RESUMO

The biological functions of exosomes and microRNAs (miRs) in nasopharyngeal carcinoma (NPC) remain largely unexplored. Here, miR-197-3p was screened and identified, and whose level was reduced in serum and exosomes of patients with NPC. MiR-197-3p might be a good diagnostic and prognostic indicator. Our data showed that miR-197-3p expression was closely related to radioresistance, apoptosis, proliferation, migration, and survival of NPC. Inhibition of miR-197-3p expression in vitro could promote the proliferation and migration of NPC cells, while promotion of miR-197-3p expression in vivo could significantly inhibit the growth and enhance the radiosensitivity of NPC cells. From the perspective of mechanism, miR-197-3p could inhibit AKT/mTOR phosphorylation activation, inhibit an activated pathway of AKT/mTOR, target Heat Shock 70-kDa Protein 5(HSPA5) related to endoplasmic reticulum homeostasis, inhibit HSPA5-mediated autophagy, and reverse the radioresistance of NPC. Interestingly, exosomal miR-197-3p (EXO-miR-197-3p) reduced the proliferation and migration potential of NPC cells in vitro, and tumor growth and radioresistance of NPC cells in vivo. EXO-miR-197-3p inhibited NPC progression and radioresistance by regulating AKT/mTOR phosphorylation activation and HSPA5-mediated autophagy. In conclusion, our results highlight the potential of EXO-miR-197-3p as an effective radiosensitizer and therapeutic agent for refractory NPC.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Radiossensibilizantes , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34935899

RESUMO

Due to the lack of known therapeutic targets for triple-negative breast cancer (TNBC), chemotherapy is the only available pharmacological treatment. Pirarubicin (tetrahydropyranyl Adriamycin, THP) is the most commonly used anthracycline chemotherapy agent. However, TNBC has a high recurrence rate after chemotherapy, and the mechanisms of chemoresistance and recurrence are not entirely understood. To study the chemoresistance mechanisms, we first screened compounds on a pirarubicin-resistant cell line (MDA-MB-231R) derived from MDA-MB-231. The drug resistance index of MDA-MB-231R cells was approximately five times higher than that of MDA-MB-231 cells. MDA-MB-231R cells have higher GRP78 and lower miR-495-3p expression levels than MDA-MB-231 cells. Transfecting MDA-MB-231R cells with a siGRP78 plasmid reduced GRP78 expression, which restored pirarubicin sensitivity. Besides, transfecting MDA-MB-231R cells with miR-495-3p mimics increased miR-495-3p expression, which also reversed pirarubicin chemoresistance. Cell counting kit-8 (CCK-8), EdU, wound healing, and Transwell assays showed that the miR-495-3p mimics also inhibited cell proliferation and migration. Based on our results, miR-495-3p mimics could down-regulate GRP78 expression via the p-AKT/mTOR signaling pathway in TNBC cells. Remarkably, chemo-resistant and chemo-sensitive TNBC tissues had opposite trends in GRP78 and miR-495-3p expressions. The lower the GRP78 and the higher the miR-495-3p expression, the better prognosis in TNBC patients. Therefore, the mechanism of pirarubicin resistance might involve the miR-495-3p/GRP78/Akt axis, which would provide a possible strategy for treating TNBC.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Chaperona BiP do Retículo Endoplasmático/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , Fosforilação , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
14.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2514-2524, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34313070

RESUMO

Juniperus przewalskii is important for water and soil conservation. It is one of the native tree species suitable for afforestation and greening in high-cold and arid areas of Qinghai Province. Predicting the potential geographic distribution of J. przewalskii in Qinghai Province under the climate change scenario will provide theoretical guidance for its management, introduction, and cultivation. In this study, the current potential distribution of J. przewalskii was simulated firstly based on 88 effective distributional records from field investigation and data collection via Maxent model and ArcGIS spatial analysis. We analyzed dominant factors affecting the potential distribution of J. przewa-lskii by Jackknife test and correlation coefficient. The distribution of J. przewalskii under three climate change scenarios (SSP126, SSP245, SSP585) with the climate model data of the sixth phase of the Coupled Model Intercomparison Projects (CMIP6) were predicted for 2061-2080. The results showed that the area under the receiver operating characteristic curve (AUC) of the Maxent model was greater than 0.92, suggesting a good predictive performance. Under current climatic condition, the suitable distribution area of J. przewalskii was mainly located in the eastern part of Qinghai Province, with the suitable area accounted for 11.2% of the total. The dominant factors affecting the distribution of J. przewalskii were altitude, annual precipitation, the minimum temperature of coldest month, and slope, with a cumulative contribution rate of 85.9%. The suitable areas of J. przewalskii altered under the three future climate scenarios. The suitable areas would shrink under the SSP245 scenario and expand under the SSP126 and SSP585 scenarios. The sui-table area of J. przewalskii would have the most obvious expansion under the SSP126 climate situation, with the expanding areas being mainly located in Zeku County, the north-central part of Henan Mongolian Autonomous County, and the southeast of Qilian County. Under three climatic scenarios, the suitable area of J. przewalskii would gradually migrate to high altitudes, but without clear altitudinal and longitudinal shifts.


Assuntos
Mudança Climática , Juniperus , Altitude , China , Ecossistema , Previsões
15.
Ann Transl Med ; 9(6): 485, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33850882

RESUMO

BACKGROUND: Tumor resistance to radiotherapy is one of the main obstacles to the clinical treatment of nasopharyngeal carcinoma (NPC). Improving the radiosensitivity of tumor cells has an important clinical significance in treatment of clinical NPC. This study aimed to identify that miR-138-1-3p as a novel therapeutic target in radioresistant NPC cells and found its targets, CRIPTO and the JAK2/STAT3 pathway. METHODS: Radioresistant C666-IR and HK-1R cells were derived from the NPC cell lines C666-1 and HK-1. The different microRNAs (miRNAs) and their targeting genes were analyzed between C666-1 and C666-IR cells using microarray bioinformatics. Western blot, qRT-PCR, gene transfection, Luciferase reporter assay, and confocal laser scanning microscopy were applied for the analysis of the different genes. RESULTS: MiR-138-1-3p was found to target CRIPTO, which involved in the epithelial-mesenchymal transition (EMT) and JAK2/STAT3 signaling pathways. The luciferase reporter assay confirmed that miR-138-1-3p targeted CRIPTO and downregulated the expression of CRIPTO. Furthermore, miR-138-1-3p affected the stability of the CRIPTO-GRP78 complex on the cell membrane and also reversed the radioresistant characteristics of NPC stem cells, which affected EMT and the JAK2/STAT3 signaling pathway. CONCLUSIONS: The miR-138-1-3p is a small molecule that can modulate radiosensitivity in the radioresistant C666-IR and HK-1R NPC cell lines by inhibiting EMT and targeting CRIPTO to reduce the activation of the JAK2/STAT3 pathway.

16.
Oncol Rep ; 45(3): 1044-1058, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33650655

RESUMO

As a potential oncogene, nucleolar and spindle­associated protein 1 (NUSAP1) is involved in the regulation of tumor cell proliferation, metastasis and drug resistance. However, the role of NUSAP1 in non­small cell lung cancer (NSCLC) remains unclear. The present study aimed to investigate the biological function and underlying molecular mechanisms of NUSAP1 in NSCLC. NUSAP1 expression was measured in NSCLC tissues and cell lines via immunohistochemistry and western blotting, respectively. NSCLC cell lines stably inhibiting NUSAP1 were established to investigate its effects on cell proliferation, colony formation and invasion, and on in vivo tumorigenicity. Additionally, the upstream and downstream mechanisms of NUSAP1 in regulating NSCLC progression were investigated. The results indicated that NUSAP1 expression was upregulated in NSCLC tissues and cell lines. High NUSAP1 expression was associated with tumor size, TNM stage, lymph node metastasis and poor patient survival, whereas knockdown of NUSAP1 inhibited NSCLC cell proliferation, colony formation and invasion. Furthermore, downregulation of NUSAP1 decreased the growth of NSCLC xenografts in vivo. In addition, myocyte enhancer factor 2D (MEF2D) directly targeted the NUSAP1 promoter, thereby enhancing the mRNA and protein expression levels of NUSAP1. Moreover, the results demonstrated that MEF2D expression was upregulated in NSCLC tissues and was positively correlated with NUSAP1 expression. MEF2D­knockdown decreased NSCLC cell proliferation, colony formation and invasion. NUSAP1 upregulation reversed the effects of MEF2D­knockdown on NSCLC progression. Furthermore, it was observed that MEF2D­knockdown inhibited the accumulation and nuclear translocation of ß­catenin, thereby repressing the activation of the Wnt/ß­catenin signaling pathway in NSCLC cells, whereas NUSAP1 upregulation rescued the effects of MEF2D­knockdown on the activation of the Wnt/ß­catenin signaling pathway. In conclusion, the findings of the present study indicated that the MEF2D/NUSAP1 signaling pathway promoted NSCLC progression by inducing the activation of Wnt/ß­catenin signaling, and this novel mechanism may represent a potential treatment target for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Adulto , Idoso , Animais , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Prognóstico , Via de Sinalização Wnt , beta Catenina/metabolismo
17.
Talanta ; 225: 121950, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592705

RESUMO

Abnormal level of alkaline phosphatase (ALP) activity has been linked to many diseases in human. The development of fluorescent molecular probes that can report the expression and activity of ALP in various biological systems will be extremely valuable. However, the in vivo monitoring for ALP in living cells and more complex biological systems remains a great challenge. The excited-state intramolecular proton transfer (ESIPT) probe with proportional fluorescence has low background noise, while the aggregation induced emission (AIE) probe has the advantages of signal amplification and good light stability. Herein, an "AIE + ESIPT" fluorescent probe 2-(benzo[d]thiazol-2-yl)-4-(1,4,5-triphenyl-1H-imidazole-2-yl)phenyl dihydrogen phosphate (THP) was constructed for the highly selective and sensitive detection of ALP. By introducing a phosphate ester at the hydroxyl position of the solid fluorophore 2-(benzo[d]thiazol-2-yl)-4-(1,4,5-triphenyl-1H-imidazole-2-yl)phenol, ESIPT was hindered and the probe present a faint blue fluorescence in DMSO solution. While ALP was introduced, causing the phosphate in THP hydrolyzed, and the ESIPT process was restored to yield a yellow fluorescence at 550 nm, thereby achieving proportionality detection. THP exhibited high selectivity and sensitively to ALP with low limit of detection (1.21228 U/L), and the reaction completed within 20 min. In addition, with its outstanding advantages of low biological toxicity and enzyme conversion characteristics, THP has been successfully applied to ALP imaging in living cells (Hela cells, A549 cells and Hek293 cells), and can provide in situ information on the reaction site. Therefore, THP has the potential for detecting ALP activity in biomedical application.


Assuntos
Fosfatase Alcalina , Corantes Fluorescentes , Células HEK293 , Células HeLa , Humanos , Espectrometria de Fluorescência
18.
Front Oncol ; 10: 568574, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194655

RESUMO

Thioredoxin-interacting protein (TXNIP) is a thioredoxin-binding protein that can mediate oxidative stress, inhibit cell proliferation, and induce apoptosis by inhibiting the function of the thioredoxin system. TXNIP is important because of its wide range of functions in cardiovascular diseases, neurodegenerative diseases, cancer, diabetes, and other diseases. Increasing evidence has shown that TXNIP expression is low in tumors and that it may act as a tumor suppressor in various cancer types such as hepatocarcinoma, breast cancer, and lung cancer. TXNIP is known to inhibit the proliferation of breast cancer cells by affecting metabolic reprogramming and can affect the invasion and migration of breast cancer cells through the TXNIP-HIF1α-TWIST signaling axis. TXNIP can also prevent the occurrence of bladder cancer by inhibiting the activation of ERK, which inhibits apoptosis in bladder cancer cells. In this review, we find that TXNIP can be regulated by binding to transcription factors or other binding proteins and can also be downregulated by epigenetic changes or miRNA. In addition, we also summarize emerging insights on TXNIP expression and its functional role in different kinds of cancers, as well as clarify its participation in metabolic reprogramming and oxidative stress in cancer cells, wherein it acts as a putative tumor suppressor gene to inhibit the proliferation, invasion, and migration of different tumor cells as well as promote apoptosis in these cells. TXNIP may therefore be of basic and clinical significance for finding novel molecular targets that can facilitate the diagnosis and treatment of malignant tumors.

19.
Cancer Res ; 80(20): 4386-4398, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32737118

RESUMO

Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.


Assuntos
Anexina A1/metabolismo , Efrina-A2/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Animais , Anexina A1/química , Anexina A1/genética , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Efrina-A2/química , Efrina-A2/genética , Humanos , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/mortalidade , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/mortalidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Receptor EphA2 , Ubiquitina/metabolismo
20.
Microsc Microanal ; 25(5): 1213-1223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451123

RESUMO

Needles of Juniperus rigida are used in Chinese traditional medicine for the treatment of brucellosis, dropsy, skin disease, and rheumatoid arthritis. This is the first study that reports anatomical structures of the J. rigida needles collected at different altitudes. The most common anatomical, phytochemical, and histochemical techniques and methods are used. The results show that anatomical structures and chemical composition change significantly at different altitudes. The main anatomical characters are significant xeromorphic structures (thick epidermis, hypodermis, and cuticle), a stomatal band, a developed vascular bundle, and a marginal resin duct. The xeromorphic structures become more pronounced with increasing altitude. The phytochemical and histochemical results demonstrate that the content of the main chemical compounds (phenols and terpenoids) basically increases at a higher elevation. Histochemical analysis localizes the phenols in epidermal cells, sponge tissue, endothelial layer cells, and stomatal bands, and the terpenoids in palisade tissue, sponge tissue, and the edge of the resin duct. This work reveals the relation between anatomy and chemistry in J. rigida needles, contributes to the quality control of its ethno-medicine, and provides the evidence to develop the commercial cultivation.


Assuntos
Altitude , Juniperus/anatomia & histologia , Juniperus/química , Compostos Fitoquímicos/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Histocitoquímica , Fenóis/análise , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/química , Terpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA