Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(32): e202302437, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067376

RESUMO

Mucin glycoproteins are essential components of the mucosal barrier, which protects the host from pathogens. Throughout evolution, bacteria have developed strategies to modulate and penetrate this barrier, and cause virulence by interacting with mucin O-glycans at the epithelial cell-surface. O-fucosylated glycan epitopes on mucins are key ligands of many bacterial lectins. Here, a chemoenzymatic synthesis strategy is described to prepare a library of fucosylated mucin core glycopeptides to enable studies of mucin-interacting and fucose-binding bacterial lectins. Glycan cores with biologically important Lewis and H-antigens were prepared decorating the peptide backbone at different sites and densities. The fucosylated mucin glycopeptides were applied in microarray binding studies to explore the importance of glycan core and peptide backbone presentation of these antigens in binding interactions with the P. aeruginosa lectin LecB and the C. difficile toxin A.


Assuntos
Clostridioides difficile , Mucinas , Lectinas/metabolismo , Fucose/metabolismo , Glicopeptídeos , Polissacarídeos/metabolismo
2.
Nat Commun ; 11(1): 6389, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319778

RESUMO

Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Filogenia , Suínos/microbiologia , Idoso de 80 Anos ou mais , Animais , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Biodiversidade , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Especificidade de Hospedeiro , Humanos , Masculino , Metagenoma , Família Multigênica , RNA Ribossômico 16S
3.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557948

RESUMO

Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.


Assuntos
Leite Humano/química , Oligossacarídeos/química , Isótopos de Carbono/química , Catálise , Glicosiltransferases/química , Humanos , Isótopos de Nitrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nucleotídeos de Uracila/química
4.
Biotechnol J ; 14(4)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30367549

RESUMO

The availability of nucleotide sugars is considered as bottleneck for Leloir-glycosyltransferases mediated glycan synthesis. A breakthrough for the synthesis of nucleotide sugars is the development of salvage pathway like enzyme cascades with high product yields from affordable monosaccharide substrates. In this regard, the authors aim at high enzyme productivities of these cascades by a repetitive batch approach. The authors report here for the first time that the exceptional high enzyme cascade stability facilitates the synthesis of Uridine-5'-diphospho-α-d-galactose (UDP-Gal), Uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), and Uridine-5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in a multi-gram scale by repetitive batch mode. The authors obtained 12.8 g UDP-Gal through a high mass based total turnover number (TTNmass ) of 494 [gproduct /genzyme ] and space-time-yield (STY) of 10.7 [g/L*h]. Synthesis of UDP-GlcNAc in repetitive batch mode gave 11.9 g product with a TTNmass of 522 [gproduct /genzyme ] and a STY of 9.9 [g/L*h]. Furthermore, the scale-up to a 200 mL scale using a pressure operated concentrator was demonstrated for a UDP-GalNAc producing enzyme cascade resulting in an exceptional high STY of 19.4 [g/L*h] and 23.3 g product. In conclusion, the authors demonstrate that repetitive batch mode is a versatile strategy for the multi-gram scale synthesis of nucleotide sugars by stable enzyme cascades.


Assuntos
Polissacarídeos/química , Uridina Difosfato Galactose/biossíntese , Uridina Difosfato N-Acetilglicosamina/biossíntese , Açúcares de Uridina Difosfato/biossíntese , Glicosiltransferases/química , Nucleotídeos/biossíntese , Nucleotídeos/química , Transferases (Outros Grupos de Fosfato Substituídos)/química , Uridina Difosfato Galactose/química , Uridina Difosfato N-Acetilglicosamina/química , Açúcares de Uridina Difosfato/química
5.
Biotechnol J ; 14(3): e1800305, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30076755

RESUMO

A rising amount of known health benefits leads to an increased attention of science and nutrient industry to human milk oligosaccharides (HMOS). The unique diversity of HMOS includes several rare, complex, and high molecular weight structures. Therefore, identification and elucidation of complex structures, which may occur only in traces, poses a daunting analytical challenge, further complicated by the limited access to suitable standards. Regarding this, inherent diversity of HMOS and their structural complexity make them difficult to synthesize. The use of recombinant Leloir-glycosyltransferases offers a common strategy to overcome the latter issues. In this study, linear long-chained Lacto-N-biose-type (LNT) and Lacto-N-neo-type (LNnT) HMOS are tailored far beyond the known naturally occurring length. Thereby novel well-defined reference standards for screening HMOS composition by high performance and high throughput analytics are provided. It is shown here for the first time the synthesis of LNT oligomers up to 26 and LNnT oligomers up to 30 sugar units in a semi-sequential one-pot synthesis as analyzed by high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF). While being a high-throughput method, xCGE-LIF can also handle long chained linkage isomers of challenging similarity, some of them even present only in trace amounts.


Assuntos
Glicosiltransferases/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Eletroforese Capilar/métodos , Fluorescência , Humanos , Lasers , Biossíntese de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Padrões de Referência
6.
Artigo em Inglês | MEDLINE | ID: mdl-30564572

RESUMO

In the course of their development, industrial biocatalysis processes have to be optimized in small-scale, e. g., within microfluidic bioreactors. Recently, we introduced a novel microfluidic reactor device, which can handle defined reaction compartments of up to 250 µL in combination with magnetic micro carriers. By transferring the magnetic carriers between subsequent compartments of differing compositions, small scale synthesis, and bioanalytical assays can be conducted. In the current work, this device is modified and extended to broaden its application range to the screening and optimization of bioprocesses applying immobilized enzymes. Besides scaling the maximum compartment volume up to 3 mL, a temperature control module, as well as a focused infrared spot were integrated. By adjusting the pump rate, compartment volumes can be accurately dosed with an error <5% and adjusted to the requested temperature within less than a minute. For demonstration of bioprocess parameter optimization within such compartments, the influence of pH, temperature, substrate concentration, and enzyme carrier loading was automatically screened for the case of transferring UDP-Gal onto N-acetylglucosamine linked to a tert-butyloxycarbonyl protected amino group using immobilized ß1,4-galactosyltransferase-1. In addition, multiple recycling of the enzyme carriers and the use of increased compartment volumes also allows the simple production of preparative amounts of reaction products.

7.
Molecules ; 22(8)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796164

RESUMO

Repeats of the disaccharide unit N-acetyllactosamine (LacNAc) occur as type 1 (Galß1, 3GlcNAc) and type 2 (Galß1, 4GlcNAc) glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To the best of our knowledge, we present, for the first time, the synthesis of LacNAc type 1 oligomers using recombinant ß1,3-galactosyltransferase from Escherichia coli and ß1,3-N-acetylglucosaminyltranferase from Helicobacter pylori. Tetrasaccharide glycans presenting LacNAc type 1 repeats or LacNAc type 1 at the reducing or non-reducing end, respectively, were conjugated to bovine serum albumin as a protein scaffold by squarate linker chemistry. The resulting multivalent LacNAc type 1 presenting neo-glycoproteins were further studied for specific binding of the tumor-associated human galectin 3 (Gal-3) and its truncated counterpart Gal-3∆ in an enzyme-linked lectin assay (ELLA). We observed a significantly increased affinity of Gal-3∆ towards the multivalent neo-glycoprotein presenting LacNAc type 1 repeating units. This is the first evidence for differences in glycan selectivity of Gal-3∆ and Gal-3 and may be further utilized for tracing Gal-3∆ during tumor progression and therapy.


Assuntos
Amino Açúcares/química , Galactosiltransferases/química , Galectina 3/química , Oligossacarídeos/química , Escherichia coli/enzimologia , Glicoproteínas/síntese química , Helicobacter pylori/enzimologia , Humanos , Ligantes , Ligação Proteica , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA