Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Food Res Int ; 187: 114422, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763672

RESUMO

Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.


Assuntos
Citrus sinensis , Resíduos Industriais , Citrus sinensis/química , Resíduos Industriais/análise , Manipulação de Alimentos/métodos , Indústria Alimentícia , Pão/análise , Valor Nutritivo , Reciclagem , Indústria de Processamento de Alimentos
2.
Foods ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611351

RESUMO

The increasing population, food demand, waste management concerns, and the search for sustainable alternatives to plastic polymers have led researchers to explore the potential of waste materials. This study focused on a waste of pine nut processing referred to in this paper as pine nut skin. For the first time, its nutritional profile, potential bioactive peptide, contaminants, and morphological structure were assessed. Pine nut skin was composed mainly of carbohydrates (56.2%) and fiber (27.5%). The fat (9.8%) was about 45%, 35%, and 20% saturated, monounsaturated, and polyunsaturated fatty acid, respectively, and Omega-9,-6, and -3 were detected. Notably, oleic acid, known for its health benefits, was found in significant quantities, resembling its presence in pine nut oil. The presence of bioactive compounds such as eicosapentaenoic acid (EPA) and phytosterols further adds to its nutritional value. Some essential elements were reported, whereas most of the contaminants such as heavy metals, polycyclic aromatic hydrocarbons, rare earth elements, and pesticides were below the limit of quantification. Furthermore, the in silico analysis showed the occurrence of potential precursor peptides of bioactive compounds, indicating health-promoting attributes. Lastly, the morphological structural characterization of the pine nut skin was followed by Fourier Transform Infrared and solid-state NMR spectroscopy to identify the major components, such as lignin, cellulose, and hemicellulose. The thermostability of the pine nut skin was monitored via thermogravimetric analysis, and the surface of the integument was analyzed via scanning electron microscopy and volumetric nitrogen adsorption. This information provides a more comprehensive view of the potential uses of pine nut skin as a filler material for biocomposite materials. A full characterization of the by-products of the food chain is essential for their more appropriate reuse.

3.
Food Chem ; 401: 134185, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113218

RESUMO

Alternative sources of edible proteins are required to feed the world's growing population, such as Moringa oleifera leaves, a protein source with a balanced amino acid composition. Since Moringa leaf proteins is a novel food in the EU and UK, an assessment of their potential allergenicity of is required. Proteins from Moringa leaf powder were characterised using traditional proteomic approaches. The proteins identified were evaluated for their allergenic potential using in-silico tools. The main proteins identified belonged to photosynthetic and metabolic pathways. In-silico analysis of the leaf proteome identified moritides as potential allergens by homology with a latex allergen implicated in fruit-latex syndrome. This analysis also identified a nsLTP, a major panallergen in food. The presence of these putative allergens was confirmed by de-novo sequencing. Our study allowed identification of putative allergens, Morintides and nsLTP. Further in-vitro and in-vivo investigations are required to confirm their allergenic potential.


Assuntos
Ingredientes de Alimentos , Moringa oleifera , Alérgenos/química , Moringa oleifera/química , Proteômica , Proteoma/metabolismo , Pós/metabolismo , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Aminoácidos/metabolismo
4.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745646

RESUMO

Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic precursor of resveratrol, is known for its antioxidant, antitumor, antiosteoporotic, and bone regeneration activities. We aimed to use the osteogenic capacity of polydatin to create a biomimetic innovative and patented scaffold consisting of PCL-PD for bone tissue engineering. Both osteosarcoma cells (Saos-2) and mesenchymal stem cells (MSCs) were used to test the in vitro cytocompatibility of the PD-PCL scaffold. Reverse-phase (RP) HPLC was used to evaluate the timing release of PD from the PCL-PD nanofibers and the MTT assay, scanning electron microscopy, and alkaline phosphatase (ALP) activity were used to evaluate the proliferation, adhesion, and cellular differentiation in both osteosarcoma and human mesenchymal stem cells (MSCs) seeded on PD-PCL nanofibers. The proliferation of osteosarcoma cells (Saos-2) on the PD-PCL scaffold decreased when compared to cells grown on PLC nanofibers, whereas the proliferation of MSCs was comparable in both PCL and PD-PCL nanofibers. Noteworthy, after 14 days, the ALP activity was higher in both Saos-2 cells and MSCs cultivated on PD-PCL than on empty scaffolds. Moreover, the same cells showed a spindle-shaped morphology after 14 days when grown on PD-PCL as shown by SEM. In conclusion, we provide evidence that nanofibers appropriately coated with PD support the adhesion and promote the osteogenic differentiation of both human osteosarcoma cells and MSCs.

5.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565988

RESUMO

Selected food proteins may represent suitable markers for assessing either the presence/absence of specific food ingredients or the type and intensity of food processes. A fundamental step in the quantification of any protein marker is choosing a proper protocol for solubilizing the protein of interest. This step is particularly critical in the case of solid foods and when the protein analyte is prone to undergo intermolecular disulfide exchange reactions with itself or with other protein components in the system as a consequence of process-induced unfolding. In this frame, gluten-based systems represent matrices where a protein network is present and the biomarker proteins may be either linked to other components of the network or trapped into the network itself. The protein biomarkers considered here were wheat gluten toxic sequences for coeliac (QQPFP, R5), wheat germ agglutinin (WGA), and chicken egg ovalbumin (OVA). These proteins were considered here in the frame of three different cases dealing with processes different in nature and severity. Results from individual cases are commented as for: (1) the molecular basis of the observed behavior of the protein; (2) the design of procedure aimed at improving the recovery of the protein biomarker in a form suitable for reliable identification and quantification; (3) a critical analysis of the difficulties associated with the plain transfer of an analytical protocol from one product/process to another. Proper respect for the indications provided by the studies exemplified in this study may prevent coarse errors in assays and vane attempts at estimating the efficacy of a given treatment under a given set of conditions. The cases presented here also indicate that recovery of a protein analyte often does not depend in a linear fashion on the intensity of the applied treatment, so that caution must be exerted when attributing predictive value to the results of a particular study.


Assuntos
Manipulação de Alimentos , Glutens , Biomarcadores/análise
6.
Food Res Int ; 153: 110949, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35227473

RESUMO

Kashk is a fermented dairy product typical of the Middle East, traditionally produced with sour milk and/or dairy waste. The kashk water-soluble peptide fraction was characterized at the molecular level by liquid chromatography-mass spectrometry and its antibacterial and skin healing activity was evaluated. Antibacterial assays showed a significant antibacterial activity against clinical isolates of Staphylococcus aureus (S. aureus) from patients with atopic dermatitis, inhibiting bacterial growth by approximately 45% (500 µg/mL). Skin repair activity was evaluated on keratinocytes through scratch tests showing accelerated wound closure in vitro in the presence of TNF-α, by approximately 44% (500 µg/mL), compared to control cells. Furthermore, based on the MTT assay, the kashk peptide fraction did not show toxicity on keratinocytes. The results suggested that the peptide kashk extract may be useful in skin care for patients with atopic dermatitis.


Assuntos
Produtos Fermentados do Leite , Staphylococcus aureus , Antibacterianos/química , Caseínas/farmacologia , Humanos , Peptídeos/farmacologia , Cicatrização
7.
Food Res Int ; 154: 111012, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337570

RESUMO

The demand for sustainably produced proteins is increasing with the world population and is prompting a dietary shift toward plant sourced proteins. Vegetable proteins have lower digestibility and biological value compared to animal derived counterparts. We explored sprouting of chickpea seeds as a strategy for improving digestibility. Protein evolution associated with by the sprouting process was assessed by proteomics. The sprouting induced breakdown of seed storage proteins and doubled the release of free alpha-amino nitrogen in sprouted chickpea flour. During sprouting, several enzymes involved in plant development were newly expressed. An ex vivo model of gastroduodenal and jejunal digestion was applied to assess the bioaccessibility of the protein digests. Proteins from chickpea sprouts showed a greater susceptibility to digestion with a 10% increase in alpha amino nitrogen. Peptides with potential immunoreactivity or bioactivity were catalogued in both digested chickpea sprouts and seeds using an in-silico approach. Peptides belonging to the non-specific transfer proteins, which are allergens in pulses, and peptides belonging to an IgE-binding hemagglutinin protein could only be identified in the digested chickpea sprouts. The observation collected paved the way to immune-based evaluations to assess the effect of germination on the allergenic potential.


Assuntos
Cicer , Animais , Digestão , Farinha , Microvilosidades , Proteoma/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162980

RESUMO

Protein expression from the berry skin of four red grape biotypes with varying hybrid character was compared at a proteome-wide level to identify the metabolic pathways underlying divergent patterns of secondary metabolites. A bottom-up shotgun proteomics approach with label-free quantification and MaxQuant-assisted computational analysis was applied. Red grapes were from (i) purebred Vitis vinifera (Aglianico cv.); (ii) V. vinifera (local Sciascinoso cv.) grafted onto an American rootstock; (iii) interspecific hybrid (V. vinifera × V. labrusca, Isabel), and (iv) uncharacterized grape genotype with hybrid lineage, producing relatively abundant anthocyanidin 3,5-O-diglucosides. Proteomics supported the differences between hybrids and purebred V. vinifera grapes, consistently with distinct phenotypic metabolite assets. Methanol O-anthraniloyltransferase, which catalyses the synthesis of methyl anthranilate, primarily responsible for the "foxy" odour, was exclusive of the Isabel hybrid grape. Most of the proteins with different expression profiles converged into coordinated biosynthetic networks of primary metabolism, while many possible enzymes of secondary metabolism pathways, including 5-glucosyltransferases expected for hybrid grapes, remained unassigned due to incomplete protein annotation for the Vitis genus. Minor differences of protein expression distinguished V. vinifera scion grafted onto American rootstocks from purebred V. vinifera skin grapes, supporting a slight influence of the rootstock on the grape metabolism.


Assuntos
Vitis , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Odorantes/análise , Proteômica , Vitis/metabolismo
9.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209097

RESUMO

Tritordeum results from the crossbreeding of a wild barley (Hordeum chilense) species with durum wheat (Triticum turgidum spp. turgidum). This hexaploid crop exhibits agronomic and rheological characteristics like soft wheat, resulting in an innovative raw material to produce baked goods. We applied a gel-based proteomic approach on refined flours to evaluate protein expression differences among two widespread tritordeum cultivars (Aucan and Bulel) taking as the reference semolina and flour derived from a durum and a soft wheat cvs, respectively. The products of in vitro digestion of model breads were analyzed to compare bio-accessibility of nutrients and mapping tritordeum bread resistant peptides. Significant differences among the protein profiles of the four flours were highlighted by electrophoresis. The amino acid bio-accessibility and the reducing sugars of tritordeum and wheat breads were comparable. Tritordeum cvs had about 15% higher alpha-amino nitrogen released at the end of the duodenal simulated digestion than soft wheat (p < 0.05). Bulel tritordeum flour, bread and digested bread had about 55% less R5-epitopes compared to the soft wheat. Differences in protein expression found between the two tritordeum cvs reflected in diverse digestion products and allergenic and celiacogenic potential of the duodenal peptides. Proteomic studies of a larger number of tritordeum cvs may be successful in selecting those with good agronomical performances and nutritional advantages.


Assuntos
Pão/análise , Grão Comestível/química , Análise de Alimentos , Triticum/química , Cromatografia Líquida , Digestão , Peptídeos/análise , Proteínas de Vegetais Comestíveis/análise , Proteômica/métodos , Espectrometria de Massas em Tandem
10.
Int J Food Sci Nutr ; 73(3): 327-335, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34605730

RESUMO

Wheat consumption can represent one of the nutritional factors involved in the onset of diabetes. We specifically investigated the potential diabetogenic effects of Hammurabi, a T. monococcum wheat cultivar, in non-obese diabetic (NOD) mice and analysed the levels of resistant starch in pasta manufactured with Hammurabi after in vitro gastroduodenal digestion. NOD mice were fed with Hammurabi, bread wheat or rice flour to evaluate diabetes incidence and insulitis score. An enzymatic method was applied to compare the content of resistant starch in Hammurabi pasta and durum wheat pasta (control). In NOD mice, the Hammurabi-based diet significantly delayed diabetes onset (p = 0.0042) and reduced insulitis score compared to rice or wheat-based diet. Furthermore, the resistant starch value following in vitro digestion of Hammurabi pasta was significantly higher (4.08%) than that of durum wheat pasta (2.28%). Taken together, these results highlighted the potential positive effects of the Hammurabi-based diet on diabetes incidence.


Assuntos
Diabetes Mellitus Experimental , Triticum , Animais , Digestão , Farinha/análise , Incidência , Camundongos , Camundongos Endogâmicos NOD , Amido Resistente , Amido
11.
Food Res Int ; 148: 110617, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507761

RESUMO

Wheat, an essential ingredient for several bakery preparations, is also responsible for gluten-related diseases in sensitive subjects. The effect of the N fertilization rate (80 vs 160 kg N ha-1) on gluten protein expression profile has been evaluated considering two soft wheats (landrace and modern) and one tritordeum cultivar (cv), grown in the same experimental field in North Italy. The proteins of refined flour were characterized through advanced proteomic approaches, including chromatography (RP-HPLC) and electrophoresis. A static model system was used to simulate in vitro digestion and the digestome peptides were examined by mass spectrometry and in silico approaches, to investigate the celiac and allergenic sequences. The CD-toxic epitopes in the digested samples were quantified by means of a R5 ELISA assay. The N fertilization rate increased the grain protein content, but it did not lead to any difference in gluten composition, with exception of glu/glia ratio in the modern wheat cv. Moreover, the gluten composition and the occurrence of toxic/allergenic epitopes varied to a great extent, according mostly to the genotype. A lower immunoreactivity, determined using R5 ELISA, was detected for the digested tritordeum flours than for the landrace (-51%) or modern (-58%) cvs, while no significant difference was observed for the N rates between each genotype. In silico analysis showed that tritordeum has fewer CD epitopes belonging to the ω-gliadins and a lower LMW-GS than the landrace or modern cv. Tritordeum presented fewer α-gliadin allergenic epitopes than the modern wheat cv. The lower frequency of celiac epitopes in tritordeum, compared to the old and the modern wheat, is probably due to the absence of a D genome.


Assuntos
Doença Celíaca , Triticum , Fertilização , Humanos , Nitrogênio , Proteômica
12.
Oxid Med Cell Longev ; 2021: 3337013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336090

RESUMO

Osteosarcoma is a bone cancer characterized by the production of osteoid tissue and immature bone from mesenchymal cells. Osteosarcoma mainly affects long bones (femur is most frequently site) and occur in children and young adults with greater incidence. Here, we investigated the role accomplished by polydatin, a natural antioxidative compound, in promoting osteogenic differentiation alone or after radiation therapy on osteosarcoma cells. In vitro, polydatin significantly induced cell cycle arrest in S-phase and enhanced bone alkaline phosphatase activity. Moreover, the differentiation process was paralleled by the activation of Wnt-ß-catenin pathway. In combination with radiotherapy, the pretreatment with polydatin promoted a radiosensitizing effect on osteosarcoma cancer cells as demonstrated by the upregulation of osteogenic markers and reduced clonogenic survival of tumor cells. Additionally, we analyzed, by mass spectrometry, the secretion of sphingolipid, ceramides, and their metabolites in osteosarcoma cells treated with polydatin. Overall, our results demonstrate that polydatin, through the secretion of sphingolipids and ceramide, induced osteogenic differentiation, alone and in the presence of ionizing therapy. Future investigations are needed to validate the use of polydatin in clinical practice as a potentiating agent of radiotherapy-induced anticancer effects.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Estilbenos/uso terapêutico , Diferenciação Celular , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/farmacologia , Humanos , Estilbenos/farmacologia
13.
14.
Artigo em Inglês | MEDLINE | ID: mdl-33955824

RESUMO

Egg proteins are among the major food allergens. Very often, the same pasta-making plants are used for industrial production of egg-based pasta (EBP) and semolina-only pasta (SP), so that residual egg proteins may be present in SP. This calls for defining the amount of semolina pasta that should be discarded when switching production lines. In this study, the egg proteins content was measured in pasta samples taken at various times after switching production lines from EBP to SP Both long and short pasta shapes were sampled before and after a drying step. Protocols meant to circumvent the difficulties associated with detecting egg proteins in a complex matrix after processing were set up for using commercial ELISA kits to monitor the disappearance of egg proteins from the products. The use of both denaturants and disulphide reductants to solubilise egg proteins was found to be mandatory, as verified by ovalbumin detection by ELISA and by using mass spectrometry to assess residual egg white lysozyme. Appropriate sample preparation protocols were used to monitor the progressive disappearance of egg proteins in the products when shifting production lines in an industrial pasta plant, providing a basis for credible, reliable, and consistent self-control procedures. For lines with a production capacity of 2200-2400 kg h-1, the amount of material to be discarded to ensure that products meet the strictest analytical requirements has been found to be around 2000-3000 kg (for long pasta) and 3000-4000 kg (for short pasta).


Assuntos
Alérgenos/análise , Grão Comestível/química , Proteínas do Ovo/análise , Hipersensibilidade Alimentar , Humanos , Gestão de Riscos
15.
Food Chem ; 359: 129955, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34010753

RESUMO

The aim of this study was to evaluate the dynamics of proteolysis during dough fermentation started with different lactic acid bacteria species, through the identification of intermediate and small-sized peptides generated during fermentation. Single-strain cultures of Levilactobacillus brevis, Fructilactobacillus sanfranciscensis, Companilactobacillus alimentarius, and Leuconostoc pseudomesenteroides were assayed as sourdough starters. Assays were carried out at lab-scale for 48 h of fermentation, using both unstarted and yeast-leavened dough as controls. Physicochemical and microbiological analyses were combined with peptidomic and proteomic profiling, identifying several hundreds of peptides mainly released from the water-soluble wheat proteins, including ß-amylase, triticin, and serpins. Both α- and γ-gliadins were hydrolyzed, though only at the N-terminal domain, while the central protein region - encrypting celiac disease epitopes- remained unaffected. The bacterial-mediated consumption of sugars and the concomitant hydrolysis of starch degrading ß-amylase could underlie improved digestibility and several nutritionally beneficial effects of sourdough baked products.


Assuntos
Fermentação , Proteômica , Triticum/metabolismo , Leveduras/metabolismo , Pão/análise , Farinha/análise , Gliadina/metabolismo , Proteólise
16.
J Proteomics ; 231: 104007, 2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33038512

RESUMO

Donkey's milk (DM) has been extensively investigated as a valuable substitute of breast milk, often suitable to manage cow's milk protein allergy in infants. DM exhibits potent inhibitory properties against numerous microbial species. Although oligosaccharides and lipids might contribute to the antimicrobial potential, the current inventory of proteins is not able to justify the low count of microorganisms generally observed in DM. The shotgun proteomic analysis of fractionated DM disclosed a set of 94 gene products, 41% of which have documented antimicrobial activity or are involved in transferring the passive immunity to the donkey offspring. The concerted action of lysozyme, lactoferrin, immunoglobulins provides the molecular basis for part of the DM antibacterial potential. The pH -4.6 insoluble fraction contained significant levels of L-amino acid oxidase, identified with 11 unique peptides matching the horse homologue gene product. This enzyme catalyses the oxidative deamination of amino acids into ketoacids, producing ammonia and H2O2. κ-casein, likely occurring as a fully O-glycosylated protein, may concur to inhibit the adhesion of pathogenic microorganisms, along with other glycoproteins. Proteomics supports the alimentary use of DM not only as a substitute of human milk in early infancy, but also for growing children, convalescent, elderly people and general population. SIGNIFICANCE: Donkey's milk (DM) is acquiring increasing popularity because it is a suitable substitute of the human milk, when breastfeeding is not possible and infants suffer from cow's milk allergy. DM is characterized by a much lower microbial load compared to ruminants' milk. This feature has been traditionally attributed to the high content of lysozyme. DM exhibits potent activity against a broad range of bacteria, viruses and fungi, suggesting that other protein components can be responsible of the antimicrobial potential. The gel-free proteomic analysis of pH 4.6-insoluble and soluble (whey) fractions demonstrated that DM contains a large number of gene products involved in antimicrobial mechanisms and in transferring passive immunity to the donkey offspring. DM contains relatively high levels of L-amino acid oxidase that catalyses the oxidative deamination of amino acid substrates into ketoacids, with production of ammonia and H2O2. In combination with lysozyme, lactoferrin and immunoglobulins, the presence of L-amino acid oxidase provides the molecular basis of the antibacterial potential observed for DM. Considered the low microbial load, DM can be sanitated at mild conditions, thereby preserving many of the native nutritional traits. Thus, DM can be considered a safe and nutritionally valid alimentary resource for growing children, convalescent, elderly people and general population. Data of this study represent the largest inventory of proteins identified in Equidae milk, so far.


Assuntos
Anti-Infecciosos , Proteômica , Idoso , Animais , Antibacterianos/farmacologia , Equidae , Cavalos , Humanos , Peróxido de Hidrogênio , Proteínas do Leite
17.
Food Res Int ; 137: 109708, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233282

RESUMO

The use of ingredients based on plant protein isolates is being promoted due to sustainability and health reasons. However, it is necessary to explore the behaviour of plant protein isolates during gastrointestinal digestion including the profile of released free amino acids and the characterization of resistant domains to gastrointestinal digestion. The aim of the present study was to monitor protein degradation of four legume protein isolates: garden pea, grass pea, soybean and lentil, using the harmonized Infogest in vitro digestion protocol. In vitro digests were characterized regarding protein, peptide and free amino acid content. Soybean was the protein isolate with the highest percentage of insoluble nitrogen at the end of the digestion (12%), being this fraction rich in hydrophobic amino acids. Free amino acids were mainly released during the intestinal digestion, comprising 21-24% of the total nitrogen content, while the percentage of nitrogen corresponding to peptides ranged from 66 to 76%. Legume globulins were resistant to gastric digestion whereas they were hydrolysed into peptides and amino acids during the intestinal phase. However, the molecular weight (MW) distribution demonstrated that all intestinal digests, except those from soybean, contained peptides with MW > 4 kDa at the end of gastrointestinal digestion. The profile of free amino acids released during digestion supports legume protein isolates as an excellent source of essential amino acids to be used in protein-rich food products. Peptides released during digestion matched with previously reported epitopes from the same plant species or others, explaining the ability to induce allergic reactions and cross-linked reactivity.


Assuntos
Lens (Planta) , Proteínas de Plantas , Digestão , Pisum sativum , Glycine max
18.
Food Res Int ; 136: 109597, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846622

RESUMO

Heat treatments induce chemical/physical modifications, which may affect the stability to enzymatic digestion and consequently the allergenicity of food proteins to a varying extent, depending on the time/temperature regimen. Herein, we evaluated the stability to digestion of whole tree nut (walnuts, hazelnuts and almonds) allergens in a food digestion model reflecting the real one by, taking into consideration the allergen-containing processed (roasted) food. To this aim, whole raw and roasted tree nuts were subjected to in vitro digestion combining the harmonized oral-gastric-duodenal digestion models with brush border membrane enzymes (BBM) to simulate the jejunal degradation of peptides. The degradation of allergens was monitored by integrated proteomic/peptidomic and bio-informatic tools. Roasting increased digestibility of tree nuts, since very few peptides were detected in digested samples (<6.5 kDa fraction). After BBM digestion step, the degradation of peptides was enhanced in roasted walnuts and hazelnuts compared to the raw counterpart. Conversely, almond allergens showed a different behaviour, since the presence of resistant peptides was more evident for roasted almonds, probably because of the hydrolysis of high molecular weight aggregates generated during roasting. Our results provide new insight into the relationship between thermal processing and metabolic fate of tree nut allergens, highlighting the importance of investigating the digestion stability of whole allergenic food, rather than purified proteins.


Assuntos
Hipersensibilidade Alimentar , Nozes , Digestão , Microvilosidades , Proteômica
19.
Foods ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854283

RESUMO

Celiac disease (CeD) is an autoimmune enteropathy triggered by immunogenic gluten peptides released during the gastrointestinal digestion of wheat. Our aim was to identify T cell epitope-containing peptides after ex vivo digestion of ancestral (einkorn, spelt and emmer) and common (hexaploid) wheat (Fram, Bastian, Børsum and Mirakel) using human gastrointestinal juices. Wheat porridge was digested using a static ex vivo model. Peptides released after 240 min of digestion were analyzed by liquid chromatography coupled to high-resolution mass spectrometry (HPLC-ESI MS/MS). Ex vivo digestion released fewer T cell epitope-containing peptides from the ancestral wheat varieties (einkorn (n = 38), spelt (n = 45) and emmer (n = 68)) compared to the common wheat varieties (Fram (n = 72), Børsum (n = 99), Bastian (n = 155) and Mirakel (n = 144)). Neither the immunodominant 33mer and 25mer α-gliadin peptides, nor the 26mer γ-gliadin peptide, were found in any of the digested wheat types. In conclusion, human digestive juice was able to digest the 33mer and 25mer α-gliadin, and the 26mer γ-gliadin derived peptides, while their fragments still contained naive T cell reactive epitopes. Although ancestral wheat released fewer immunogenic peptides after human digestion ex vivo, they are still highly toxic to celiac patients. More general use of these ancient wheat variants may, nevertheless, reduce CeD incidence.

20.
Food Res Int ; 132: 109107, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331649

RESUMO

Kashk is a typical dairy product of Iran, made from sour milk. It is traditionally produced from buttermilk in a dry, round-shaped form. Today, it is also produced at industrial level in a liquid form starting from fermented milk. We aimed to characterise the kashk proteome and peptidome comparing a traditional product with the industrial using a combination of proteomic approaches including advanced chromatographic and electrophoretic separation technique coupled to tandem mass spectrometry. We identified also phosphorylated casein-derived peptides (CPP) and investigated kashk protein digestibility using a static model of food protein digestion. The molecular characterization, coupled with bioinformatic in silico analysis, allowed the identification of potential bioactive peptides.


Assuntos
Produtos Fermentados do Leite , Peptídeos/análise , Proteoma/análise , Animais , Caseínas/análise , Biologia Computacional , Fermentação , Irã (Geográfico) , Leite , Proteínas do Leite/análise , Proteólise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA