Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Chem Biol ; 31(3): 577-592.e23, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38042151

RESUMO

Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.


Assuntos
Memória de Curto Prazo , Canais de Potássio , Ratos , Animais , Humanos , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Encéfalo/metabolismo
2.
Sci Rep ; 11(1): 7700, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833333

RESUMO

GABAA-α5 subunit-containing receptors have been shown to play a key modulatory role in cognition and represent a promising drug target for cognitive dysfunction, as well as other disorders. Here we report on the preclinical and early clinical profile of a novel GABAA-α5 selective negative allosteric modulator (NAM), basmisanil, which progressed into Phase II trials for intellectual disability in Down syndrome and cognitive impairment associated with schizophrenia. Preclinical pharmacology studies showed that basmisanil is the most selective GABAA-α5 receptor NAM described so far. Basmisanil bound to recombinant human GABAA-α5 receptors with 5 nM affinity and more than 90-fold selectivity versus α1, α2, and α3 subunit-containing receptors. Moreover, basmisanil inhibited GABA-induced currents at GABAA-α5 yet had little or no effect at the other receptor subtypes. An in vivo occupancy study in rats showed dose-dependent target engagement and was utilized to establish the plasma exposure to receptor occupancy relationship. At estimated receptor occupancies between 30 and 65% basmisanil attenuated diazepam-induced spatial learning impairment in rats (Morris water maze), improved executive function in non-human primates (object retrieval), without showing anxiogenic or proconvulsant effects in rats. During the Phase I open-label studies, basmisanil showed good safety and tolerability in healthy volunteers at maximum GABAA-α5 receptor occupancy as confirmed by PET analysis with the tracer [11C]-Ro 15-4513. An exploratory EEG study provided evidence for functional activity of basmisanil in human brain. Therefore, these preclinical and early clinical studies show that basmisanil has an ideal profile to investigate potential clinical benefits of GABAA-α5 receptor negative modulation.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Regulação Alostérica , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Aprendizagem/efeitos dos fármacos , Macaca fascicularis , Tomografia por Emissão de Pósitrons , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Xenopus laevis
3.
Front Pharmacol ; 12: 699535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126098

RESUMO

The autotaxin-lysophosphatidic acid (ATX-LPA) signaling pathway plays a role in a variety of autoimmune diseases, such as rheumatoid arthritis or neurodegeneration. A link to the pathogenesis of glaucoma is suggested by an overactive ATX-LPA axis in aqueous humor samples of glaucoma patients. Analysis of such samples suggests that the ATX-LPA axis contributes to the fibrogenic activity and resistance to aqueous humor outflow through the trabecular meshwork. In order to inhibit or modulate this pathway, we developed a new series of ATX-inhibitors containing novel bicyclic and spirocyclic structural motifs. A potent lead compound (IC50 against ATX: 6 nM) with good in vivo PK, favorable in vitro property, and safety profile was generated. This compound leads to lowered LPA levels in vivo after oral administration. Hence, it was suitable for chronic oral treatment in two rodent models of glaucoma, the experimental autoimmune glaucoma (EAG) and the ischemia/reperfusion models. In the EAG model, rats were immunized with an optic nerve antigen homogenate, while controls received sodium chloride. Retinal ischemia/reperfusion (I/R) was induced by elevating the intraocular pressure (IOP) in one eye to 140 mmHg for 60 min, followed by reperfusion, while the other untreated eye served as control. Retinae and optic nerves were evaluated 28 days after EAG or 7 and 14 days after I/R induction. Oral treatment with the optimized ATX-inhibitor lead to reduced retinal ganglion cell (RGC) loss in both glaucoma models. In the optic nerve, the protective effect of ATX inhibition was less effective compared to the retina and only a trend to a weakened neurofilament distortion was detectable. Taken together, these results provide evidence that the dysregulation of the ATX-LPA axis in the aqueous humor of glaucoma patients, in addition to the postulated outflow impairment, might also contribute to RGC loss. The observation that ATX-inhibitor treatment in both glaucoma models did not result in significant IOP increases or decreases after oral treatment indicates that protection from RGC loss due to inhibition of the ATX-LPA axis is independent of an IOP lowering effect.

4.
ACS Chem Biol ; 14(1): 37-49, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452219

RESUMO

The importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2. Structure-guided optimization efforts yielded the potent DDR1 inhibitor 2.45, which possesses excellent kinome selectivity (including 64-fold selectivity over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical properties. As desired, compound 2.45 modulates DDR1 phosphorylation in vitro as well as prevents collagen-induced activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3-/- mice (the preclinical mouse model of Alport syndrome) when employing a therapeutic dosing regime, indicating the real therapeutic value of selectively inhibiting DDR1 phosphorylation in vivo. Our results may have wider significance as Col4a3-/- mice also represent a model for chronic kidney disease, a disease which affects 10% of the global population.


Assuntos
DNA/genética , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Rim/fisiopatologia , Nefrite Hereditária/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Testes de Função Renal , Camundongos , Camundongos Knockout , Nefrite Hereditária/fisiopatologia , Fosforilação , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
5.
J Transl Med ; 16(1): 148, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859097

RESUMO

BACKGROUND: Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis. METHODS: The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN). Detailed DDR1 expression was first characterized in detail in human GN biopsies using a novel selective anti-DDR1 antibody using immunohistochemistry. Subsequently the protective role of DDR1 was investigated using a highly selective, novel, small molecule inhibitor in a nephrotoxic serum (NTS) GN model in a prophylactic regime and in the NEP25 GN mouse model using a therapeutic intervention regime. RESULTS: DDR1 expression was shown to be mainly limited to renal epithelium. In humans, DDR1 is highly induced in injured podocytes, in bridging cells expressing both parietal epithelial cell (PEC) and podocyte markers and in a subset of PECs forming the cellular crescents in human GN. Pharmacological inhibition of DDR1 in NTS improved both renal function and histological parameters. These results, obtained using a prophylactic regime, were confirmed in the NEP25 GN mouse model using a therapeutic intervention regime. Gene expression analysis of NTS showed that pharmacological blockade of DDR1 specifically reverted fibrotic and inflammatory gene networks and modulated expression of the glomerular cell gene signature, further validating DDR1 as a major mediator of cell fate in podocytes and PECs. CONCLUSIONS: Together, these results suggest that DDR1 inhibition might be an attractive and promising pharmacological intervention for the treatment of GN, predominantly by targeting the renal epithelium.


Assuntos
Receptor com Domínio Discoidina 1/antagonistas & inibidores , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Glomerulonefrite/genética , Glomerulonefrite/patologia , Humanos , Inflamação/patologia , Rim/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo
6.
Artigo em Inglês | MEDLINE | ID: mdl-28193653

RESUMO

Current influenza treatment relies on a single class of antiviral drugs, the neuraminidase inhibitors (NAIs), raising concern over the potential emergence of resistant variants and necessitating the development of novel drugs. In recent years, investigational inhibitors targeting the endonuclease activity of the influenza acidic polymerase (PA) protein have yielded encouraging results, although there are only limited data on their in vivo efficacy. Here, we examined the antiviral potential of the PA endonuclease inhibitor RO-7 in prophylactic and therapeutic regimens in BALB/c mice inoculated with influenza A/California/04/2009 (H1N1)pdm09 or B/Brisbane/60/2008 viruses, which represent currently circulating antigenic variants. RO-7 was administered to mice intraperitoneally twice daily at dosages of 6, 15, or 30 mg/kg/day for 5 days, starting 4 h before or 24 or 48 h after virus inoculation, and showed no adverse effects. Prophylactic administration completely protected mice from lethal infection by influenza A or B virus. The level of therapeutic protection conferred depended upon the time of treatment initiation and RO-7 dosage, resulting in 60 to 100% and 80 to 100% survival with influenza A and B viruses, respectively. RO-7 treatment significantly decreased virus titers in the lung and lessened the extent and severity of lung damage. No PA endonuclease-inhibitor resistance was observed in viruses isolated from lungs of RO-7-treated mice, and the viruses remained susceptible to the drug at nanomolar concentrations in phenotypic assays. These in vivo efficacy results further highlight the potential of RO-7 for development as antiviral therapy for influenza A and B virus infections.


Assuntos
Antivirais/farmacologia , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antibioticoprofilaxia , Linhagem Celular , Cães , Feminino , Guanina/farmacologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Profilaxia Pós-Exposição , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
Bioorg Med Chem Lett ; 26(20): 5092-5097, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27658368

RESUMO

Dual inhibition of fatty acid binding proteins 4 and 5 (FABP4 and FABP5) is expected to provide beneficial effects on a number of metabolic parameters such as insulin sensitivity and blood glucose levels and should protect against atherosclerosis. Starting from a FABP4 selective focused screening hit, biostructure information was used to modulate the selectivity profile in the desired way and to design potent dual FABP4/5 inhibitors with good selectivity against FABP3. With very good pharmacokinetic properties and no major safety alerts, compound 12 was identified as a suitable tool compound for further in vivo investigations.


Assuntos
Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Desenho de Fármacos , Proteínas de Ligação a Ácido Graxo/química , Camundongos , Camundongos Knockout , Farmacocinética , Conformação Proteica , Homologia de Sequência de Aminoácidos
8.
Antimicrob Agents Chemother ; 60(9): 5504-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381402

RESUMO

Antiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins. The acid polymerase (PA) of influenza viruses is a promising target for new antivirals because of its essential role in initiating virus transcription. Here, we characterized a novel compound, RO-7, identified as a putative PA endonuclease inhibitor. RO-7 was effective when added before the cessation of genome replication, reduced polymerase activity in cell-free systems, and decreased relative amounts of viral mRNA and genomic RNA during influenza virus infection. RO-7 specifically inhibited the ability of the PA endonuclease domain to cleave a nucleic acid substrate. RO-7 also inhibited influenza A viruses (seasonal and 2009 pandemic H1N1 and seasonal H3N2) and B viruses (Yamagata and Victoria lineages), zoonotic viruses (H5N1, H7N9, and H9N2), and NAI-resistant variants in plaque reduction, yield reduction, and cell viability assays in Madin-Darby canine kidney (MDCK) cells with nanomolar to submicromolar 50% effective concentrations (EC50s), low toxicity, and favorable selective indices. RO-7 also inhibited influenza virus replication in primary normal human bronchial epithelial cells. Overall, RO-7 exhibits broad-spectrum activity against influenza A and B viruses in multiple in vitro assays, supporting its further characterization and development as a potential antiviral agent for treating influenza.


Assuntos
Antivirais/farmacologia , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Animais , Linhagem Celular , Cães , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Células HEK293 , Humanos , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Orthomyxoviridae/imunologia , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
9.
J Neurosci ; 33(9): 3953-66, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447605

RESUMO

Down syndrome (DS) is associated with neurological complications, including cognitive deficits that lead to impairment in intellectual functioning. Increased GABA-mediated inhibition has been proposed as a mechanism underlying deficient cognition in the Ts65Dn (TS) mouse model of DS. We show that chronic treatment of these mice with RO4938581 (3-bromo-10-(difluoromethyl)-9H-benzo[f]imidazo[1,5-a][1,2,4]triazolo[1,5-d][1,4]diazepine), a selective GABA(A) α5 negative allosteric modulator (NAM), rescued their deficits in spatial learning and memory, hippocampal synaptic plasticity, and adult neurogenesis. We also show that RO4938581 normalized the high density of GABAergic synapse markers in the molecular layer of the hippocampus of TS mice. In addition, RO4938581 treatment suppressed the hyperactivity observed in TS mice without inducing anxiety or altering their motor abilities. These data demonstrate that reducing GABAergic inhibition with RO4938581 can reverse functional and neuromorphological deficits of TS mice by facilitating brain plasticity and support the potential therapeutic use of selective GABA(A) α5 NAMs to treat cognitive dysfunction in DS.


Assuntos
Síndrome de Down/complicações , Síndrome de Down/patologia , Hipocampo/patologia , Deficiências da Aprendizagem/tratamento farmacológico , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Estimulação Acústica , Análise de Variância , Animais , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Biofísica , Proteínas de Transporte/metabolismo , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Sinais (Psicologia) , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Moduladores GABAérgicos/farmacologia , Moduladores GABAérgicos/uso terapêutico , Glutamato Descarboxilase/metabolismo , Hipocampo/efeitos dos fármacos , Hipercinese/tratamento farmacológico , Hipercinese/etiologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Antígeno Ki-67 , Deficiências da Aprendizagem/etiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Desempenho Psicomotor/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Reflexo/genética , Reflexo de Sobressalto/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Convulsões/etiologia , Filtro Sensorial/efeitos dos fármacos , Trítio/farmacocinética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
10.
Bioorg Med Chem Lett ; 19(20): 5940-4, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19762240

RESUMO

Lead optimisation of the imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepine class led to the identification of two clinical leads [RO4882224 (11) and RO4938581 (44)] functioning as novel potent and selective GABAA alpha5 inverse agonists. The unique pharmacological profiles and optimal pharmacokinetic profiles resulted in in vivo activity in selected cognition models.


Assuntos
Anticonvulsivantes/farmacocinética , Benzodiazepinas/farmacocinética , Transtornos Cognitivos/tratamento farmacológico , Imidazóis/farmacocinética , Receptores de GABA-A/metabolismo , Triazóis/farmacocinética , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Benzodiazepinas/síntese química , Benzodiazepinas/química , Linhagem Celular , Modelos Animais de Doenças , Descoberta de Drogas , Agonismo Inverso de Drogas , Agonistas de Receptores de GABA-A , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Ligação Proteica , Ratos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
11.
Bioorg Med Chem Lett ; 19(20): 5958-61, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19740657

RESUMO

In a search for GABAA alpha5 ligands that combine high subtype binding selectivity with a marked inverse agonism imidazo[1,5-a][1,2,4]-triazolo[1,5-d][1,4]benzodiazepines were identified as a promising class. A short tandem reaction allowed rapid access to this chemical series, thereby facilitating rapid SAR generation which guided the optimization process. Two compounds (10e and 11f) were found to be active in an in vivo paradigm for cognitive improvement.


Assuntos
Anticonvulsivantes/química , Benzodiazepinas/química , Transtornos Cognitivos/tratamento farmacológico , Receptores de GABA-A/metabolismo , Triazóis/química , Adjuvantes Anestésicos/farmacologia , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacocinética , Benzodiazepinas/síntese química , Benzodiazepinas/farmacocinética , Benzodiazepinas/farmacologia , Linhagem Celular , Agonismo Inverso de Drogas , Agonistas de Receptores de GABA-A , Humanos , Memória de Curto Prazo/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Escopolamina/farmacologia , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacologia
12.
Psychopharmacology (Berl) ; 202(1-3): 207-23, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18936916

RESUMO

RATIONALE: GABAA alpha5 subunit-containing receptors are primarily expressed in the hippocampus and their role in learning and memory has been demonstrated recently by both genetic and pharmacological approaches. OBJECTIVES: The objective of the study is to evaluate the cognitive effects of a novel GABAA alpha5 receptor inverse agonist, RO4938581 in rats and monkeys. MATERIALS AND METHODS: The in vitro profile was determined using radioligand binding and electrophysiological assays for the GABAA alpha1, alpha2, alpha3, and alpha5 receptors. Long-term potentiation (LTP) was performed in mouse hippocampal slices. Cognitive effects were assessed in rats in the delayed match to position (DMTP) task and the Morris water maze. In monkeys, the object retrieval task was used. Pro-convulsant and anxiogenic potentials were evaluated in mice and rats. In vivo receptor occupancy was determined using [3H]-RO0154513. RESULTS: RO4938581 is a potent inverse agonist at the GABAA alpha5 receptor, with both binding and functional selectivity, enhancing hippocampal LTP. RO4938581 reversed scopolamine-induced working memory impairment in the DMTP task (0.3-1 mg/kg p.o.) and diazepam-induced spatial learning impairment (1-10 mg/kg p.o.). RO4938581 improved executive function in monkeys (3-10 mg/kg p.o.). Importantly, RO4938581 showed no anxiogenic and pro-convulsive potential. RO4938581 dose-dependently bound to GABAA alpha5 receptors and approximately 30% receptor occupancy was sufficient to produce enhanced cognition in the rat. CONCLUSIONS: The data further support the potential of GABAA alpha5 receptors as a target for cognition-enhancing drugs. The dual binding and functional selectivity offers an ideal profile for cognition-enhancing effects without the unwanted side effects associated with activity at other GABAA receptor subtypes.


Assuntos
Benzodiazepinas/farmacologia , Cognição/efeitos dos fármacos , Imidazóis/farmacologia , Nootrópicos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Haplorrinos , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Membranas/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos DBA , Atividade Motora/efeitos dos fármacos , Técnicas de Patch-Clamp , Plasmídeos , Ratos , Ratos Wistar , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Proteínas Recombinantes , Convulsões/induzido quimicamente
13.
Hepatology ; 41(4): 925-35, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15799034

RESUMO

Treatment with benzarone or benzbromarone can be associated with hepatic injury. Both drugs share structural similarities with amiodarone, a well-known mitochondrial toxin. Therefore, we investigated the hepatotoxicity of benzarone and benzbromarone as well as the analogues benzofuran and 2-butylbenzofuran. In isolated rat hepatocytes, amiodarone, benzarone, and benzbromarone (20 micromol/L) decreased mitochondrial membrane potential by 23%, 54% or 81%, respectively. Benzofuran and 2-butylbenzofuran had no effect up to 100 micromol/L. In isolated rat liver mitochondria, amiodarone, benzarone, and benzbromarone, but not benzofuran, decreased state 3 oxidation and respiratory control ratios for L-glutamate (50% decrease of respiratory control ratio at [micromol/L]: amiodarone, 12.9; benzarone, 10.8; benzbromarone, <1). Amiodarone, benzarone, and benzbromarone, but not benzofuran, also uncoupled oxidative phosphorylation. Mitochondrial beta-oxidation was decreased by 71%, 87%, and 58% with 100 micromol/L amiodarone or benzarone and 50 micromol/L benzbromarone, respectively, but was unaffected by benzofuran, whereas ketogenesis was not affected. 2-Butylbenzofuran weakly inhibited state 3 oxidation and beta-oxidation only at 100 micromol/L. In the presence of 100 micromol/L amiodarone, benzarone or benzbromarone, reactive oxygen species production was increased, mitochondrial leakage of cytochrome c was induced in HepG2 cells, and permeability transition was induced in isolated rat liver mitochondria. At the same concentrations, amiodarone, benzarone, and benzbromarone induced apoptosis and necrosis of isolated rat hepatocytes. In conclusion, hepatotoxicity associated with amiodarone, benzarone, and benzbromarone can at least in part be explained by their mitochondrial toxicity and the subsequent induction of apoptosis and necrosis. Side chains attached to the furan moiety are necessary for rendering benzofuran hepatotoxic.


Assuntos
Benzobromarona/análogos & derivados , Benzobromarona/intoxicação , Fígado/efeitos dos fármacos , Amiodarona/química , Amiodarona/intoxicação , Animais , Apoptose/efeitos dos fármacos , Benzobromarona/química , Benzofuranos/química , Benzofuranos/intoxicação , Linhagem Celular Tumoral , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/fisiologia , Corpos Cetônicos/biossíntese , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Dilatação Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Necrose , Oxirredução/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
14.
Environ Health Perspect ; 112(12): 1236-48, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15345370

RESUMO

Male rats were treated with various model compounds or the appropriate vehicle controls. Most substances were either well-known hepatotoxicants or showed hepatotoxicity during preclinical testing. The aim of the present study was to determine if biological samples from rats treated with various compounds can be classified based on gene expression profiles. In addition to gene expression analysis using microarrays, a complete serum chemistry profile and liver and kidney histopathology were performed. We analyzed hepatic gene expression profiles using a supervised learning method (support vector machines; SVMs) to generate classification rules and combined this with recursive feature elimination to improve classification performance and to identify a compact subset of probe sets with potential use as biomarkers. Two different SVM algorithms were tested, and the models obtained were validated with a compound-based external cross-validation approach. Our predictive models were able to discriminate between hepatotoxic and nonhepatotoxic compounds. Furthermore, they predicted the correct class of hepatotoxicant in most cases. We provide an example showing that a predictive model built on transcript profiles from one rat strain can successfully classify profiles from another rat strain. In addition, we demonstrate that the predictive models identify nonresponders and are able to discriminate between gene changes related to pharmacology and toxicity. This work confirms the hypothesis that compound classification based on gene expression data is feasible.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Fígado/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Toxicogenética/métodos , Xenobióticos/classificação , Xenobióticos/toxicidade , Animais , Biomarcadores/análise , Masculino , Ratos , Ratos Wistar
15.
Exp Toxicol Pathol ; 54(5-6): 401-10, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12877352

RESUMO

Gene expression profiling using microarrays (rat-specific array RG-U34A, Affymetrix, U.S.A.) was employed for the investigation of: (1) hormonal regulation of renal function and (2) nephrotoxicity. For this purpose about 8,800 genes were analysed in kidney and, additionally, in liver tissue. Ad 1.) Kidney functions develop during postnatal life. Thus, in vivo transport and accumulation of p-aminohippurate (PAH) was investigated on renal cortical slices (RCS) from 10- and 55-day-old rats. The animals were treated with dexamethasone (DEXA; 60 microg/100 g b.wt./day) for 3 days, which caused a significant reduction in the accumulation of PAH in 10-day-old rats (42 +/- 5% whereas it was only slightly reduced in 55-day-old rats (70 +/- 8%). To further clarify the regulation of renal function by DEXA, results were compared with those obtained previously after in vitro stimulation with DEXA. RCS were incubated for 24 hours in DEXA-containing medium (10(-9) M). Under these conditions DEXA significantly increased the PAH uptake capacity in RCS obtained from 10- and 55-day-old rats up to 126 and 136%, respectively. Thus a stimulation of tubular transport capacity is possible in vitro. The effect of DEXA treatment on the gene expression of the kidney (in vivo) was moderate. Focussing especially on transporters, ion channels, ATPases, glucuronyltransferases, glutathione-S-transferase and cytochrome P450, the expression of only few genes were significantly changed (3 to 50-fold up- or down-regulation). Moreover, distinct age differences were found after in vivo administration of DEXA. The investigation of in vitro effects of DEXA is currently been performed. Ad 2.) The kidney is threatened by nephrotoxins because of its ability to accumulate them. We used a single administration of uranyl nitrate (UN; 0.5 mg/100 g b.wt.) as a model for chronic renal failure (CRF). Clearance experiments were performed 10 weeks after UN administration (maximal symptoms of CRF) in adult female rats. As expected, UN induced interstitial cicatrices with reduced GFR and diminished PAH transport capacity. Despite the impressive morphological and functional changes in the kidney after exposure to UN, the gene expression profiles in the kidneys were only minimally affected: we found significantly changed expression levels for only 20 genes (5 genes were up-regulated [e.g. transgelin], 15 down-regulated [among these the Na-K-Cl-symporter, insulin-like growth factor, kallikrein, and ornithine decarboxylase). The lack of agreement between gene expression data and the nephrotoxic effects of UN can probably be explained by the long time interval between dosing and the assessment of the effect. The results confirm that primary genomic responses are likely to be strongest transiently after exposure and then decrease in intensity.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Falência Renal Crônica/metabolismo , Rim/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Envelhecimento , Animais , Transporte Biológico , Dexametasona/farmacologia , Modelos Animais de Doenças , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Falência Renal Crônica/induzido quimicamente , Falência Renal Crônica/patologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Nitrato de Uranil/toxicidade , Ácido p-Aminoipúrico/metabolismo
16.
Toxicol Sci ; 73(2): 386-402, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12657743

RESUMO

Microarray technology allows the simultaneous analysis of mRNA expression levels of thousands of genes. In the field of toxicogenomics, this technology could help to identify potentially unsafe compounds based on the changes in mRNA expression patterns they induce. Rodent in vivo and in vitro systems are currently the experimental models of choice for predictive toxicology, especially in early phases of development. This study characterizes several hepatic in vitro systems based on mRNA expression profiles, comparing them to gene expression in liver tissue. The in vitro systems investigated comprise two rat liver cell lines (BRL3A and NRL clone 9), primary hepatocytes in conventional monolayer or in sandwich culture, and liver slices. The results demonstrate that liver slices exhibit the strongest similarity to liver tissue regarding mRNA expression, whereas the two cell lines are quite different from the whole liver. We were able to identify genes with strong changes in expression levels in all or at least one of the in vitro systems relative to whole liver. In particular, for some cytochrome P450s the differences observed on the mRNA expression level were paralleled by protein expression and enzymatic activity. In addition, the effect of time in culture was assessed. We were able to show a profound effect of the duration of culture. Expression patterns change most rapidly soon after cell isolation and culture initiation and stabilize with time in culture. The findings are discussed with respect to the usefulness of the various hepatic in vitro systems for microarray-based toxicological testing of compounds.


Assuntos
Perfilação da Expressão Gênica , Genômica/métodos , Hepatócitos/metabolismo , Fígado/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos , Organismos Livres de Patógenos Específicos , Fatores de Tempo
17.
Pharmacogenomics J ; 2(5): 327-34, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12439739

RESUMO

A retrospective pharmacogenetic study was conducted to identify possible genetic susceptibility factors in patients in whom the administration of the anti-Parkinson drug, tolcapone (TASMAR), was associated with hepatic toxicity. We studied 135 cases of patients with elevated liver transaminase levels (ELT) of >/=1.5 times above the upper limit of normal, in comparison with matched controls that had also received the drug but had not experienced ELT. DNA samples were genotyped for 30 previously described or newly characterized bi-allelic single nucleotide polymorphisms (SNPs), representing 12 candidate genes selected based on the known metabolic pathways involved in the tolcapone elimination. SNPs located within the UDP-glucuronosyl transferase 1A gene complex, which codes for the enzymes involved in the main elimination pathway of the drug, were found to be significantly associated with the occurrence of tolcapone-associated ELTs.


Assuntos
Benzofenonas/efeitos adversos , Variação Genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Farmacogenética/métodos , Benzofenonas/uso terapêutico , Intervalos de Confiança , Feminino , Testes Genéticos/métodos , Variação Genética/genética , Glucuronosiltransferase/genética , Haplótipos/genética , Humanos , Masculino , Nitrofenóis , Razão de Chances , Farmacogenética/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos , Tolcapona
18.
Toxicol Appl Pharmacol ; 183(1): 71-80, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12217644

RESUMO

The gene and protein expression changes after exposure to a toxic compound might help elucidate its mechanism of action. In this paper we investigated the effect of carbon tetrachloride (CCl(4)) on the gene and protein expression in rat livers. Adult Wistar rats were administered CCl(4) and livers were harvested 6 or 24 h thereafter. The analysis of mitochondrial proteins on 2D gels showed the upregulation of two proteins involved in stress (catalase and uricase). Among the downregulated proteins, enzymes related to the metabolism of lipids and aminoacids were affected. Additionally, alpha-2-macroglobulin and senescence marker protein, two proteins whose decrease in expression has been connected to hepatocyte damage, were decreased. Several of the upregulated genes are involved in stress response, DNA and protein damage, and repair. Genes coding for several enzymes involved in different metabolic pathways, including some P450, were downregulated in the treated animals. In conclusion, a single dose of CCl(4) caused gene and protein expression changes that can be related to its mechanism of toxicity. Results from both technologies support previous publications and provide possible new toxicity markers. However, the correlation between gene and protein expression at a given time point is less apparent, partly as a result of different regulatory mechanisms between gene and protein expression.


Assuntos
Tetracloreto de Carbono/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA