Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
FEBS Lett ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262040

RESUMO

Respiratory complex I is a central metabolic enzyme coupling NADH oxidation and quinone reduction with proton translocation. Despite the knowledge of the structure of the complex, the coupling of both processes is not entirely understood. Here, we use a combination of site-directed mutagenesis, biochemical assays, and redox-induced FTIR spectroscopy to demonstrate that the quinone chemistry includes the protonation and deprotonation of a specific, conserved aspartic acid residue in the quinone binding site (D325 on subunit NuoCD in Escherichia coli). Our experimental data support a proposal derived from theoretical considerations that deprotonation of this residue is involved in triggering proton translocation in respiratory complex I.

2.
Front Chem ; 12: 1430796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119521

RESUMO

The heme synthase AhbD catalyzes the last step of the siroheme-dependent heme biosynthesis pathway, which is operative in archaea and sulfate-reducing bacteria. The AhbD-catalyzed reaction consists of the oxidative decarboxylation of two propionate side chains of iron-coproporphyrin III to the corresponding vinyl groups of heme b. AhbD is a Radical SAM enzyme employing radical chemistry to achieve the decarboxylation reaction. Previously, it was proposed that the central iron ion of the substrate iron-coproporphyrin III participates in the reaction by enabling electron transfer from the initially formed substrate radical to an iron-sulfur cluster in AhbD. In this study, we investigated the substrate radical that is formed during AhbD catalysis. While the iron-coproporphyrinyl radical was not detected by electron paramagnetic resonance (EPR) spectroscopy, trapping and visualization of the substrate radical was successful by employing substrate analogs such as coproporphyrin III and zinc-coproporphyrin III. The radical signals detected by EPR were analyzed by simulations based on density functional theory (DFT) calculations. The observed radical species on the substrate analogs indicate that hydrogen atom abstraction takes place at the ß-position of the propionate side chain and that an electron donating ligand is located in proximity to the central metal ion of the porphyrin.

3.
Biochim Biophys Acta Bioenerg ; 1865(4): 149491, 2024 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960077

RESUMO

Energy converting NADH:ubiquinone oxidoreductase, complex I, is the first enzyme of respiratory chains in most eukaryotes and many bacteria. Mutations in genes encoding subunits of human complex I may lead to its dysfunction resulting in a diverse clinical pattern. The effect of mutations on the protein structure is not known. Here, we focus on mutations R88G, E246K, P252R and E377K that are found in subunit NDUFV1 comprising the NADH binding site of complex I. Homologous mutations were introduced into subunit NuoF of Aquifex aeolicus complex I and it was attempted to crystallize variants of the electron input module, NuoEF, with bound substrates in the oxidized and reduced state. The E377K variant did not form crystals most likely due to an improper protein assembly. The architecture of the NADH binding site is hardly affected by the other mutations indicating its unexpected structural robustness. The R88G, E246K and P252R mutations led to small local structural rearrangements that might be related to their pathogenicity. These minor structural changes involve substrate binding, product release and the putative formation of reactive oxygen species. The structural consequences of the mutations as obtained with the bacterial enzyme might thus help to contribute to the understanding of disease causing mutations.


Assuntos
Complexo I de Transporte de Elétrons , NAD , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Sítios de Ligação , NAD/metabolismo , Aquifex/enzimologia , Aquifex/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mutação , Modelos Moleculares , Humanos , Cristalografia por Raios X , Conformação Proteica
4.
Structure ; 32(6): 715-724.e3, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38503292

RESUMO

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is a major enzyme of energy metabolism that couples NADH oxidation and ubiquinone reduction with proton translocation. The NADH oxidation site features different enzymatic activities with various nucleotides. While the kinetics of these reactions are well described, only binding of NAD+ and NADH have been structurally characterized. Here, we report the structures of the electron input module of Aquifex aeolicus complex I with bound ADP-ribose and 3-acetylpyridine adenine dinucleotides at resolutions better than 2.0 Å. ADP-ribose acts as inhibitor by blocking the "ADP-handle" motif essential for nucleotide binding. The pyridine group of APADH is minimally offset from flavin, which could contribute to its poorer suitability as substrate. A comparison with other nucleotide co-structures surprisingly shows that the adenine ribose and the pyrophosphate moiety contribute most to nucleotide binding, thus all adenine dinucleotides share core binding modes to the unique Rossmann-fold in complex I.


Assuntos
Adenosina Difosfato Ribose , Complexo I de Transporte de Elétrons , Modelos Moleculares , Ligação Proteica , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/química , Sítios de Ligação , NAD/metabolismo , NAD/química , Cristalografia por Raios X , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Oxirredução
5.
Biomolecules ; 13(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627333

RESUMO

In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron-sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron-sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer.


Assuntos
Ferroquelatase , Methanosarcina barkeri , Archaea , Heme , Ferro , Sulfatos
6.
Sci Rep ; 13(1): 12226, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507428

RESUMO

Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa3 and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity. A quinazoline-type compound called ND-011992 has previously been reported to ineffectively inhibit bd oxidases, but to act bactericidal in combination with inhibitors of cytochrome bcc:aa3 oxidase. Due to the structural similarity of ND-011992 to quinazoline-type inhibitors of respiratory complex I, we suspected that this compound is also capable of blocking other respiratory chain complexes. Here, we synthesized ND-011992 and a bromine derivative to study their effect on the respiratory chain complexes of Escherichia coli. And indeed, ND-011992 was found to inhibit respiratory complex I and bo3 oxidase in addition to bd-I and bd-II oxidases. The IC50 values are all in the low micromolar range, with inhibition of complex I providing the lowest value with an IC50 of 0.12 µM. Thus, ND-011992 acts on both, quinone reductases and quinol oxidases and could be very well suited to regulate the activity of the entire respiratory chain.


Assuntos
Proteínas de Escherichia coli , Quinona Redutases , Hidroquinonas/farmacologia , Hidroquinonas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Quinona Redutases/metabolismo , Oxirredutases/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Citocromos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Grupo dos Citocromos b/metabolismo
7.
Sci Rep ; 13(1): 7652, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169846

RESUMO

NADH:ubiquinone oxidoreductase, respiratory complex I, plays a major role in cellular energy metabolism by coupling electron transfer with proton translocation. Electron transfer is catalyzed by a flavin mononucleotide and a series of iron-sulfur (Fe/S) clusters. As a by-product of the reaction, the reduced flavin generates reactive oxygen species (ROS). It was suggested that the ROS generated by the respiratory chain in general could damage the Fe/S clusters of the complex. Here, we show that the binuclear Fe/S cluster N1b is specifically damaged by H2O2, however, only at high concentrations. But under the same conditions, the activity of the complex is hardly affected, since N1b can be easily bypassed during electron transfer.


Assuntos
Complexo I de Transporte de Elétrons , Proteínas Ferro-Enxofre , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons , Enxofre/metabolismo , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica
8.
Bioelectrochemistry ; 151: 108379, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36736178

RESUMO

Cytochrome bd-I catalyzes the reduction of oxygen to water with the aid of hemes b558, b595 and d. Here, effects of a mutation of E445, a ligand of heme b595 and of R448, hydrogen bonded to E445 are studied electrochemically in the E. coli enzyme. The equilibrium potential of the three hemes are shifted by up to 200 mV in these mutants. Strikingly the E445D and the R448N mutants show a turnover of 41 ± 2 % and 20 ± 4 %, respectively. Electrocatalytic studies confirm that the mutants react with oxygen and bind and release NO. These results point towards the ability of cytochrome bd to react even if the electron transfer is less favorable.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Citocromos/genética , Citocromos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Oxigênio/metabolismo , Oxirredução
9.
Biochim Biophys Acta Bioenerg ; 1864(2): 148952, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535430

RESUMO

Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.


Assuntos
Proteínas de Escherichia coli , Oxirredutases , Oxirredutases/metabolismo , Escherichia coli , Citocromos/química , Prótons , Proteínas de Escherichia coli/metabolismo , Grupo dos Citocromos b/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Concentração de Íons de Hidrogênio
10.
FEBS Lett ; 596(18): 2418-2424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36029102

RESUMO

The reduction of oxygen to water is crucial to life and a central metabolic process. To fulfil this task, prokaryotes use among other enzymes cytochrome bd oxidases (Cyt bds) that also play an important role in bacterial virulence and antibiotic resistance. To fight microbial infections by pathogens, an in-depth understanding of the enzyme mechanism is required. Here, we combine bioinformatics, mutagenesis, enzyme kinetics and FTIR spectroscopy to demonstrate that proton delivery to the active site contributes to the rate limiting steps in Cyt bd-I and involves Asp58 of subunit CydB. Our findings reveal a previously unknown catalytic function of subunit CydB in the reaction of Cyt bd-I.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Citocromos/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Prótons , Água/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(27): e2123090119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759670

RESUMO

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H+/e- stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.


Assuntos
Membrana Celular , Complexo I de Transporte de Elétrons , Proteínas de Escherichia coli , NADH Desidrogenase , Substituição de Aminoácidos , Membrana Celular/química , Sequência Conservada , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamatos/química , Glutamatos/genética , Lisina/química , Lisina/genética , NADH Desidrogenase/química , NADH Desidrogenase/genética , Prótons , Quinonas/química
12.
Angew Chem Int Ed Engl ; 61(32): e202204198, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638156

RESUMO

Methyl-coenzyme M reductase, which is responsible for the production of the greenhouse gas methane during biological methane formation, carries several unique posttranslational amino acid modifications, including a 2-(S)-methylglutamine. The enzyme responsible for the Cα -methylation of this glutamine is not known. Herein, we identify and characterize a cobalamin-dependent radical SAM enzyme as the glutamine C-methyltransferase. The recombinant protein from Methanoculleus thermophilus binds cobalamin in a base-off, His-off conformation and contains a single [4Fe-4S] cluster. The cobalamin cofactor cycles between the methyl-cob(III)alamin, cob(II)alamin and cob(I)alamin states during catalysis and produces methylated substrate, 5'-deoxyadenosine and S-adenosyl-l-homocysteine in a 1 : 1 : 1 ratio. The newly identified glutamine C-methyltransferase belongs to the class B radical SAM methyltransferases known to catalyze challenging methylation reactions of sp3 -hybridized carbon atoms.


Assuntos
S-Adenosilmetionina , Vitamina B 12 , Glutamina/metabolismo , Metano , Metilação , Metiltransferases/metabolismo , Oxirredutases , S-Adenosilmetionina/química , Vitamina B 12/química
13.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328590

RESUMO

Cytochrome bd is a triheme copper-free terminal oxidase in membrane respiratory chains of prokaryotes. This unique molecular machine couples electron transfer from quinol to O2 with the generation of a proton motive force without proton pumping. Apart from energy conservation, the bd enzyme plays an additional key role in the microbial cell, being involved in the response to different environmental stressors. Cytochrome bd promotes virulence in a number of pathogenic species that makes it a suitable molecular drug target candidate. This review focuses on recent advances in understanding the structure of cytochrome bd and the development of its selective inhibitors.


Assuntos
Citocromos , Proteínas de Escherichia coli , Respiração Celular , Citocromos/metabolismo , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Força Próton-Motriz
14.
FEBS Lett ; 596(9): 1124-1132, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234296

RESUMO

NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in cellular energy metabolism. Complex I deficiencies are the most common cause of mitochondrial dysfunction. Patients suffering from a variety of neurodegenerative diseases carry numerous mutations in the mitochondrially encoded subunits of the complex. The biochemical consequences of these mutations are largely unknown because these genes are difficult to access experimentally. Here, we use Escherichia coli as a model system to characterize the effect of a 7 bps inversion in mtND1 (m.3902-3908inv7) that results in a triple mutation. The triple mutant grew poorly but contained a normal amount of the stably assembled variant. The variant showed no enzymatic activity, which might contribute to the deleterious effect of the mutation in humans.


Assuntos
Complexo I de Transporte de Elétrons , Proteínas de Escherichia coli , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Mutação
15.
Nat Commun ; 13(1): 546, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087069

RESUMO

Antibiotic persistence describes the presence of phenotypic variants within an isogenic bacterial population that are transiently tolerant to antibiotic treatment. Perturbations of metabolic homeostasis can promote antibiotic persistence, but the precise mechanisms are not well understood. Here, we use laboratory evolution, population-wide sequencing and biochemical characterizations to identify mutations in respiratory complex I and discover how they promote persistence in Escherichia coli. We show that persistence-inducing perturbations of metabolic homeostasis are associated with cytoplasmic acidification. Such cytoplasmic acidification is further strengthened by compromised proton pumping in the complex I mutants. While RpoS regulon activation induces persistence in the wild type, the aggravated cytoplasmic acidification in the complex I mutants leads to increased persistence via global shutdown of protein synthesis. Thus, we propose that cytoplasmic acidification, amplified by a compromised complex I, can act as a signaling hub for perturbed metabolic homeostasis in antibiotic persisters.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mutação , Biossíntese de Proteínas/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Canais Iônicos , Lipossomos , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteômica , Regulon/efeitos dos fármacos , Fator sigma/metabolismo
16.
Structure ; 30(1): 80-94.e4, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34562374

RESUMO

Respiratory complex I drives proton translocation across energy-transducing membranes by NADH oxidation coupled with (ubi)quinone reduction. In humans, its dysfunction is associated with neurodegenerative diseases. The Escherichia coli complex represents the structural minimal form of an energy-converting NADH:ubiquinone oxidoreductase. Here, we report the structure of the peripheral arm of the E. coli complex I consisting of six subunits, the FMN cofactor, and nine iron-sulfur clusters at 2.7 Å resolution obtained by cryo electron microscopy. While the cofactors are in equivalent positions as in the complex from other species, individual subunits are adapted to the absence of supernumerary proteins to guarantee structural stability. The catalytically important subunits NuoC and D are fused resulting in a specific architecture of functional importance. Striking features of the E. coli complex are scrutinized by mutagenesis and biochemical characterization of the variants. Moreover, the arrangement of the subunits sheds light on the unknown assembly of the complex.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Mutação , Sítios de Ligação , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
17.
J Biol Inorg Chem ; 27(1): 143-154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34843002

RESUMO

Ethylbenzene dehydrogenase (EbDH), the initial enzyme of anaerobic ethylbenzene degradation from the beta-proteobacterium Aromatoleum aromaticum, is a soluble periplasmic molybdenum enzyme consisting of three subunits. It contains a Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD) cofactor and an 4Fe-4S cluster (FS0) in the α-subunit, three 4Fe-4S clusters (FS1 to FS3) and a 3Fe-4S cluster (FS4) in the ß-subunit and a heme b cofactor in the γ-subunit. Ethylbenzene is hydroxylated by a water molecule in an oxygen-independent manner at the Mo-bis-MGD cofactor, which is reduced from the MoVI to the MoIV state in two subsequent one-electron steps. The electrons are then transferred via the Fe-S clusters to the heme b cofactor. In this report, we determine the midpoint redox potentials of the Mo-bis-MGD cofactor and FS1-FS4 by EPR spectroscopy, and that of the heme b cofactor by electrochemically induced redox difference spectroscopy. We obtained relatively high values of > 250 mV both for the MoVI-MoV redox couple and the heme b cofactor, whereas FS2 is only reduced at a very low redox potential, causing magnetic coupling with the neighboring FS1 and FS3. We compare the results with the data on related enzymes and interpret their significance for the function of EbDH.


Assuntos
Proteínas Ferro-Enxofre , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/metabolismo , Molibdênio/química , Oxirredução , Oxirredutases/química
18.
Nat Commun ; 12(1): 6498, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764272

RESUMO

Cytochrome bd quinol:O2 oxidoreductases are respiratory terminal oxidases so far only identified in prokaryotes, including several pathogenic bacteria. Escherichia coli contains two bd oxidases of which only the bd-I type is structurally characterized. Here, we report the structure of the Escherichia coli cytochrome bd-II type oxidase with the bound inhibitor aurachin D as obtained by electron cryo-microscopy at 3 Å resolution. The oxidase consists of subunits AppB, C and X that show an architecture similar to that of bd-I. The three heme cofactors are found in AppC, while AppB is stabilized by a structural ubiquinone-8 at the homologous positions. A fourth subunit present in bd-I is lacking in bd-II. Accordingly, heme b595 is exposed to the membrane but heme d embedded within the protein and showing an unexpectedly high redox potential is the catalytically active centre. The structure of the Q-loop is fully resolved, revealing the specific aurachin binding.


Assuntos
Citocromos/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredução , Oxirredutases/metabolismo , Quinolonas/metabolismo , Ubiquinona/metabolismo
19.
Angew Chem Int Ed Engl ; 60(52): 27277-27281, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612584

RESUMO

NADH:ubiquinone oxidoreductase, respiratory complex I, plays a central role in cellular energy metabolism. As a major source of reactive oxygen species (ROS) it affects ageing and mitochondrial dysfunction. The novel inhibitor NADH-OH specifically blocks NADH oxidation and ROS production by complex I in nanomolar concentrations. Attempts to elucidate its structure by NMR spectroscopy have failed. Here, by using X-ray crystallographic analysis, we report the structure of NADH-OH bound in the active site of a soluble fragment of complex I at 2.0 Šresolution. We have identified key amino acid residues that are specific and essential for binding NADH-OH. Furthermore, the structure sheds light on the specificity of NADH-OH towards the unique Rossmann-fold of complex I and indicates a regulatory role in mitochondrial ROS generation. In addition, NADH-OH acts as a lead-structure for the synthesis of a novel class of ROS suppressors.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , NAD/análogos & derivados , Aquifex/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares , NAD/química , NAD/metabolismo , NAD/farmacologia , Ligação Proteica
20.
Sci Rep ; 11(1): 12641, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135385

RESUMO

NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients' tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.


Assuntos
Complexo I de Transporte de Elétrons/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Adulto , Benzoquinonas/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Humanos , Recém-Nascido , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Óperon , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA