Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Pediatr Res ; 95(1): 205-212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37550487

RESUMO

BACKGROUND: Macrolides, including azithromycin, are increasingly used in preterm-born infants to treat Ureaplasma infections. The baseline carriage of macrolide resistance genes in the preterm stool microbiota is unknown. OBJECTIVES: Identify carriage of azithromycin resistant bacteria and the incidence of macrolide resistant genes. METHODS: Azithromycin resistant bacteria were isolated from serial stool samples obtained from preterm infants (≤32 weeks' gestation) by culturing aerobically/anaerobically, in the presence/absence of azithromycin. Using quantitative PCR, we targeted 6 common macrolide resistance genes (erm(A), erm(B), erm(C), erm(F), mef(A/E), msr(A)) in DNA extracted from selected bacteria resistant to azithromycin. RESULTS: From 89 stool samples from 37 preterm-born infants, 93.3% showed bacterial growth in aerobic or anaerobic conditions. From the 280 azithromycin resistant isolates that were identified, Staphylococcus (75%) and Enterococcus (15%) species dominated. Macrolide resistance genes were identified in 91% of resistant isolates: commonest were erm(C) (46% of isolates) and msr(A) (40%). Multiple macrolide resistance genes were identified in 18% of isolates. CONCLUSION: Macrolide resistance is common in the gut microbiota of preterm-born infants early in life, most likely acquired from exposure to the maternal microbiota. It will be important to assess modulation of macrolide resistance, if macrolide treatment becomes routine in the management of preterm infants. IMPACT STATEMENT: Azithromycin resistance is present in the stool microbiota in the first month of life in preterm infants 91% of azithromycin resistant bacteria carried at least one of 6 common macrolide resistant genes Increasing use of macrolides in the preterm population makes this an important area of study.


Assuntos
Azitromicina , Microbioma Gastrointestinal , Recém-Nascido , Lactente , Humanos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Farmacorresistência Bacteriana/genética , Recém-Nascido Prematuro , Testes de Sensibilidade Microbiana
2.
Biomolecules ; 13(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37759755

RESUMO

Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity. Loperamide slowed conduction (QRS-duration) starting at 0.3 µM [~1200-fold (×) its human Free Therapeutic Plasma Concentration; FTPC] and reduced the QT-interval and caused cardiac arrhythmias starting at 3 µM (~12,000× FTPC) in an isolated rabbit ventricular-wedge model. Loperamide also slowed conduction and elicited Type II/III A-V block in anesthetized guinea pigs at overdose exposures of 879× and 3802× FTPC. In ion-channel studies, loperamide inhibited hERG (IKr), INa, and ICa currents with IC50 values of 0.390 µM, 0.526 µM, and 4.091 µM, respectively (i.e., >1560× FTPC). Additionally, in silico trials in human ventricular action potential models based on these IC50s confirmed that loperamide has large safety margins at therapeutic exposures (≤600× FTPC) and confirmed repolarization abnormalities in the case of extreme doses of loperamide. The studies confirmed the large safety margin for the therapeutic use of loperamide but revealed that at the extreme exposure levels observed in human overdose, loperamide can cause a combination of conduction slowing and alterations in repolarization time, resulting in cardiac proarrhythmia. Loperamide's inhibition of the INa channel and hERG-mediated IKr are the most likely basis for this cardiac electrophysiological toxicity at overdose exposures. The cardiac toxic effects of loperamide at the overdoses could be aggravated by co-medication with other drug(s) causing ion channel inhibition.


Assuntos
Cardiotoxicidade , Loperamida , Humanos , Animais , Cobaias , Coelhos , Loperamida/toxicidade , Cardiotoxicidade/etiologia , Arritmias Cardíacas/induzido quimicamente , Coração , Diarreia
3.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446964

RESUMO

Aerial seed banks facilitate population persistence by extending the temporal range of seed dispersal. Knowing the temporal range of germination will improve our understanding of the relationship between seed germination dynamics and aerial seed bank storage duration. We tested the effects of temperature (12/12 h of 5/10, 10/20, 20/30 and 25/35 °C) and light variation (12 h light/12 h darkness and 24 h darkness per day) on germination of Rumex obtusifolius L. seeds retained in an aerial seed bank for 0, 2, 4, 6, 8 and 10 months. Freshly harvested R. obtusifolius were non-dormant and exhibited germination rates of up to 92%. Overall, seeds of R. obtusifolius germinated reliably at all but the lowest temperature (5/10 °C). Seeds maintained high viability throughout the collection period, indicating that fluctuating weather conditions had little influence on seed germination. Thus, the species can maintain viable seeds in aerial storage for up to 10 months and contribute viable seeds to the soil seed bank year-round. This ability to maintain a renewed soil seed bank contributes to the species' strong resilience in colonizing disturbed areas and makes it a difficult weed to control.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37300591

RESUMO

PURPOSE: Acetabular fracture shape is determined by the direction of force applied. We perceive an anecdotally observed connection between pre-existing autofused sacroiliac joints (aSIJ) and high anterior column (HAC) injuries. The purpose of this study was to compare variations in acetabular fracture patterns sustained in patients with and without pre-injury sacroiliac (SI) joint autofusion. METHODS: All adult patients receiving unilateral acetabular fixation (level 1 academic trauma; 2008-2018) were reviewed. Injury radiographs and CT scans were reviewed for fracture patterns and pre-existing aSIJ. Fracture types were subgrouped presence of HAC injury (includes anterior column (AC), anterior column posterior hemitransverse (ACPHT), or associated both column (ABC)). ANALYSIS: Logistic regression determined the association between aSIJ and HAC. RESULTS: A total of 371 patients received unilateral acetabular fixation (2008-2018); 61 (16%) demonstrated CT evidence of idiopathic aSIJ. These patients were older (64.1 vs. 47.4, p < 0.01), more likely to be male (95% vs. 71%, p < 0.01), less likely to be smokers (19.0% vs. 44.8%, p < 0.01), and were injured from lower energy mechanisms (21.3% vs. 8.4%, p = 0.01). The most common patterns with autofusion were ACPHT (n = 13, 21%) and ABC (n = 25, 41%). Autofusion was associated with greater odds of patterns involving a high anterior column injury (ABC, ACPHT, or isolated anterior column; OR = 4.97, p < 0.01). After adjusting for age, mechanism, and body mass index, the connection between autofusion and high anterior column injuries remained significant (OR = 2.60, p = 0.01). CONCLUSIONS: SI joint autofusion appears to change mode of failure in acetabular injuries; a more rigid posterior ring may precipitate a high anterior column injury. LEVEL OF EVIDENCE: Prognostic level III.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37314503

RESUMO

PURPOSE: The purpose of this study was to characterize the relationship between a novel radiographic measurement on initial AP pelvis radiograph (termed "bladder shift," BS) to intraoperative blood loss (IBL) during acetabular surgical fixation. METHODS: All adult patients receiving unilateral acetabular fixation (Level 1 academic trauma; 2008-18) were reviewed. AP pelvis radiographs were reviewed for visible bladder outlines and then measured to determine the percentage deformation toward the midline. Hemoglobin & hematocrit data were then used to calculate quantitative blood loss between pre- and post- operative blood counts for data analysis. RESULTS: 371 patients with unilateral traumatic acetabular fractures requiring fixation were reviewed; 99 of these had visible bladder outlines, complete blood count and transfusion data (2008-2018; 66% associated patterns). Median bladder shift (BS) was 13.3%. Every 10% of bladder shift was associated with 123 mL greater IBL. Patients with full bladder shift to midline sustained a median 1.5L IBL (interquartile range [IQR] 0.8 to 1.6). Associated patterns had a threefold greater median BS (associated: 16.5% [15.4 to 45.9] vs. elementary: 5.6% [1.1 to 15.4], p < 0.05) and received intraoperative pRBC twice as frequently (57% vs. 24%, p < 0.01). CONCLUSIONS: Radiographic bladder shift is an easily available visual marker, in patients sustaining acetabular fractures, that may predict intraoperative hemorrhage and need for transfusions.

6.
Biomolecules ; 13(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37189424

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are currently used following the Comprehensive in vitro Proarrhythmic Assay (CiPA) initiative and subsequent recommendations in the International Council for Harmonization (ICH) guidelines S7B and E14 Q&A, to detect drug-induced cardiotoxicity. Monocultures of hiPSC-CMs are immature compared to adult ventricular cardiomyocytes and might lack the native heterogeneous nature. We investigated whether hiPSC-CMs, treated to enhance structural maturity, are superior in detecting drug-induced changes in electrophysiology and contraction. This was achieved by comparing hiPSC-CMs cultured in 2D monolayers on the current standard (fibronectin matrix, FM), to monolayers on a coating known to promote structural maturity (CELLvo™ Matrix Plus, MM). Functional assessment of electrophysiology and contractility was made using a high-throughput screening approach involving the use of both voltage-sensitive fluorescent dyes for electrophysiology and video technology for contractility. Using 11 reference drugs, the response of the monolayer of hiPSC-CMs was comparable in the two experimental settings (FM and MM). The data showed no functionally relevant differences in electrophysiology between hiPSC-CMs in standard FM and MM, while contractility read-outs indicated an altered amplitude of contraction but not changes in time course. RNA profiling for cardiac proteins shows similarity of the RNA expression across the two forms of 2D culture, suggesting that cell-to-matrix adhesion differences may explain account for differences in contraction amplitude. The results support the view that hiPSC-CMs in both 2D monolayer FM and MM that promote structural maturity are equally effective in detecting drug-induced electrophysiological effects in functional safety studies.


Assuntos
Cardiotoxicidade , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiotoxicidade/diagnóstico , Células Cultivadas , Ensaios de Triagem em Larga Escala , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo
7.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980298

RESUMO

Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células Cultivadas , Ensaios de Triagem em Larga Escala , Neurônios , Convulsões/induzido quimicamente
8.
Regul Toxicol Pharmacol ; : 105334, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608923

RESUMO

JNJ-10450232 (NTM-006) is a new molecular entity that is structurally related to acetaminophen. A comprehensive non-clinical safety program was conducted to support first-in-human and clinical efficacy studies based on preclinical data suggesting that the compound has comparable or enhanced antinociceptive and antipyretic efficacy without causing hepatotoxicity at supratherapeutic doses. No hepatic toxicity was noted in a mouse model sensitive to acetaminophen hepatotoxicity or in rats, dogs, and non-human primates in 28-day repeat dose toxicity studies at and above doses/exposures at which acetaminophen is known to cause hepatotoxicity. In the 28-day toxicity studies, all treatment-related findings were monitorable and reversible. Methemoglobinemia, which was observed in dogs and to a lesser extent in rats, is also observed with acetaminophen. This finding is considered not relevant to humans due to species differences in metabolism. Thyroid hypertrophy and hyperplasia were also observed in dogs and were shown to be a consequence of a species-specific UGT induction also demonstrated with increased thyroid hormone metabolism. Indirect bilirubin elevation was observed in rats as a result of UGT1A1 Inhibition. JNJ-10450232 (NTM-006) had no toxicologically relevant findings in safety pharmacology or genotoxicity studies. Together, these data supported progressing into safety and efficacy studies in humans.

9.
Eur J Pharmacol ; 931: 175189, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987255

RESUMO

BACKGROUND: Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity. METHOD: In the present study, we investigated whether the limited neuronal network activity in commercial hiPSC-neurons (CNS.4U®) is capable of detecting drug-induced potential seizure risks. Therefore, we compared the hiPSC-results to those in rat primary neurons with known high neuronal network activity in vitro. RESULTS: Gene expression and electrical activity from in vitro developing neuronal networks were assessed at multiple time-points. Transcriptomes of 7, 28, and 50 days in vitro were analyzed and compared to those from human brain tissues. Data from measurements of electrical activity using multielectrode arrays (MEAs) indicate that neuronal networks matured gradually over time, albeit in hiPSC this developed slower than rat primary cultures. The response of neuronal networks to neuronal active reference drugs modulating glutamatergic, acetylcholinergic and GABAergic pathways could be detected in both hiPSC-neurons and rat primary neurons. However, in comparison, GABAergic responses were limited in hiPSC-neurons. CONCLUSION: Overall, despite a slower network development and lower network activity, CNS.4U® hiPSC-neurons can be used to detect drug induced changes in neuronal network activity, as shown by well-known seizurogenic drugs (affecting e.g., the Glycine receptor and Na+ channel). However, lower sensitivity to GABA antagonists has been observed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Neurônios/metabolismo , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo , Transmissão Sináptica
10.
Front Plant Sci ; 13: 906771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712590

RESUMO

Wetland species commonly exhibit a range of strategies to cope with water stress, either through drought tolerance or through avoidance of the period of limited water availability. Natural populations provide a genetic resource for ecological remediation and may also have direct economic value. We investigated the effects of drought stress on the seed germination of wetland species. Nineteen species were germinated in four concentrations of polyethylene glycol 6000 (PEG) and were evaluated daily (12-h light photoperiod) or after 35 days (continuous darkness) to determine seed germination under water stress. Germination percentage decreased with an increase in polyethylene glycol 6000 (PEG) concentration, but species' germination response to PEG concentration varied significantly. Seeds recovered their germinability after the alleviation of water stress, but the extent of recovery was species-dependent.

11.
Front Physiol ; 13: 838435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547580

RESUMO

Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.

12.
Sci Rep ; 12(1): 954, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046463

RESUMO

Plant species of the Brazilian Caatinga experience seasonal wet and dry extremes, requiring seasonally different leaf characteristics for optimizing water availability. We investigated if Croton blanchetianus Baill exhibits leaf morphoanatomical traits across seasons and positioning in sunlight/natural shade. Leaves of ten 1-3 m tall plants in full sunlight and ten in natural shade were assessed in May, July (wet season), October and December (dry season) 2015 for gas exchange, leaf size, lamina and midrib cross sections (14 parameters), and chloroplast structure (5 parameters). Net photosynthesis was greater during the wet season (21.6 µm-2 s-1) compared to the dry season (5.8 µm-2 s-1) and was strongly correlated with almost all measured parameters (p < 0.01). Shaded leaves in the wet season had higher specific leaf area (19.9 m2 kg-1 in full-sun and 23.1 m2 kg-1 in shade), but in the dry season they did not differ from those in full sun (7.5 m2 kg-1 and 7.2 m2 kg-1). In the wet season, the expansion of the adaxial epidermis and mesophyll lead to larger and thicker photosynthetic area of leaves. Furthermore, chloroplast thickness, length and area were also significantly larger in full sunlight (2.1 µm, 5.1 µm, 15.2 µm2; respectively) and shaded plants (2.0 µm, 5.2 µm, 14.8 µm2; respectively) during wetter months. Croton blanchetianus exhibits seasonal plasticity in leaf structure, presumably to optimize water use efficiency during seasons of water abundance and deficit. These results suggest that the species is adaptable to the increased drought stress projected by climate change scenarios.


Assuntos
Adaptação Fisiológica , Croton/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Chuva , Estações do Ano , Brasil , Croton/anatomia & histologia , Secas , Florestas , Folhas de Planta/anatomia & histologia
13.
J Orthop Trauma ; 35(12): e491-e495, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469420

RESUMO

OBJECTIVES: To compare acetabular fracture reoperation rates within 1 year of surgery in methamphetamine ("meth") abusers and abstainers. DESIGN: Retrospective database analysis. SETTING: Level 1 academic trauma facility, 2008-2018. PATIENTS/PARTICIPANTS: Three hundred seventy-one patients who underwent unilateral traumatic acetabular open reduction internal fixation during the study period, 36 of whom abused methamphetamines through self-report or toxicology. One hundred four were excluded for indeterminate abuse histories. INTERVENTION: Open reduction internal fixation. MAIN OUTCOME MEASUREMENTS: Reoperation resulting from major surgical complications, including hematoma, seroma, deep wound infection, failure of fixation, or arthrosis with conversion to arthroplasty. RESULTS: More than 10% of our cohort used meth, representing patients who were a mean 8 years younger and sustained a higher rate of high-energy mechanisms than sober peers. Meth abusers had a greater than 2-fold reoperation rate at 90 days and 1 year compared with abstainers (17% vs. 7% and 25% vs. 11%, respectively). The adjusted odds ratio of 1-year reoperation in meth users was 3.2 (confidence interval 1.2-8.5, P = 0.03). The adjusted 1-year survival of native hip after acetabular fractures in meth users approaches 55%. CONCLUSIONS: Methamphetamine use is a nonmodifiable factor associated with a 3-fold increase in adjusted odds for 1-year reoperation after surgical fixation of acetabular fractures. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Artroplastia de Quadril , Fraturas Ósseas , Metanfetamina , Acetábulo/cirurgia , Fixação Interna de Fraturas , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/cirurgia , Humanos , Metanfetamina/efeitos adversos , Reoperação , Estudos Retrospectivos , Resultado do Tratamento
14.
J Pharmacol Toxicol Methods ; 111: 107086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34119674

RESUMO

INTRODUCTION: People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is a sudden unexpected death in epilepsy (SUDEP). The mechanism of SUDEP remains largely unresolved and the lack of preclinical models to study the potential mechanism underlying SUDEP is a problem. METHOD: By combining electroencephalographic (EEG) and electrocardiogram (ECG) measurements within a well described LQT1 dog model, we investigated the effect of the proconvulsive compound pentylenetetrazol (PTZ), and its link to the induction of Torsades de Pointes (TdP). RESULTS: Pre-treatment with the potent and selective IKs blocker JNJ 282 induced a pronounced QT (QTc) prolongation in anaesthetized dogs (Long QT syndrome type 1 or LQT1 group) compared to dogs that were not treated (control group). Subsequent PTZ administration induced spiking on the EEG signal and seizures in both groups, but only R-on-T, salvo and TdP were observed in dogs of the LQT1 group. CONCLUSION: Our results show that a proconvulsive drug can trigger TdP-like cardiac arrhythmias, in conditions of compromised repolarization in the heart (Iks blockade). In man, TdP arrythmia's can often lead to ventricular fibrillation (VF) and sudden death. This observation suggests that long QT-intervals (genetic or drug induced) could potentially be one of the risk factors for SUDEP in epileptic patients.


Assuntos
Síndrome do QT Longo , Preparações Farmacêuticas , Torsades de Pointes , Animais , Cães , Eletrocardiografia , Humanos , Síndrome do QT Longo/induzido quimicamente , Convulsões/induzido quimicamente , Torsades de Pointes/induzido quimicamente
15.
Front Pharmacol ; 12: 604713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841140

RESUMO

Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.

16.
Channels (Austin) ; 15(1): 239-252, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33465001

RESUMO

Human-induced pluripotent stem cell (hiPSC) and stem cell (hSC) derived cardiomyocytes (CM) are gaining popularity as in vitro model for cardiology and pharmacology studies. A remaining flaw of these cells, as shown by single-cell electrophysiological characterization, is a more depolarized resting membrane potential (RMP) compared to native CM. Most reports attribute this to a lower expression of the Kir2.1 potassium channel that generates the IK1 current. However, most RMP recordings are obtained from isolated hSC/hiPSC-CMs whereas in a more native setting these cells are interconnected with neighboring cells by connexin-based gap junctions, forming a syncytium. Hereby, these cells are electrically connected and the total pool of IK1 increases. Therefore, the input resistance (Ri) of interconnected cells is lower than that of isolated cells. During patch clamp experiments pipettes need to be well attached or sealed to the cell, which is reflected in the seal resistance (Rs), because a nonspecific ionic current can leak through this pipette-cell contact or seal and balance out small currents within the cell such as IK1. By recording the action potential of isolated hSC-CMs and that of hSC-CMs cultured in small monolayers, we show that the RMP of hSC-CMs in monolayer is approximately -20 mV more hyperpolarized compared to isolated cells. Accordingly, adding carbenoxolone, a connexin channel blocker, isolates the cell that is patch clamped from its neighboring cells of the monolayer and depolarizes the RMP. The presented data show that the recorded RMP of hSC-CMs in a syncytium is more negative than that determined from isolated hSC/hiPSC-CMs, most likely because the active pool of Kir2.1 channels increased.


Assuntos
Miócitos Cardíacos , Células Gigantes , Potenciais da Membrana , Técnicas de Patch-Clamp , Potássio
17.
Clin Pharmacol Ther ; 109(2): 310-318, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32866317

RESUMO

Defining an appropriate and efficient assessment of drug-induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc-prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14-based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B-based "double-negative" nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high-dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double-negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.


Assuntos
Drogas em Investigação/efeitos adversos , Síndrome do QT Longo/induzido quimicamente , Animais , Arritmias Cardíacas/induzido quimicamente , Desenvolvimento de Medicamentos/métodos , Indústria Farmacêutica/métodos , Eletrocardiografia/métodos , Humanos , Medição de Risco , Torsades de Pointes/induzido quimicamente
18.
Clin Pharmacol Ther ; 109(6): 1606-1617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33283267

RESUMO

Drugs that prolong QT may cause torsade de pointes (TdP). However, translation of nonclinical assessment of QT prolongation or hERG channel, targeted by QT-prolonging drugs, into clinical TdP risk has been insufficient to date. In this blinded study, we confirmed the utility of a Normalized TdP Score System in predicting drug-induced TdP risks among 34 drugs, including 28 with low, intermediate, and high TdP risks under the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative plus six compounds with names blinded to the investigators, using the rabbit ventricular wedge assay. Concentration-dependent TdP scores were determined by drug-induced changes in QT, Tp-e , and proarrhythmias. Disclosure of the names and testing concentrations was made after completion of the experiments and report to the sponsors. Drugs' normalized TdP scores were calculated thereafter based on their respective free clinical maximum concentration (Cmax ). Drugs' normalized TdP scores were calculated and ranked for 33 drugs, excluding 1 investigational drug, and the TdP risks of the 28 CiPA drugs were correctly distinguished according to their respective categories of low, intermediate, and high TdP risks under the CiPA initiative. Accordingly, we are able to propose the cutoff values of the normalized TdP scores at 1 × Cmax : ≤ 0, > 0 to < 0.65 and ≥ 0.65, respectively, for low, intermediate, and high risk. This blinded study supports utility of our Normalized TdP Score System in predicting drug-induced TdP risks in 33 drugs, including 28 used for characterization of other assays under the CiPA initiative. However, these results need to be replicated in other laboratories.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/epidemiologia , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/epidemiologia , Animais , Avaliação Pré-Clínica de Medicamentos , Eletrocardiografia , Ventrículos do Coração/fisiopatologia , Síndrome do QT Longo/induzido quimicamente , Coelhos , Medição de Risco
19.
Eur Respir J ; 55(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32060060

RESUMO

BACKGROUND: Chronic lung disease of prematurity (CLD), also called bronchopulmonary dysplasia, is a major consequence of preterm birth, but the role of the microbiome in its development remains unclear. Therefore, we assessed the progression of the bacterial community in ventilated preterm infants over time in the upper and lower airways, and assessed the gut-lung axis by comparing bacterial communities in the upper and lower airways with stool findings. Finally, we assessed whether the bacterial communities were associated with lung inflammation to suggest dysbiosis. METHODS: We serially sampled multiple anatomical sites including the upper airway (nasopharyngeal aspirates), lower airways (tracheal aspirate fluid and bronchoalveolar lavage fluid) and the gut (stool) of ventilated preterm-born infants. Bacterial DNA load was measured in all samples and sequenced using the V3-V4 region of the 16S rRNA gene. RESULTS: From 1102 (539 nasopharyngeal aspirates, 276 tracheal aspirate fluid, 89 bronchoalveolar lavage, 198 stool) samples from 55 preterm infants, 352 (32%) amplified suitably for 16S RNA gene sequencing. Bacterial load was low at birth and quickly increased with time, but was associated with predominant operational taxonomic units (OTUs) in all sample types. There was dissimilarity in bacterial communities between the upper and lower airways and the gut, with a separate dysbiotic inflammatory process occurring in the lower airways of infants. Individual OTUs were associated with increased inflammatory markers. CONCLUSIONS: Taken together, these findings suggest that targeted treatment of the predominant organisms, including those not routinely treated, such as Ureaplasma spp., may decrease the development of CLD in preterm-born infants.


Assuntos
Displasia Broncopulmonar/microbiologia , Disbiose , Pulmão/microbiologia , RNA Ribossômico 16S/genética , Traqueia/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Líquido da Lavagem Broncoalveolar/microbiologia , Displasia Broncopulmonar/patologia , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Pulmão/patologia , Masculino , Traqueia/patologia
20.
Eur J Pharmacol ; 858: 172474, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31238068

RESUMO

The Kv7 family of voltage-dependent non-inactivating potassium channels is composed of five members, of which four are expressed in the CNS. Kv7.2, 7.3 and 7.5 are responsible for the M-current, which plays a critical role in the regulation of neuronal excitability. Stimulation of M1 muscarinic acetylcholine receptor, M1 receptor, increases neuronal excitability by suppressing the M-current generated by the Kv7 channel family. The M-current modulation via M1 receptor is well-described in in vitro assays using cell lines and in native rodent tissue. However, this mechanism was not yet reported in human induced pluripotent stem cells (hiPSC) derived neurons. In the present study, we investigated the effects of both agonists and antagonists of Kv7.2/7.3 channel and M1 receptor in hiPSC derived neurons and in primary rat cortical neuronal cells. The role of M1 receptors in the modulation of neuronal excitability could be demonstrated in both rat primary and hiPSC neurons. The M1 receptors agonist, xanomeline, increased neuronal excitability in both rat cortical and the hiPSC neuronal cells. Furthermore, M1 receptor agonist-induced neuronal excitability in vitro was reduced by an agonist of Kv7.2/7.3 in both neuronal cells. These results show that hiPSC derived neurons recreate the modulation of the M-current by the muscarinic receptor in hiPSC neurons similarly to rat native neurons. Thus, hiPSC neurons could be a useful human-based cell assay for characterization of drugs that affect neuronal excitability and/or induce seizure activity by modulation of M1 receptors or inhibition of Kv7 channels.


Assuntos
Fenômenos Eletrofisiológicos , Células-Tronco Pluripotentes Induzidas/citologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/citologia , Receptor Muscarínico M1/metabolismo , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canal de Potássio KCNQ2/agonistas , Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/agonistas , Canal de Potássio KCNQ3/antagonistas & inibidores , Canal de Potássio KCNQ3/genética , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA