Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(4): e0012120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648230

RESUMO

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.


Assuntos
Anticorpos Antivirais , Febre de Chikungunya , Vírus Chikungunya , Genoma Viral , Vacinas Atenuadas , Vacinas Virais , Replicação Viral , Animais , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/administração & dosagem , Camundongos , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Anticorpos Antivirais/sangue , Feminino , Humanos , Chlorocebus aethiops , Anticorpos Neutralizantes/sangue , Células Vero , Camundongos Endogâmicos BALB C
2.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745520

RESUMO

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. There is no approved vaccine and CHIKV is considered a priority pathogen by CEPI and WHO. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo . Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome for improved safety. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. To secure safety profile, attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.

3.
J Neuropathol Exp Neurol ; 82(7): 620-630, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37087107

RESUMO

APOE is the largest genetic risk factor for late-onset Alzheimer disease (AD) with E4 conferring an increased risk for AD compared to E3. The ApoE protein can impact diverse pathways in the brain including neuroinflammation but the precise impact of ApoE isoforms on inflammation remains unknown. As microglia are a primary source of neuroinflammation, this study determined whether ApoE isoforms have an impact on microglial morphology and activation using immunohistochemistry and digital analyses. Analysis of ionized calcium-binding adaptor molecule 1 (Iba1) immunoreactivity indicated greater microglial activation in both the hippocampus and superior and middle temporal gyrus (SMTG) in dementia participants versus non-demented controls. Further, only an increase in activation was seen in E3-Dementia participants in the entire SMTG, whereas in the grey matter of the SMTG, only a diagnosis of dementia impacted activation. Specific microglial morphologies showed a reduction in ramified microglia in the dementia group. For rod microglia, a reduction was seen in E4-Control patients in the hippocampus whereas in the SMTG an increase was seen in E4-Dementia patients. These findings suggest an association between ApoE isoforms and microglial morphologies and highlight the importance of considering ApoE isoforms in studies of AD pathology.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Microglia/patologia , Doenças Neuroinflamatórias , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Genótipo , Isoformas de Proteínas/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo
4.
Alzheimers Dement ; 19(6): 2677-2696, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975090

RESUMO

INTRODUCTION: At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS: The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION: This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Microglia/patologia , Inflamação , Apolipoproteínas E/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA