Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Trends Genet ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38702264

RESUMO

Uncovering the genetic architectures of brain morphology offers valuable insights into brain development and disease. Genetic association studies of brain morphological phenotypes have discovered thousands of loci. However, interpretation of these loci presents a significant challenge. One potential solution is exploring the genetic overlap between brain morphology and disorders, which can improve our understanding of their complex relationships, ultimately aiding in clinical applications. In this review, we examine current evidence on the genetic associations between brain morphology and neuropsychiatric traits. We discuss the impact of these associations on the diagnosis, prediction, and treatment of neuropsychiatric diseases, along with suggestions for future research directions.

2.
Brain Behav ; 14(5): e3515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702895

RESUMO

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Assuntos
Hipocampo , Melatonina , Transtornos da Memória , Plasticidade Neuronal , Privação do Sono , Animais , Melatonina/farmacologia , Melatonina/administração & dosagem , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Privação do Sono/fisiopatologia , Camundongos , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Feminino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Gravidez , Privação Materna , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico
3.
Nat Commun ; 15(1): 2819, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561338

RESUMO

Previous genetic studies of venous thromboembolism (VTE) have been largely limited to common variants, leaving the genetic determinants relatively incomplete. We performed an exome-wide association study of VTE among 14,723 cases and 334,315 controls. Fourteen known and four novel genes (SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding variants, with broad replication in the FinnGen cohort. Most genes we discovered exhibited the potential to predict future VTE events in longitudinal analysis. Notably, we provide evidence for the additive contribution of rare coding variants to known genome-wide polygenic risk in shaping VTE risk. The identified genes were enriched in pathways affecting coagulation and platelet activation, along with liver-specific expression. The pleiotropic effects of these genes indicated the potential involvement of coagulation factors, blood cell traits, liver function, and immunometabolic processes in VTE pathogenesis. In conclusion, our study unveils the valuable contribution of protein-coding variants in VTE etiology and sheds new light on its risk stratification.


Assuntos
Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Fatores de Risco , Fatores de Coagulação Sanguínea/genética , Exoma , Estudo de Associação Genômica Ampla , Fatores de Processamento de Serina-Arginina/genética , Fosfoproteínas/genética
4.
Nat Hum Behav ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589703

RESUMO

While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.

5.
Sleep Med ; 117: 162-168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547593

RESUMO

BACKGROUND AND OBJECTIVE: Rumination, a common factor of chronic insomnia disorder (CID) caused by cognitive-emotional arousal, is associated with an increased amount of rapid eye movement (REM) sleep. However, the specific subtypes, such as phasic REM and tonic REM, that contribute to the increased REM sleep have not been reported. This study aimed to determine the association between rumination and different REM sleep subtypes in patients with CID. METHODS: This study enrolled 35 patients with CID and 27 age- and sex-matched healthy controls. The Immersion-Rumination Questionnaire evaluated participants' rumination, and the Insomnia Severity Index was used to assess insomnia severity. Finally, polysomnography was used to monitor objective sleep quality and quantification of different types of REM. RESULTS: The CID patients had higher rumination scores than the healthy controls. They had a shorter REM sleep duration, less phasic REM, a lower percentage of phasic REM time, and a higher percentage of tonic REM time. Spectral analysis revealed that the patients affected by insomnia had higher ß power during REM sleep, higher ß and σ power during phasic REM sleep, and higher ß, and γ power during tonic REM sleep. Partial correlation analysis showed that rumination in the CID patients correlated negatively with the duration of phasic REM sleep. Additionally, rumination correlated negatively with δ power in REM sleep and positively with ß power in REM sleep, tonic REM sleep, phasic REM sleep, N3and N2 sleep in the patients with CID. CONCLUSION: The CID patients had stronger rumination, reduced total and phasic REM sleep, and the stronger rumination was, the shorter phasic REM was and the higher fast (ß) wave power in REM sleep.


Assuntos
Transtorno do Comportamento do Sono REM , Distúrbios do Início e da Manutenção do Sono , Humanos , Sono REM , Distúrbios do Início e da Manutenção do Sono/complicações , Polissonografia , Nível de Alerta , Transtorno do Comportamento do Sono REM/complicações
6.
Sleep Med ; 117: 177-183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554533

RESUMO

OBJECTIVES: To explore the relationship between nocturnal levels of stress-related hormones and different sleep-wake states in chronic insomnia disorder (CID) patients. METHODS: Thirty-three CID patients and 34 good sleepers were enrolled and completed assessment of sleep log, Pittsburgh Sleep Quality Index and Insomnia Severity Index. During a-overnight polysomnography monitoring, the patients' vein bleeds were continually collected at different time points (pre-sleep, deep-sleep, 5-min or 30-min waking, and morning waking-up). The control subjects' bleeds were collected only at 22:00 and morning waking-up. The serum hormones were detected using enzyme-linked immunosorbent assay. RESULTS: Compared with at pre-sleep, the level of cortisol was significantly higher at morning waking-up respectively in two-group subjects (Ps < 0.001), with insignificant inter-group differences in cortisol, corticotropin releasing hormone and copeptin at the two time-points. In the patients, the nocturnal secretion curves of three hormones were similar, with the highest concentration at morning waking-up, followed by 30-min waking, 5-min waking, pre-sleep, and deep-sleep. The patients' cortisol (Z = 79.192, P < 0.001) and copeptin (Z = 12.333, P = 0.015) levels were statistically different at different time-points, with higher cortisol at morning waking-up relative to deep-sleep, pre-sleep and 5-min waking (Ps < 0.05), and at 30-min waking relative to deep-sleep and pre-sleep (Ps < 0.05), and higher copeptin at morning waking-up relative to deep-sleep (P < 0.05). CONCLUSIONS: In CID, the nocturnal wakes were instantaneously accompanied by high level, and deep sleep was accompanied by the lowest levels, of stress-related hormones, especially in cortisol, supporting the insomniac hypothesis of increased nocturnal pulse-release of cortisol.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Humanos , Projetos Piloto , Hidrocortisona , Sono , Polissonografia
7.
J Biochem Mol Toxicol ; 38(4): e23698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501767

RESUMO

Accumulating evidence confirms that sleep insufficiency is a high risk factor for cognitive impairment, which involves inflammation and synaptic dysfunction. Resveratrol, an agonist of the Sirt1, has demonstrated anti-inflammation and neuroprotective effects in models of Alzheimer's disease, Parkinson's disease, and schizophrenia. However, the beneficial effects of resveratrol on sleep deprivation-induced cognitive deficits and its underlying molecular mechanisms are unclear. In the present study, thirty-two male C57BL/6 J mice were randomly divided into a Control+DMSO group, Control+Resveratrol group, SD+DMSO group, and SD+Resveratrol group. The mice in the SD+Resveratrol group underwent 5 days of sleep deprivation after pretreatment with resveratrol (50 mg/kg) for 2 weeks, while the mice in the SD+DMSO group only underwent sleep deprivation. After sleep deprivation, we evaluated spatial learning and memory function using the Morris water maze test. We used general molecular biology techniques to detect changes in levels of pro-inflammatory cytokines and Sirt1/miR-134 pathway-related synaptic plasticity proteins. We found that resveratrol significantly reversed sleep deprivation-induced learning and memory impairment, elevated interleukin-1ß, interleukin-6, and tumor necrosis factor-α levels, and decreased brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin levels by activating the Sirt1/miR-134 pathway. In conclusion, resveratrol is a promising agent for preventing sleep deprivation-induced cognitive dysfunction by reducing pro-inflammatory cytokines and improving synaptic function via the Sirt1/miR-134 pathway.


Assuntos
Disfunção Cognitiva , MicroRNAs , Masculino , Camundongos , Animais , Resveratrol/farmacologia , Privação do Sono/complicações , Privação do Sono/metabolismo , Sirtuína 1/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Hipocampo/metabolismo , MicroRNAs/metabolismo , Citocinas/metabolismo , Cognição
8.
Nat Hum Behav ; 8(4): 779-793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182882

RESUMO

Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.


Assuntos
Estudo de Associação Genômica Ampla , Hipotálamo , Humanos , Hipotálamo/metabolismo , Hipotálamo/diagnóstico por imagem , Masculino , Feminino , Adulto , Transtornos Mentais/genética , Proteínas ADAMTS/genética , Pessoa de Meia-Idade , Análise da Randomização Mendeliana
9.
J Neuroimmunol ; 386: 578252, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086228

RESUMO

Growing evidence indicates that neuroinflammation plays a critical role in anxiety, depression, and cognitive impairment. Sleep loss disrupts the host's immune balance and increases neuroinflammation. This study explored whether chronic sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression, and cognitive impairment and assessed the underlying mechanisms. Lipopolysaccharide (250 µg/kg) was administered to adult mice for 9 days, accompanied with daily intermittent sleep deprivation from 12:00 to 18:00 by using an activity wheel. Anxiety, depression, and cognitive function were evaluated using a task battery consisting of an open field, elevated plus maze, tail suspension, forced swimming, and Morris water maze tests. The levels of pro-inflammatory cytokines and synaptic plasticity-associated proteins were examined by enzyme-linked immunosorbent assay and western blot, respectively. The results showed that lipopolysaccharide increased anxiety- and depression-like behaviors, impaired cognitive function, uprelated interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and decreased brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), and synaptophysin (SYN), which were aggravated by chronic sleep deprivation. These results suggest that chronic sleep deprivation exerted adverse effects on lipopolysaccharide-induced anxiety, depression, and cognitive impairment, which was associated with changes in pro-inflammatory cytokines and synaptic plasticity associated proteins.


Assuntos
Disfunção Cognitiva , Citocinas , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Privação do Sono/complicações , Doenças Neuroinflamatórias , Disfunção Cognitiva/induzido quimicamente , Ansiedade/induzido quimicamente , Plasticidade Neuronal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Interleucina-6/metabolismo , Hipocampo
10.
Mol Neurobiol ; 61(3): 1593-1604, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37736795

RESUMO

Previous in vitro and post-mortem studies have reported the role of inflammation in neurodegenerative disorders. However, the association between inflammation and brain structure in vivo and the transcriptome-driven functional basis with relevance to neurodegenerative disorders remains elusive. The aim of the present study is to identify the association among inflammation, brain structure, and neurodegenerative disorders at genetic and transcriptomic levels. Genetic variants associated with inflammatory cytokines were selected from the latest and largest genome-wide association studies of European ancestry. Neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and dementia with Lewy bodies (DLB) and brain structure imaging measures were selected as the outcomes. Two-sample Mendelian randomization analyses were conducted to identify the causal associations. Single-nucleus transcriptome data of the occipitotemporal cortex was further analyzed to identify the differential expressed genes in AD, which were tested for biological processes and protein interaction network. MR analysis indicated that genetically predicted TREM2 and sTREM2 were significantly associated with AD (TREM2: z-score = -9.088, p-value = 1.02 × 10-19; sTREM2: z-score = -7.495, p-value = 6.61 × 10-14). The present study found no evidence to support the causal associations between other inflammatory cytokines and the risks of AD, PD, ALS, or DLB. Genetically predicted TREM2 was significantly associated with the cortical thickness of inferior temporal (z-score = -4.238, p-value = 2.26 × 10-5) and pole temporal (z-score = -4.549, p-value = 5.40 × 10-6). In the occipitotemporal cortex samples, microglia were the main source of TREM2 gene and showed increasing expression of genes associated with inflammation and immunity. The present study has leveraged genetic and transcriptomic data to identify the association among TREM2, temporal lobe, and AD and the underlying cellular and molecular basis, thus providing a new perspective on the role of TREM2 in AD and insights into the complex associations among inflammation, brain structure, and neurodegenerative disorders, particularly AD.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Encefalite , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Neurodegenerativas/genética , Doença de Parkinson/genética , Encéfalo/metabolismo , Inflamação/genética , Citocinas/genética , Citocinas/metabolismo
11.
Nat Hum Behav ; 8(1): 164-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857874

RESUMO

The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.


Assuntos
Doença de Alzheimer , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
12.
Front Behav Neurosci ; 17: 1271653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074521

RESUMO

Maternal exposure to inflammation may represent a major risk factor for neuropsychiatric disorders with associated cognitive dysfunction in offspring in later life. Growing evidence has suggested that resveratrol exerts a beneficial effect on cognitive impairment via its anti-inflammatory and antioxidant properties and by ameliorating synaptic dysfunction. However, how resveratrol affects maternal immune activation-induced cognitive dysfunction and the underlying mechanisms are unclear. In the present study, pregnant dams were given an intraperitoneal injection of lipopolysaccharide (LPS; 50 µg/kg) on gestational day 15. Subsequently, the offspring mice were treated or not with resveratrol (40 mg/kg) from postnatal day (PND) 60 to PND 88. Male offspring were selected for the evaluation of cognitive function using the Morris water maze test. The hippocampal levels of pro-inflammatory cytokines were examined by ELISA. The mRNA and protein levels of sirtuin-1 (SIRT1), brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95), and synaptophysin (SYP) were determined by RT-qPCR and western blot, respectively. The results showed that male offspring mice exposed to LPS in utero exhibited learning and memory impairment. Additionally, the levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) were increased while those of SIRT1, BDNF, PSD-95, and SYP were decreased in male offspring of LPS-treated mothers. Treatment with resveratrol reversed cognitive impairment and attenuated the increase in the levels of pro-inflammatory cytokines induced by maternal immune activation in the offspring mice. Furthermore, resveratrol reversed the deleterious effects of maternal immune activation on SIRT1, BDNF, PSD-95, and SYP levels in the hippocampus. Collectively, our results suggested that resveratrol can effectively improve learning and memory impairment induced by maternal immune activation via the modulation of inflammation and synaptic dysfunction.

13.
BMC Psychiatry ; 23(1): 859, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985980

RESUMO

OBJECTIVE: Investigate the sleep characteristics of patients with obstructive sleep apnea syndrome (OSAS) comorbidity with panic disorder (PD), exploring its potential association with serum C-reactive protein (CRP) levels. PATIENTS AND METHODS: Fifty-four patients (25 OSAS patients with PD and 29 without PD) and 25 healthy controls (HCs) were included. The Self-rating anxiety scale (SAS), self-rating depression scale (SDS), and Pittsburgh sleep quality index (PSQI) were used to assess the mood and sleep quality of the subjects. All patients had circulating CRP levels and polysomnography was performed. RESULTS: OSAS with PD had higher SAS, SDS, PSQI than the OSAS without PD. Compared to OSAS without PD, OSAS with PD had higher percentage of non- rapid eye movement sleep 1 and 2 (N1 and N2%), sleep latency, and a lower percentage of rapid eye movement sleep (REM%). Respiratory-related microarousal index, AHI, and time below 90% oxygen saturation (T90) were low, and the lowest oxygen saturation (LO2) was high. Serum CRP levels in OSAS patients with PD were lower than that in OSAS patients without PD, but higher than that in HCs. In OSAS patients with PD, serum CRP levels were negatively correlated with wake time after sleep onset and SAS scores but positively correlated with sleep efficiency and N2%. Serum CRP levels were positively correlated with T90 and negatively correlated with LO2. CONCLUSION: OSAS patients with PD had worse sleep quality, less severe OSAS, and low serum CRP levels. Serum CRP levels in OSAS patients with PD were associated with poorer sleep quality and duration of hypoxia rather than AHI.


Assuntos
Proteína C-Reativa , Transtorno de Pânico , Apneia Obstrutiva do Sono , Proteína C-Reativa/análise , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/patologia , Humanos , Transtorno de Pânico/sangue , Respiração , Qualidade do Sono , Inflamação/metabolismo , Inflamação/patologia , Masculino , Feminino , Pessoa de Meia-Idade
14.
Aging Cell ; 22(12): e13995, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723992

RESUMO

Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.


Assuntos
Doenças Cardiovasculares , Força da Mão , Humanos , Pré-Escolar , Envelhecimento/genética , Encéfalo , Avaliação de Resultados em Cuidados de Saúde
15.
Front Behav Neurosci ; 17: 1226300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560531

RESUMO

Objective: Studies have suggested that prenatal exposure to inflammation increases the risk of neuropsychiatric disorders, including anxiety, depression, and cognitive dysfunction. Because of anatomical and hormonal alterations, pregnant women frequently experience sleep dysfunction, which can enhance the inflammatory response. The aim of this study was to explore the effects of maternal sleep deprivation on prenatal inflammation exposure-induced behavioral phenotypes in offspring and identify the associated mechanisms. Methods: Pregnant mice received an intraperitoneal injection of lipopolysaccharide (LPS) on gestational day 15 and were subsequently subjected to sleep deprivation during gestational days 15-21. Anxiety-like behavior was evaluated by the open field test and the elevated plus maze test. Depression-like behavior was assessed by the tail suspension test and the forced swimming test. Cognitive function was determined using the Morris water maze test. The levels of markers of inflammation and synaptic function were examined employing general molecular biological techniques. Results: The results showed that prenatal exposure to LPS resulted in anxiety- and depression-like symptoms and learning and memory deficits, and these effects were exacerbated by maternal sleep deprivation. Furthermore, maternal sleep deprivation aggravated the prenatal LPS exposure-induced increase in the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and decrease in the levels of postsynaptic density-95 and synaptophysin in the hippocampus. Discussion: Collectively, these results suggested that maternal sleep deprivation exacerbates anxiety, depression, and cognitive impairment induced by prenatal LPS exposure, effects that were associated with an inflammatory response and synaptic dysfunction.

16.
J Affect Disord ; 335: 418-430, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164063

RESUMO

BACKGROUND: The corpus callosum (CC) is the main structure transferring information between the cerebral hemispheres. Although previous large-scale genome-wide association study (GWAS) has illustrated the genetic architecture of white matter integrity of CC, CC volume is less stressed. METHODS: Using MRI data from 33,861 individuals in UK Biobank, we conducted univariate and multivariate GWAS for CC fractional anisotropy (FA) and volume with PLINK 2.0 and MOSTest. All discovered SNPs in the multivariate framework were functionally annotated in FUMA v1.3.8. In the meanwhile, a series of gene property analyses was conducted simultaneously. In addition, we estimated genetic relationship between CC metrics and other neuropsychiatric traits and diseases. RESULTS: We identified a total of 36 and 82 significant genomic loci for CC FA and volume (P < 5 × 10-8). And 53 and 27 genes were respectively mapped by four mapping strategies. For CC volume, gene-set analysis revealed pathways mainly relating to cell migration; cell-type analysis found the top enrichment in neuroglia while for CC FA in GABAergic neurons. Furthermore, we found a lot of genetic overlap and shared loci between CC FA and volume and common neuropsychiatric diseases. DISCUSSION: Collectively, this study helps to better understand the genetic architecture of whole CC and CC subregions. However, the way to divide CC FA and volume in our study restricts the interpretations of our results. Future work will be needed to pay attention to the genetic structure of white matter volume, and an appropriate division of CC may help to better understand CC structure.


Assuntos
Corpo Caloso , Substância Branca , Humanos , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Anisotropia
17.
Front Aging Neurosci ; 15: 1177250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168717

RESUMO

Early-life stress disrupts central nervous system development and increases the risk of neuropsychiatric disorder in offspring based on rodent studies. Maternal sleep deprivation (MSD) in rodents has also been associated with depression and cognitive decline in adult offspring. However, it is not known whether these issues persist into old age. Environmental enrichment is a non-pharmacological intervention with proven benefits in improving depression and cognitive impairment; however, it is unclear whether these benefits hold for aging mice following MSD exposure. The aim of this study was to explore the effects of MSD on depression and cognition in elderly offspring CD-1 mice and to determine whether long-term environmental enrichment could alleviate these effects by improving neuroinflammation and synaptic plasticity. The offspring mice subjected to MSD were randomly assigned to either a standard environment or an enriched environment. At 18 months of age, the forced swimming and tail suspension tests were used to evaluated depression-like behaviors, and the Morris water maze test was used to evaluate cognitive function. The expression levels of hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins were also measured. MSD increased depression-like behaviors and impaired cognition function in aging CD-1 offspring mice. These effects were accompanied by upregulated interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α expression, and downregulated brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin expression in the hippocampus. All of these changes were reversed by long-term exposure to an enriched environment. These findings suggest that MSD exerts long-term effects on the behaviors of offspring in mice, leading to depression and cognitive impairment in older age. Importantly, long-term environmental enrichment could counteract the behavior difficulties induced by MSD through improving hippocampal proinflammatory cytokines and synaptic plasticity-associated proteins.

18.
Transl Psychiatry ; 13(1): 180, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236919

RESUMO

The fornix is a white matter bundle located in the center of the hippocampaldiencephalic limbic circuit that controls memory and executive functions, yet its genetic architectures and involvement in brain disorders remain largely unknown. We carried out a genome-wide association analysis of 30,832 UK Biobank individuals of the six fornix diffusion magnetic resonance imaging (dMRI) traits. The post-GWAS analysis allowed us to identify causal genetic variants in phenotypes at the single nucleotide polymorphisms (SNP), locus, and gene levels, as well as genetic overlap with brain health-related traits. We further generalized our GWAS in adolescent brain cognitive development (ABCD) cohort. The GWAS identified 63 independent significant variants within 20 genomic loci associated (P < 8.33 × 10-9) with the six fornix dMRI traits. Geminin coiled-coil domain containing (GMNC) and NUAK family SNF1-like kinase 1 (NUAK1) gene were highlighted, which were found in UKB and replicated in ABCD. The heritability of the six traits ranged from 10% to 27%. Gene mapping strategies identified 213 genes, where 11 were supported by all of four methods. Gene-based analyses revealed pathways relating to cell development and differentiation, with astrocytes found to be significantly enriched. Pleiotropy analyses with eight neurological and psychiatric disorders revealed shared variants, especially with schizophrenia under the conjFDR threshold of 0.05. These findings advance our understanding of the complex genetic architectures of fornix and their relevance in neurological and psychiatric disorders.


Assuntos
Esquizofrenia , Substância Branca , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Substância Branca/diagnóstico por imagem , Fenótipo , Esquizofrenia/genética , Polimorfismo de Nucleotídeo Único , Proteínas Quinases/genética , Proteínas Repressoras/genética
19.
Brain Behav ; 13(6): e3018, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37073496

RESUMO

INTRODUCTION: Growing evidence clearly demonstrates that maternal rodents exposure to sleep deprivation (SD) during late pregnancy impairs learning and memory in their offspring. Epigenetic mechanisms, particularly histone acetylation, are known to be involved in synaptic plasticity, learning, and memory. We hypothesize that the cognitive decline induced by SD during late pregnancy is associated with histone acetylation dysfunction, and this effect could be reversed by an enriched environment (EE). METHODS: In the present study, pregnant CD-1 mice were exposed to SD during the third trimester of pregnancy. After weaning, all offspring were randomly assigned to two subgroups in either a standard environment or an EE. When offspring were 3 months old, the Morris water maze was used to evaluate hippocampal-dependent learning and memory ability. Molecular biological techniques, including western blot and real-time fluorescence quantitative polymerase chain reaction, were used to examine the histone acetylation pathway and synaptic plasticity markers in the hippocampus of offspring. RESULTS: The results showed that the following were all reversed by EE treatment: maternal SD (MSD)-induced cognitive deficits including spatial learning and memory; histone acetylation dysfunction including increased histone deacetylase 2 (HDAC2) and decreased histone acetyltransferase (CBP), and the acetylation levels of H3K9 and H4K12; synaptic plasticity dysfunction including decreased brain-derived neurotrophic factor; and postsynaptic density protein-95. CONCLUSIONS: Our findings suggested that MSD could damage learning ability and memory in offspring via the histone acetylation pathway. This effect could be reversed by EE treatment.


Assuntos
Disfunção Cognitiva , Histonas , Feminino , Animais , Gravidez , Camundongos , Histonas/metabolismo , Privação do Sono/complicações , Privação do Sono/metabolismo , Acetilação , Disfunção Cognitiva/metabolismo , Aprendizagem Espacial , Hipocampo/metabolismo , Plasticidade Neuronal , Cognição
20.
Transl Psychiatry ; 13(1): 90, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906575

RESUMO

The amygdala is a crucial interconnecting structure in the brain that performs several regulatory functions, yet its genetic architectures and involvement in brain disorders remain largely unknown. We carried out the first multivariate genome-wide association study (GWAS) of amygdala subfield volumes in 27,866 UK Biobank individuals. The whole amygdala was segmented into nine nuclei groups using Bayesian amygdala segmentation. The post-GWAS analysis allowed us to identify causal genetic variants in phenotypes at the SNP, locus, and gene levels, as well as genetic overlap with brain health-related traits. We further generalized our GWAS in Adolescent Brain Cognitive Development (ABCD) cohort. The multivariate GWAS identified 98 independent significant variants within 32 genomic loci associated (P < 5 × 10-8) with amygdala volume and its nine nuclei. The univariate GWAS identified significant hits for eight of the ten volumes, tagging 14 independent genomic loci. Overall, 13 of the 14 loci identified in the univariate GWAS were replicated in the multivariate GWAS. The generalization in ABCD cohort supported the GWAS results with the 12q23.2 (RNA gene RP11-210L7.1) being discovered. All of these imaging phenotypes are heritable, with heritability ranging from 15% to 27%. Gene-based analyses revealed pathways relating to cell differentiation/development and ion transporter/homeostasis, with the astrocytes found to be significantly enriched. Pleiotropy analyses revealed shared variants with neurological and psychiatric disorders under the conjFDR threshold of 0.05. These findings advance our understanding of the complex genetic architectures of amygdala and their relevance in neurological and psychiatric disorders.


Assuntos
Encefalopatias , Estudo de Associação Genômica Ampla , Adolescente , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Teorema de Bayes , Tonsila do Cerebelo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA