Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Water Res ; 266: 122440, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39298895

RESUMO

Hydrolyzed AlTi species are essential metal-based coagulants in a coagulation process to remove nanoplastics (NPs). Understanding the molecular interactions between hydrolyzed AlTi species and NPs is key to promoting coagulation efficiency. In this study, the coagulation performance and intrinsic mechanism of different AlTi species (including monomeric AlTi and polymeric AlTi species-Al13Ti13) for NPs removal were systematically investigated. We found that the polymeric AlTi species exhibited higher turbidity removal (95.0 %) and lower residual Al content (20.67 µg/L) at a low dosage over monomeric AlTi species. Al13 and Al13Ti13 formed by in situ hydrolysis were the dominant species to destabilize and aggregate NPs at pH 6. Main coagulation mechanisms were dominated by charge neutralization, complexation between the aliphatic CH of NPs and Al/Ti-OH, and cation-π interaction between polycations and the aromatic structure of NPs. The preformed Al13Ti13 showed multiple positive charge binding sites assisting its easy adsorption on NPs by electrostatic attraction, and then formed microscale aggregates through charge neutralization or intermolecular interaction. The preformed Al13Ti13 demonstrated a high stability and coagulation performance with respect to pH changes in raw water, whereas the promotion of µ-OH bridges dissociation by OH- and the presence of electrostatic repulsion significantly decreased the NPs removal by monomeric AlTi at high pH. This study provides valuable theoretical insights into the interaction between NPs and various hydrolyzed AlTi species.

2.
Water Res ; 266: 122329, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39213681

RESUMO

Ultrafiltration technology (UF) is efficient in surface water treatment, but its development and widespread application are limited by membrane fouling. Herein, an efficient and stable polymerized ferric titanium coagulant (PFTC) was synthesized and used as a UF pretreatment agent in actual lake water treatment. The control mechanism of PFTC on membrane fouling was investigated from the perspective of organic removal efficiency and in-situ membrane surface regulation. PFTC demonstrated a remarkable affinity for soluble metabolic intermediates and hydrophilic proteins through complexation and hydrogen bonding force, achieving removal efficiencies of 66.4 % for UV254 and 81.3 % for DOC, respectively. The hydrophilic pollutants with high molecular weight and non-saturated structure could be preferentially removed by PFTC due to its diverse hydrolysates including positively charged Fe-based hydrolysates, amorphous Ti-based hydrolysates, and highly polymerized Fe-Ti copolymers. The flocs generated by PFTC exhibited strong hydrophilicity, allowing for the formation of a loose porous cake layer on the ultrafiltration membrane, which acted as a hydrophilic layer to enhance the anti-fouling performance of ultrafiltration membrane. With its dual function of contaminant removal and in-situ membrane surface regulation, PFTC alleviated 98.9 % of membrane fouling. This study provides new insights into membrane fouling control by coagulation pretreatment and efficient treatment of surface water.

3.
Water Res ; 262: 122040, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018579

RESUMO

The ubiquitous chloride ions (Cl-) in water seriously interfere with pollutant oxidation and inevitably generate undesirable chlorinated byproducts. In this study, we report for the first time that a negatively charged molecularly imprinted photocatalyst (MIP) can effectively inhibit Cl- interference and suppress the production of chlorination byproducts (the yield of chloroacetic acid was only 16 % of the bare photocatalyst system) while ensuring efficient degradation of target pollutants, thereby greatly improving the safety of the pollutant degradation process. Taking antibiotics as target pollutant, we investigated the mechanism of action of MIP by comparing the antibiotic degradation pathways, fate of photogenerated active species and production of reactive chlorine species (RCS) in the MIP and bare photocatalyst system. The mechanism by which MIP inhibits Cl- interference was mainly based on a synergy between electrostatic repulsion and steric hindrance induced by the specific capture of antibiotics in imprinted cavity, which effectively suppressed the production of RCS and hindered the participation of RCS in antibiotics degradation. In addition, MIP showed good compatibility with common cations, anions and organic matter, and performed well within a broad pH range in various water environments. Thus, the negatively charged MIP provides a feasible approach for the safe and efficient removal of pollutants in Cl- containing water.


Assuntos
Cloretos , Impressão Molecular , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Catálise , Cloretos/química , Antibacterianos/química , Antibacterianos/farmacologia , Purificação da Água/métodos
4.
Water Res ; 260: 121966, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908312

RESUMO

The efficient removal of antibiotics and its combined pollutants is essential for aquatic environment and human health. In this study, a lignin-based organic flocculant named PRL-VAc-DMC was synthesized using pulp reject as the raw material, with vinyl acetate (VAc) and methacryloxyethyltrimethyl ammonium chloride (DMC) as the grafting monomers. A series of modern characterization methods were used to confirm the successful preparation of PRL-VAc-DMC and elucidate its polymerization mechanism. It was found that the Ph-OH group and its contiguous carbon atoms of lignin served as the primary active sites to react with grafting monomers. Flocculation experiments revealed that PRL-VAc-DMC could react with tetracycline (TC) through π-π* interaction, hydrophobic interaction, hydrogen bonding, and electrostatic attraction. With the coexistence of humic acid (HA) and Kaolin, the aromatic ring, hydroxyl, and amide group of TC could react with the benzene ring, hydroxyl group, and carboxyl group of HA, forming TC@HA@Kaolin complexes with Kaolin particles acting as the hydrophilic shell. The increase in particle size, electronegativity, and hydrophily of TC@HA@Kaolin complexes facilitated their interaction with PRL-VAc-DMC through strong interfacial interactions. Consequently, the presence of HA and Kaolin promoted the removal of TC. The synergistic removal mechanism of TC, HA, and Kaolin by PRL-VAc-DMC was systematically analyzed from the perspective of muti-interface interactions. This paper is of great significance for the comprehensive utilization of pulp reject and provides new insights into the flocculation mechanism at the molecular scale.


Assuntos
Antibacterianos , Floculação , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Antibacterianos/química , Purificação da Água/métodos
5.
J Colloid Interface Sci ; 673: 216-227, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38875788

RESUMO

Cerium-based adsorbents possessed unique advantages of valence variability and abundant oxygen vacancies in hexavalent chromium (Cr(VI)) adsorption, but high cost and unstable properties restricted their application in Cr(VI) contained wastewater treatment. Herein, a series of bimetallic adsorbents with different cerium/iron ratios (CeFe@C) were prepared by adding inexpensive Fe into Ce-based adsorbents (Ce@C), and the effect of Fe doping on adsorption properties of Ce@C for Cr(VI) was investigated thoroughly. Compared with pristine Ce@C, CeFe@C exhibited excellent removal performance for Cr(VI), and the improved maximum adsorption capacity reached 75.11 mg/g at 25℃. Benefiting from Fe doping, CeFe@C had good regeneration property, with only 25 % decrease after five adsorption-desorption cycles. Contents of trivalent cerium (Ce(III)) and oxygen vacancies (Ov) in bimetallic adsorbents were positively correlated with divalent iron (Fe(II)) doping, indicating that the formation of Ce(III) and surface defects on Ce@C could be effectively regulated by Fe doping. Density functional theory (DFT) calculation results further proved that the doped Fe enhanced the electron transfer effectively and lowered the energy barriers of Cr(VI) adsorption onto Ce@C surface, strengthening the reduction and complexation to Cr(VI). This study provides new insights for improving the Cr(VI) removal performance by modified Ce-based adsorbents, and further promotes the utilization potentiality of low-cost and low-toxicity Ce-based adsorbents in Cr(VI)-containing wastewater treatment.

6.
Adv Mater ; 36(32): e2401454, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685794

RESUMO

Single atom catalysts (SACs) are atomic-level-engineered materials with high intrinsic activity. Catalytic centers of SACs are typically the transition metal (TM)-nonmetal coordination sites, while the functions of coexisting non-TM-bonded functionalities are usually overlooked in catalysis. Herein, the scalable preparation of carbon-supported cobalt-anchored SACs (CoCN) with controlled Co─N sites and free functional N species is reported. The role of metal- and nonmetal-bonded functionalities in the SACs for peroxymonosulfate (PMS)-driven Fenton-like reactions is first systematically studied, revealing their contribution to performance improvement and pathway steering. Experiments and computations demonstrate that the Co─N3C coordination plays a vital role in the formation of a surface-confined PMS* complex to trigger the electron transfer pathway and promote kinetics because of the optimized electronic state of Co centers, while the nonmetal-coordinated graphitic N sites act as preferable pollutant adsorption sites and additional PMS activation sites to accelerate electron transfer. Synergistically, CoCN exhibits ultrahigh activity in PMS activation for p-hydroxybenzoic acid oxidation, achieving complete degradation within 10 min with an ultrahigh turnover frequency of 0.38 min-1, surpassing most reported materials. These findings offer new insights into the versatile functions of N species in SACs and inspire rational design of high-performance catalysts in complicated heterogeneous systems.

7.
Adv Mater ; 36(28): e2403965, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655917

RESUMO

State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.

8.
J Hazard Mater ; 469: 133924, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452671

RESUMO

Peroxymonosulfate (PMS) oxidation reactions have been extensively studied recently. Due to the high material cost and low catalytic capability, PMS oxidation technology cannot be effectively applied in an industrial water treatment process. In this work, we developed a modification strategy based on enhancing the neglected electron tunneling effect to optimize the intrinsic electron transport process of the catalyst. The 2D nitrogen-doped carbon-based nanosheets with small interlayer spacing were prepared by self-polymerization of dopamine hydrochloride inserted into the natural layered bentonite template. Systematic characterizations confirmed that the smaller layer spacing in the 2D nitride-doped carbon-based nanosheets reduces the depletion layer width. The weak electronic shielding effect derived by the small layer spacing on the material subsurface enhanced the bulk electron tunneling effect. More bulk electrons could be migrated to the catalyst surface to activate PMS molecules. The PMS activation system showed ultrafast oxidation capability to degrade organic pollutants and strong ability to resist interference from environmental matrixes due to the optimized electron transfer process. Furthermore, the developed membrane reactor exhibited strong catalytic stability during the continuous degradation of P-Chlorophenol (CP).

9.
Proc Natl Acad Sci U S A ; 121(11): e2319427121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442175

RESUMO

Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.

10.
Water Res ; 251: 121119, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219690

RESUMO

The rising debate on the dilemma of photocatalytic water treatment technologies has driven researchers to revisit its prospects in water decontamination. Nowadays, heterogeneous photocatalysis coupled oxidant activation techniques are intensively studied due to their dual advantages of high mineralization and high oxidation efficiency in pollutant degradation. This paved a new way for the development of solar-driven oxidation technologies. Previous reviews focused on the advances in one specific coupling technique, such as photocatalytic persulfate activation and photocatalytic ozonation, but lack a consolidated understanding of the synergy between photocatalytic oxidation and oxidant activation. The synergy involves the migration of photogenerated carriers, radical reaction, and the increase in oxidation rate and mineralization. This review systematically summarizes the fundamentals of activation mechanism, advanced characterization techniques and synergistic effects of coupling techniques for water decontamination. Besides, specific cases that lead researchers astray in revealing mechanisms and assessing synergy are critically discussed. Finally, the prospects and challenges are put forward to further deepen the research on heterogeneous photocatalytic activation of oxidants. This work provides a consolidated view of the existing heterogeneous photocatalysis coupled oxidant activation techniques and inspires researchers to develop more promising solar-driven technologies for water decontamination.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxidantes , Descontaminação , Poluentes Químicos da Água/análise , Catálise , Oxirredução , Purificação da Água/métodos
11.
Proc Natl Acad Sci U S A ; 121(3): e2313387121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190529

RESUMO

The studies on the origin of versatile oxidation pathways toward targeted pollutants in the single-atom catalysts (SACs)/peroxymonosulfate (PMS) systems were always associated with the coordination structures rather than the perspective of pollutant characteristics, and the analysis of mechanism commonality is lacking. In this work, a variety of single-atom catalysts (M-SACs, M: Fe, Co, and Cu) were fabricated via a pyrolysis process using lignin as the complexation agent and substrate precursor. Sixteen kinds of commonly detected pollutants in various references were selected, and their lnkobs values in M-SACs/PMS systems correlated well (R2 = 0.832 to 0.883) with their electrophilic indexes (reflecting the electron accepting/donating ability of the pollutants) as well as the energy gap (R2 = 0.801 to 0.840) between the pollutants and M-SACs/PMS complexes. Both the electron transfer process (ETP) and radical pathways can be significantly enhanced in the M-SACs/PMS systems, while radical oxidation was overwhelmed by the ETP oxidation toward the pollutants with lower electrophilic indexes. In contrast, pollutants with higher electrophilic indexes represented the weaker electron-donating capacity to the M-SACs/PMS complexes, which resulted in the weaker ETP oxidation accompanied with noticeable radical oxidation. In addition, the ETP oxidation in different M-SACs/PMS systems can be regulated via the energy gaps between the M-SACs/PMS complexes and pollutants. As a result, the Fenton-like activities in the M-SACs/PMS systems could be well modulated by the reaction pathways, which were determined by both electrophilic indexes of pollutants and single-atom sites. This work provided a strategy to establish PMS-based AOP systems with tunable oxidation capacities and pathways for high-efficiency organic decontamination.

12.
Adv Mater ; 36(18): e2311869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266188

RESUMO

Iron-based catalysts are widely used in Fenton-like water pollution control technology due to their high efficiency, but their practical applications are limited by complex preparation conditions and strong blockage of Fe2+/Fe3+ cycle during the reaction. Here, a new iron-molybdenum bimetallic carbon-based catalyst is designed and synthesized using cellulose hydrogel for adsorption of Fe and Mo bimetals as a template, and the effective iron cycle in water treatment is realized. The integrated materials (Fe2.5Mo@CNs) with "catalytic/cocatalytic" performance have higher Fenton-like activation properties and universality than the equivalent quantity iron-carbon-based composite catalysts (Fe@CNs). Through the different characterization methods, experimental verifications and theoretical calculations show that the unique Fe3Mo3N structure promotes the adsorption of persulfate and reduces the energy barrier of the reaction, further completing the double enhancement of radicals (such as SO4·-) and nonradicals (1O2 and electron transport process). The integrated "catalytic/cocatalytic" combined material is expected to provide a new promotion strategy for Fenton-like water pollution control.

13.
J Hazard Mater ; 465: 133076, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38029592

RESUMO

Microplastics (MPs) and natural organic matter (NOM) composite pollutants have become emerging contaminants with potential threats. Coagulation has been widely used to remove MPs and NOM, but the underlying mechanisms for the removal of MPs-NOM composite pollutants by hydrolyzed Al species remain unclear. Therefore, the coagulation performance and mechanism of AlCl3, polyaluminum chloride with basicity of 2.2 (PAC22), and PAC25 in treating polyethylene (PE), humic acid (HA), and PE-HA composite systems were systematically investigated. The results showed that in the single PE system, PAC25 with hexagonal clusters achieved the maximum removal (68.09 %) (pH: 5, dosage: 0.5 mM) since adsorption bridging and sweeping effect were the main mechanisms for PE removal. The adsorption of HA on the PE surface enhanced its hydrophilicity and electrostatic repulsion, resulting in decreased PE removal. In the AlCl3-PE-HA system, the oligomeric Al first interacted with the -COOH and C-OH of HA through complexation, followed by the meso- and polymers of Al interacted with PE by electrostatic adsorption. The pre-formed medium polymeric Al species (Alb) and colloidal or solid Al species (Alc) in PAC22 and PAC25 formed complexes with the -OH and -COOH groups of HA, respectively, and then removed PE by adsorption bridging and sweeping effect.

14.
Water Res ; 249: 120945, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043352

RESUMO

Nanoplastics (NPs) are a prevalent type of emerging pollutant in marine environment. However, their fouling behavior and impact on reverse osmosis (RO) membrane performance remain unexplored. We investigated the relationship between polystyrene (PS), one of the most abundant NPs, with silica scaling and humic acid (HA) fouling in RO. The results demonstrated that the surface potential of NPs played an important role in the combined scaling and fouling process. Compared with the negatively charged NPs (original PS and carboxyl group modified PS, PS-COOH), the amino-functionalized PS (PS-NH2) with positive surface charge significantly accelerated membrane scaling/fouling and induced a synergistic water flux decline, due to the strong electrostatic attraction between PS-NH2, foulants, and the membrane surface. The amino groups acted as binding sites, which promoted the heterogeneous nucleation of silica and adsorption of HA, then formed stable composite pollutants. Thermodynamic analysis via isothermal titration calorimetry (ITC) further confirmed the spontaneous formation of stable complexes between PS-NH2 and silicates/HA. Our study provides new insights into the combined NPs fouling with other scalants or foulants, and offers guidance for the accurate prediction of RO performance in the presence of NPs.


Assuntos
Microplásticos , Purificação da Água , Osmose , Purificação da Água/métodos , Membranas Artificiais , Dióxido de Silício , Poliestirenos , Substâncias Húmicas
15.
Water Res ; 244: 120483, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633212

RESUMO

Antibiotics bring potential risks to human health and ecosystem, and their coexistence with natural organic matters (NOMs) could have harmful impacts on the environment. Herein, a polyaluminium chloride (PAC)-polydimethyl diallyl ammonium chloride (PDMDAAC) dual coagulation process was designed to remove the co-pollutants of chlortetracycline (CTC) and humic acid (HA), representing antibiotics and NOMs, respectively. The main research strength was given to understand molecular interactions and their mechanisms associated with the coagulation and flocculation. We found that the co-existing HA and CTC increased the hydrophily and stability of contaminants, and generated HA@CTC complexes with large particles size. The interaction mechanism between CTC and HA was mainly hydrogen bonding, hydrophobic association action, n-π* electron donor-acceptor interaction, and π-π* conjugation. Lewis acid-base interaction was the main force between HA and CTC. The bonding energies of OH…N, OH…O, and hydrophobic association were -12.2 kcal/mol, -13.1 kcal/mol, and -11.4 kcal/mol, respectively, indicating that hydrogen bonding was stronger than hydrophobic association. The interactions between HA and CTC could improve their removal efficiency in the coagulation process. This is due to that the functional groups (COOH and OH) in the HA@CTC could be adsorbed by Al based hydrolysates. Polar interaction dominated the CTC and HA removal, and PAC was more efficient than PDMDAAC to remove HA@CTC complexes due to its higher complexing capacity. Thanks to the low concentration of residual contaminants and the formation of large and loose flocs, the interaction of HA and CTC could alleviate membrane fouling during ultrafiltration process. This study will provide new insight into the efficient removal of combined pollution and membrane fouling control.


Assuntos
Clortetraciclina , Purificação da Água , Humanos , Antibacterianos , Ecossistema , Hidróxido de Alumínio , Ultrafiltração , Substâncias Húmicas/análise , Membranas Artificiais , Floculação
16.
J Hazard Mater ; 459: 132272, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37573824

RESUMO

The composite pollutants formed by aged polystyrene (APS) and natural organic matter are complex and harmful, which lead to the deterioration of water quality. In this work, the interaction mechanism between humic acid (HA) and APS was discussed by investigating the changes in their functional groups. Besides, a novel polyaluminum-titanium chloride composite coagulant (PATC) was prepared, and its binding behaviors with HA@APS under different pH conditions were analyzed from a microscopic perspective. It was found that at pH 4, π-π conjugation was the dominant interaction between HA and APS. And the main removal mechanism of HA@APS by PATC was surface complexation. With the increase of pH, π-π conjugation, n-π electron donor-acceptor interaction (EDA), and hydrogen bonding gradually dominated the interaction between APS and HA. At pH 7, PATC hydrolyzed to form various polynuclear Al-Ti species, which could meet the demand for different binding sites of HA@APS. Under alkaline conditions, HB and n-π EDA in HA@APS were weakened, while π-π conjugation held a dominant position again. At this time, the main coagulation mechanism of PATC changed from charge neutralization to sweeping action, accompanied by hydrogen bonding. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have attracted the public's attention due to their potential toxicity to humans. The combined pollution of aged microplastics and humic acid (HA) will bring great harm to aquatic environment. The development of novel composite coagulants is hopeful to efficiently remove MPs and their combined pollutants. Elucidating the interactions between HA and aged MPs is helpful to understand the transformation and fate of MPs in actual environments, and to reveal the removal mechanism of composite pollutants by coagulation. The findings presented here will provide theoretical guidance for addressing the challenges of coagulation technology in treating new pollutants in practice.

17.
Environ Sci Pollut Res Int ; 30(39): 90799-90813, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37460893

RESUMO

Although heterogeneous Fenton catalysis has captured increasing attention compared to its homogeneous counterpart, it still confronts some inherent drawbacks in use, such as the dilemma in solid-liquid separation and greater mass transfer resistance. Driven by the acoustic cavitation effect, herein, a sono-enhanced heterogeneous Fenton catalysis process was built to overcome the above two shortcomings, by rapidly synthesizing magnetic Fenton-like catalysts and accelerating electron transfer during the catalytic reaction. The results show that, compared to the traditional chemical coprecipitation method, Fe3O4 with smaller particle size and better crystallinity grew on the surface of halloysite nanotubes (HNTs) by using the sonochemical strategy, leading to displaying the higher catalytic activity toward the degradation of methylene blue (MB, improved by ~2.5 times). In parallel, more •OH and •O2- were produced after the ultrasound was further introduced to the routine Fenton-like catalysis system, thus highly accelerating the removal of MB (improved by ~50%). Besides, benefiting from the robust chemical integration of Fe3O4 and HNTs, Fe3O4@HNTs-S had a lower iron ion leaching in use, showing superior catalytic stability. The speed, simplicity, and generality, together with the enhanced mass transfer rate, make the use of ultrasound an enabling methodology to improve the heterogeneous Fenton catalysis.


Assuntos
Nanotubos , Argila , Radicais Livres , Catálise , Fenômenos Magnéticos , Peróxido de Hidrogênio
18.
Chemosphere ; 338: 139457, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37429382

RESUMO

The simultaneous removal of antibiotic and antibiotic resistance genes (ARGs) are important to inhibit the spread of antibiotic resistance. In this study, a coupled treatment system was developed using a CeO2 modified carbon nanotube electrochemical membrane and NaClO (denoted as CeO2@CNT-NaClO) to treat simulated water samples containing antibiotics and antibiotic-resistant bacteria (ARB). As the mass ratio of CeO2 to CNT was 5:7 and the current density was 2.0 mA/cm2, the CeO2@CNT-NaClO system removed 99% of sulfamethoxazole, 4.6 log sul1 genes, and 4.7 log intI1 genes from the sulfonamide-resistance water samples, and removed 98% of tetracycline, 2.0 log tetA genes, and 2.6 log intI1 genes of the tetracycline-resistance water samples. The outstanding performance of the CeO2@CNT-NaClO system for simultaneously removing antibiotic and ARGs was mainly ascribed to the generation of multiple reactive species, including •OH, •ClO, •O2- and 1O2. Antibiotics can undergo efficient degradation by •OH. However, the reaction between •OH and antibiotics reduces the availability of •OH to permeate into the cells and react with DNA. Nevertheless, the presence of •OH enhancd the effects of •ClO, •O2-, and 1O on ARG degradation. Through the coupled action of •OH, •ClO, •O2-, and 1O2, the cell membranes of ARB experience severe damage, resulting in an increase in intracellular reactive oxygen species (ROS) and a decrease in superoxide dismutase (SOD) activity. Consequently, this coordinated mechanism leads to superior removal of ARGs.


Assuntos
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Tetraciclina , Água
19.
Chemosphere ; 335: 139006, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37257657

RESUMO

In the work, S-doped iron-based carbon nanocomposites (Fe-S@CN) for activating persulfate (PS) were prepared by calcining iron-loaded sodium lignosulfonate. The characterization revealed that the main substances of Fe-S@CN were FeS and Fe3C, which were distributed on porous carbon nanosheets in rod-like morphology. In the Fe-S@CN/PS system, carbamazepine could be completely removed within 30 min, and the relative contribution of hydroxyl radicals (OH·), sulfate radicals (SO4·-) and total singlet oxygen (1O2) and superoxide radicals (O2·-) for carbamazepine removal were approximated as 8.7%, 19.2% and 72.1%, respectively. Electron paramagnetic resonance spectroscopy demonstrated that S doping promoted the formation of various active species. Compared with the catalyst without S doping, Fe-S@CN exhibited higher activation performance (1.48-fold) for PS due to the enhanced electron transfer rate and facilitated Fe2+/Fe3+ cycle. Density functional theory calculations showed that S doping promoted the binding between the catalyst and PS, and enhanced the overall internal electron density of the catalyst. Fe-S@CN exhibited excellent catalytic performance over a wide pH range (3.0-11.0). The active sites of Fe-S@CN used in the cycling experiments was also largely recovered after thermal regeneration. Overall, this study shows for the first time the impact of SLS as an S dopant on enhanced PS activation.


Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Ferro/química , Oxirredução , Carbono , Nanocompostos/química , Poluentes Químicos da Água/análise
20.
Water Res ; 232: 119690, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758354

RESUMO

Microplastics (MPs) particles bring potential threats to the aqueous environment, and the coexistence of natural organic matter (NOM) enhances their toxicity. Coagulation is an efficient method for particle removal and exploring the binding sites and modes of the coagulant hydrolysates with MPs in the presence of NOM is essential to understand the coagulation mechanism. In this study, a novel polymerized polyaluminum-titanium chloride composite coagulant (PATC) was prepared and used to remove polystyrene (PS). It was found that PATC could compress or even destroy the surface layer of the negatively charged PS. In comparison to PAC and PTC, PATC was more efficient in decreasing the energy barrier of the PS particles and increasing their aggregation rate over a wider pH range. The results of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) calculation revealed that the interaction between the hydrolysates of PATC and PS was mainly polar interaction (VAB), such as hydrogen bonding. The peak intensity and peak shift in Fourier-transformed infrared (FTIR) and X-ray photoelectron spectra (XPS) were analyzed to further explore the interaction between the hydrolysates of PATC and PS. It was found that hydrogen bonding existed between the -OH group of PATC and the aliphatic C-H and C=O groups of PS. And the main interaction between HA and PS was the π-π* conjugation and hydrogen bonding between the -COOH, -OH, and C=O groups of HA and the C=O and aliphatic C-H groups of PS. Therefore, in the HA@PS system, the active sites of HA (e.g. -COOH and -OH) and PS (e.g., C=O and aliphatic C-H) binding with the coagulants were occupied, which accordingly led to the dramatic decline in the removal efficiency of both HA and PS. In actual lake water treatment, although the removal efficiency of PS was significantly poor, PATC performed better for PS removal than PAC and PTC. Besides, the effluent pH was maintained at 6.81±0.08, which met the requirements of the subsequent water treatment process. This study provides systematic knowledge for understanding the interaction between PS, NOM, and coagulant hydrolysates, and further confirms the application potential of PATC for MPs removal.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Poliestirenos , Cloretos/química , Titânio , Purificação da Água/métodos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA