Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 629(8011): 376-383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658749

RESUMO

From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.


Assuntos
Arqueologia , DNA Antigo , Características da Família , Pradaria , Linhagem , Adulto , Feminino , Humanos , Masculino , Arqueologia/métodos , Ásia/etnologia , Cemitérios/história , Consanguinidade , DNA Antigo/análise , Europa (Continente)/etnologia , Características da Família/etnologia , Características da Família/história , Genômica , História Medieval , Política , Adolescente , Adulto Jovem
2.
Nature ; 620(7973): 358-365, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468624

RESUMO

Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. 1-3) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. 4,5). The period between these events saw new economies emerging on the basis of key innovations, including metallurgy, wheel and wagon and horse domestication6-9. However, what happened between the demise of the Copper Age settlements around 4250 BC and the expansion of pastoralists remains poorly understood. To address this question, we analysed genome-wide data from 135 ancient individuals from the contact zone between southeastern Europe and the northwestern Black Sea region spanning this critical time period. While we observe genetic continuity between Neolithic and Copper Age groups from major sites in the same region, from around 4500 BC on, groups from the northwestern Black Sea region carried varying amounts of mixed ancestries derived from Copper Age groups and those from the forest/steppe zones, indicating genetic and cultural contact over a period of around 1,000 years earlier than anticipated. We propose that the transfer of critical innovations between farmers and transitional foragers/herders from different ecogeographic zones during this early contact was integral to the formation, rise and expansion of pastoralist groups around 3300 BC.


Assuntos
Agricultura , Civilização , Pradaria , Animais , Humanos , Agricultura/economia , Agricultura/história , Ásia , Civilização/história , Domesticação , Europa (Continente) , Fazendeiros/história , História Antiga , Cavalos , Comportamento Sedentário/história , Invenções/economia , Invenções/história
3.
Nat Ecol Evol ; 7(2): 290-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646948

RESUMO

The Neolithic and Bronze Ages were highly transformative periods for the genetic history of Europe but for the Aegean-a region fundamental to Europe's prehistory-the biological dimensions of cultural transitions have been elucidated only to a limited extent so far. We have analysed newly generated genome-wide data from 102 ancient individuals from Crete, the Greek mainland and the Aegean Islands, spanning from the Neolithic to the Iron Age. We found that the early farmers from Crete shared the same ancestry as other contemporaneous Neolithic Aegeans. In contrast, the end of the Neolithic period and the following Early Bronze Age were marked by 'eastern' gene flow, which was predominantly of Anatolian origin in Crete. Confirming previous findings for additional Central/Eastern European ancestry in the Greek mainland by the Middle Bronze Age, we additionally show that such genetic signatures appeared in Crete gradually from the seventeenth to twelfth centuries BC, a period when the influence of the mainland over the island intensified. Biological and cultural connectedness within the Aegean is also supported by the finding of consanguineous endogamy practiced at high frequencies, unprecedented in the global ancient DNA record. Our results highlight the potential of archaeogenomic approaches in the Aegean for unravelling the interplay of genetic admixture, marital and other cultural practices.


Assuntos
DNA Antigo , Migração Humana , Humanos , Migração Humana/história , Europa (Continente) , Grécia , Genoma
4.
Nature ; 606(7915): 718-724, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705810

RESUMO

The origin of the medieval Black Death pandemic (AD 1346-1353) has been a topic of continuous investigation because of the pandemic's extensive demographic impact and long-lasting consequences1,2. Until now, the most debated archaeological evidence potentially associated with the pandemic's initiation derives from cemeteries located near Lake Issyk-Kul of modern-day Kyrgyzstan1,3-9. These sites are thought to have housed victims of a fourteenth-century epidemic as tombstone inscriptions directly dated to 1338-1339 state 'pestilence' as the cause of death for the buried individuals9. Here we report ancient DNA data from seven individuals exhumed from two of these cemeteries, Kara-Djigach and Burana. Our synthesis of archaeological, historical and ancient genomic data shows a clear involvement of the plague bacterium Yersinia pestis in this epidemic event. Two reconstructed ancient Y. pestis genomes represent a single strain and are identified as the most recent common ancestor of a major diversification commonly associated with the pandemic's emergence, here dated to the first half of the fourteenth century. Comparisons with present-day diversity from Y. pestis reservoirs in the extended Tian Shan region support a local emergence of the recovered ancient strain. Through multiple lines of evidence, our data support an early fourteenth-century source of the second plague pandemic in central Eurasia.


Assuntos
Peste , Yersinia pestis , Arqueologia , Cemitérios , DNA Antigo/análise , DNA Bacteriano/análise , História Medieval , Humanos , Quirguistão/epidemiologia , Pandemias/história , Filogenia , Peste/epidemiologia , Peste/história , Peste/microbiologia , Yersinia pestis/classificação , Yersinia pestis/patogenicidade
5.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35366416

RESUMO

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Assuntos
Povo Asiático , DNA Antigo , Genética Populacional , Povo Asiático/genética , Genoma , História Antiga , Migração Humana/história , Humanos , Enxofre
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34597392

RESUMO

Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations.


Assuntos
Adaptação Fisiológica , Seleção Genética , Genótipo , Haplótipos , Humanos , Herança Multifatorial
7.
Science ; 374(6564): 182-188, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618559

RESUMO

Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.


Assuntos
Doenças Transmissíveis Emergentes/história , Evolução Molecular , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Hepatite B/história , América , Ásia , Povo Asiático , Doenças Transmissíveis Emergentes/virologia , Europa (Continente) , Variação Genética , Genômica , Hepatite B/virologia , História Antiga , Humanos , Paleontologia , Filogenia , População Branca , Indígena Americano ou Nativo do Alasca
8.
Sci Adv ; 7(39): eabi7673, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559560

RESUMO

The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European­associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non­Indo-European­speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations.

9.
Ann Hum Biol ; 48(3): 191-202, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34459345

RESUMO

CONTEXT: The peopling of Europe by modern humans is a widely debated topic in the field of modern and ancient genomics. While several recent syntheses have focussed on this topic, little has been discussed about the genetic history of populations in the continent's surrounding regions. OBJECTIVE: We explore genetic transformations in three key areas that played an essential role in the formation of the European genetic landscape through time, focussing on the periods spanning from the Epipalaeolithic/Mesolithic and up until the Iron Age. METHODS: We review published ancient genomic studies and integrate the associated data to provide a quantification and visualisation of major trends in the population histories of the Near East, the western Eurasian Steppe and North East Europe. RESULTS: We describe cross-regional as well as localised prehistoric demographic shifts and discuss potential research directions while highlighting geo-temporal gaps in the data. CONCLUSION: In recent years, archaeogenetic studies have contributed to the understanding of human genetic diversity through time in regions located at the doorstep of Europe. Further studies focussing on these areas will allow for a better characterisation of genetic shifts and regionally-specific patterns of admixture across western Eurasia.


Assuntos
DNA Antigo/análise , Fluxo Gênico , Genoma Humano , Migração Humana , Animais , Ásia , Europa (Continente) , Genômica , Humanos , Oriente Médio
10.
PLoS One ; 16(6): e0241883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191795

RESUMO

The Middle and Late Bronze Age, a period roughly spanning the 2nd millennium BC (ca. 2000-1200 BC) in the Near East, is frequently referred to as the first 'international age', characterized by intense and far-reaching contacts between different entities from the eastern Mediterranean to the Near East and beyond. In a large-scale tandem study of stable isotopes and ancient DNA of individuals excavated at Tell Atchana (Alalakh, located in Hatay, Turkey), we explored the role of mobility at the capital of a regional kingdom, named Mukish during the Late Bronze Age, which spanned the Amuq Valley and some areas beyond. We generated strontium and oxygen isotope data from dental enamel for 53 individuals and 77 individuals, respectively, and added ancient DNA data of 10 newly sequenced individuals to a dataset of 27 individuals published in 2020. Additionally, we improved the DNA coverage of one individual from this 2020 dataset. The DNA data revealed a very homogeneous gene pool. This picture of an overwhelmingly local ancestry was consistent with the evidence of local upbringing in most of the individuals indicated by the isotopic data, where only five were found to be non-local. High levels of contact, trade, and exchange of ideas and goods in the Middle and Late Bronze Ages, therefore, seem not to have translated into high levels of individual mobility detectable at Tell Atchana.


Assuntos
Genômica , Migração Humana , Isótopos , Arqueologia , História Antiga , Humanos , Turquia
11.
Evol Appl ; 14(2): 297-313, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664777

RESUMO

Adoption of diets based on some cereals, especially on rice, signified an iconic change in nutritional habits for many Asian populations and a relevant challenge for their capability to maintain glucose homeostasis. Indeed, rice shows the highest carbohydrates content and glycemic index among the domesticated cereals and its usual ingestion represents a potential risk factor for developing insulin resistance and related metabolic diseases. Nevertheless, type 2 diabetes and obesity epidemiological patterns differ among Asian populations that rely on rice as a staple food, with higher diabetes prevalence and increased levels of central adiposity observed in people of South Asian ancestry rather than in East Asians. This may be at least partly due to the fact that populations from East Asian regions where wild rice or other cereals such as millet have been already consumed before their cultivation and/or were early domesticated have relied on these nutritional resources for a period long enough to have possibly evolved biological adaptations that counteract their detrimental side effects. To test such a hypothesis, we compared adaptive evolution of these populations with that of control groups from regions where the adoption of cereal-based diets occurred many thousand years later and which were identified from a genome-wide dataset including 2,379 individuals from 124 East Asian and South Asian populations. This revealed selective sweeps and polygenic adaptive mechanisms affecting functional pathways involved in fatty acids metabolism, cholesterol/triglycerides biosynthesis from carbohydrates, regulation of glucose homeostasis, and production of retinoic acid in Chinese Han and Tujia ethnic groups, as well as in people of Korean and Japanese ancestry. Accordingly, long-standing rice- and/or millet-based diets have possibly contributed to trigger the evolution of such biological adaptations, which might represent one of the factors that play a role in mitigating the metabolic risk of these East Asian populations.

12.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771866

RESUMO

The Scythians were a multitude of horse-warrior nomad cultures dwelling in the Eurasian steppe during the first millennium BCE. Because of the lack of first-hand written records, little is known about the origins and relations among the different cultures. To address these questions, we produced genome-wide data for 111 ancient individuals retrieved from 39 archaeological sites from the first millennia BCE and CE across the Central Asian Steppe. We uncovered major admixture events in the Late Bronze Age forming the genetic substratum for two main Iron Age gene-pools emerging around the Altai and the Urals respectively. Their demise was mirrored by new genetic turnovers, linked to the spread of the eastern nomad empires in the first centuries CE. Compared to the high genetic heterogeneity of the past, the homogenization of the present-day Kazakhs gene pool is notable, likely a result of 400 years of strict exogamous social rules.

13.
BMC Biol ; 18(1): 51, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438927

RESUMO

BACKGROUND: The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS: We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS: We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.


Assuntos
Evolução Molecular , Variação Genética , Genoma Humano , Arqueologia , DNA Antigo/análise , Humanos , Itália , População Branca
14.
J Anthropol Sci ; 96: 189-208, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31782749

RESUMO

Human populations living at high altitude evolved a number of biological adjustments to cope with a challenging environment characterised especially by reduced oxygen availability and limited nutritional resources. This condition may also affect their gut microbiota composition. Here, we explored the impact of exposure to such selective pressures on human gut microbiota by considering different ethnic groups living at variable degrees of altitude: the high-altitude Sherpa and low-altitude Tamang populations from Nepal, the high-altitude Aymara population from Bolivia, as well as a low-altitude cohort of European ancestry, used as control. We thus observed microbial profiles common to the Sherpa and Aymara, but absent in the low-altitude cohorts, which may contribute to the achievement of adaptation to high-altitude lifestyle and nutritional conditions. The collected evidences suggest that microbial signatures associated to these rural populations may enhance metabolic functions able to supply essential compounds useful for the host to cope with high altitude-related physiological changes and energy demand. Therefore, these results add another valuable piece of the puzzle to the understanding of the beneficial effects of symbiosis between microbes and their human host even from an evolutionary perspective.


Assuntos
Adaptação Fisiológica/fisiologia , Dieta/estatística & dados numéricos , Microbioma Gastrointestinal/fisiologia , Estilo de Vida/etnologia , Montanhismo/fisiologia , Adulto , Altitude , Evolução Biológica , Bolívia/etnologia , Feminino , Humanos , Masculino , Nepal/etnologia , Adulto Jovem
15.
Curr Biol ; 29(23): 3974-3986.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735679

RESUMO

The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , População Negra/genética , Fluxo Gênico , Genoma Humano , População Branca/genética , Região do Caribe , América Central , Humanos , América do Norte , América do Sul
16.
Mol Biol Evol ; 36(6): 1254-1269, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30895292

RESUMO

Extensive European and African admixture coupled with loss of Amerindian lineages makes the reconstruction of pre-Columbian history of Native Americans based on present-day genomes extremely challenging. Still open questions remain about the dispersals that occurred throughout the continent after the initial peopling from the Beringia, especially concerning the number and dynamics of diffusions into South America. Indeed, if environmental and historical factors contributed to shape distinct gene pools in the Andes and Amazonia, the origins of this East-West genetic structure and the extension of further interactions between populations residing along this divide are still not well understood. To this end, we generated new high-resolution genome-wide data for 229 individuals representative of one Central and ten South Amerindian ethnic groups from Mexico, Peru, Bolivia, and Argentina. Low levels of European and African admixture in the sampled individuals allowed the application of fine-scale haplotype-based methods and demographic modeling approaches. These analyses revealed highly specific Native American genetic ancestries and great intragroup homogeneity, along with limited traces of gene flow mainly from the Andes into Peruvian Amazonians. Substantial amount of genetic drift differentially experienced by the considered populations underlined distinct patterns of recent inbreeding or prolonged isolation. Overall, our results support the hypothesis that all non-Andean South Americans are compatible with descending from a common lineage, while we found low support for common Mesoamerican ancestors of both Andeans and other South American groups. These findings suggest extensive back-migrations into Central America from non-Andean sources or conceal distinct peopling events into the Southern Continent.


Assuntos
Genoma Humano , Migração Humana , Indígenas Sul-Americanos/genética , Fluxo Gênico , Variação Genética , Haplótipos , Humanos , Modelos Genéticos , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , América do Sul
17.
Am J Phys Anthropol ; 168(4): 717-728, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30693949

RESUMO

OBJECTIVES: The Yaghnobis are an ethno-linguistic minority historically settled along the Yaghnob River in the Upper-Zarafshan Valley in Tajikistan. They speak a language of Old Sogdian origin, which is the only present-day witness of the Lingua Franca used along the Silk Road in Late Antiquity. The aim of this study was to reconstruct the genetic history of this community in order to shed light on its isolation and genetic ancestry within the Euro-Asiatic context. MATERIALS AND METHODS: A total of 100 DNA samples were collected in the Yaghnob and Matcha Valleys during several expeditions and their mitochondrial, Y-chromosome and autosomal genome-wide variation were compared with that from a large set of modern and ancient Euro-Asiatic samples. RESULTS: Findings from uniparental markers highlighted the long-term isolation of the Yaghnobis. Mitochondrial DNA ancestry traced an ancient link with Middle Eastern populations, whereas Y-chromosome legacy showed more tight relationships with Central Asians. Admixture, outgroup-f3, and D-statistics computed on autosomal variation corroborated Y-chromosome evidence, pointing respectively to low Anatolian Neolithic and high Steppe ancestry proportions in Yaghnobis, and to their closer affinity with Tajiks than to Iranians. DISCUSSION: Although the Yaghnobis do not show evident signs of recent admixture, they could be considered a modern proxy for the source of gene flow for many Central Asian and Middle Eastern groups. Accordingly, they seem to retain a peculiar genomic ancestry probably ascribable to an ancient gene pool originally wide spread across a vast area and subsequently reshuffled by distinct demographic events occurred in Middle East and Central Asia.


Assuntos
Povo Asiático/genética , Etnicidade/genética , População Branca/genética , Antropologia Física , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Migração Humana , Humanos , Masculino , Metagenômica , Polimorfismo de Nucleotídeo Único/genética , Tadjiquistão
18.
Genome Biol Evol ; 10(11): 2919-2930, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335146

RESUMO

Although Tibetans and Sherpa present several physiological adjustments evolved to cope with selective pressures imposed by the high-altitude environment, especially hypobaric hypoxia, few selective sweeps at a limited number of hypoxia related genes were confirmed by multiple genomic studies. Nevertheless, variants at these loci were found to be associated only with downregulation of the erythropoietic cascade, which represents an indirect aspect of the considered adaptive phenotype. Accordingly, the genetic basis of Tibetan/Sherpa adaptive traits remains to be fully elucidated, in part due to limitations of selection scans implemented so far and mostly relying on the hard sweep model.In order to overcome this issue, we used whole-genome sequence data and several selection statistics as input for gene network analyses aimed at testing for the occurrence of polygenic adaptation in these high-altitude Himalayan populations. Being able to detect also subtle genomic signatures ascribable to weak positive selection at multiple genes of the same functional subnetwork, this approach allowed us to infer adaptive evolution at loci individually showing small effect sizes, but belonging to highly interconnected biological pathways overall involved in angiogenetic processes.Therefore, these findings pinpointed a series of selective events neglected so far, which likely contributed to the augmented tissue blood perfusion observed in Tibetans and Sherpa, thus uncovering the genetic determinants of a key biological mechanism that underlies their adaptation to high altitude.


Assuntos
Adaptação Biológica , Altitude , Genoma Humano , Herança Multifatorial , Seleção Genética , Humanos , Família Multigênica , Nepal , Fenótipo , Tibet
19.
Sci Rep ; 7(1): 15512, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138459

RESUMO

While much research attention has focused on demographic processes that enabled human diffusion on the Tibetan plateau, little is known about more recent colonization of Southern Himalayas. In particular, the history of migrations, admixture and/or isolation of populations speaking Tibeto-Burman languages, which is supposed to be quite complex and to have reshaped patterns of genetic variation on both sides of the Himalayan arc, remains only partially elucidated. We thus described the genomic landscape of previously unsurveyed Tibeto-Burman (i.e. Sherpa and Tamang) and Indo-Aryan communities from remote Nepalese valleys. Exploration of their genomic relationships with South/East Asian populations provided evidence for Tibetan admixture with low-altitude East Asians and for Sherpa isolation. We also showed that the other Southern Himalayan Tibeto-Burmans derived East Asian ancestry not from the Tibetan/Sherpa lineage, but from low-altitude ancestors who migrated from China plausibly across Northern India/Myanmar, having experienced extensive admixture that reshuffled the ancestral Tibeto-Burman gene pool. These findings improved the understanding of the impact of gene flow/drift on the evolution of high-altitude Himalayan peoples and shed light on migration events that drove colonization of the southern Himalayan slopes, as well as on the role played by different Tibeto-Burman groups in such a complex demographic scenario.


Assuntos
DNA/genética , Etnicidade/genética , Fluxo Gênico , Deriva Genética , Migração Humana/tendências , DNA/classificação , Etnicidade/estatística & dados numéricos , Feminino , Variação Genética , Humanos , Índia , Masculino , Mianmar , Nepal , Filogeografia , Tibet
20.
Sci Rep ; 7(1): 1984, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512355

RESUMO

The Mediterranean shores stretching between Sicily, Southern Italy and the Southern Balkans witnessed a long series of migration processes and cultural exchanges. Accordingly, present-day population diversity is composed by multiple genetic layers, which make the deciphering of different ancestral and historical contributes particularly challenging. We address this issue by genotyping 511 samples from 23 populations of Sicily, Southern Italy, Greece and Albania with the Illumina GenoChip Array, also including new samples from Albanian- and Greek-speaking ethno-linguistic minorities of Southern Italy. Our results reveal a shared Mediterranean genetic continuity, extending from Sicily to Cyprus, where Southern Italian populations appear genetically closer to Greek-speaking islands than to continental Greece. Besides a predominant Neolithic background, we identify traces of Post-Neolithic Levantine- and Caucasus-related ancestries, compatible with maritime Bronze-Age migrations. We argue that these results may have important implications in the cultural history of Europe, such as in the diffusion of some Indo-European languages. Instead, recent historical expansions from North-Eastern Europe account for the observed differentiation of present-day continental Southern Balkan groups. Patterns of IBD-sharing directly reconnect Albanian-speaking Arbereshe with a recent Balkan-source origin, while Greek-speaking communities of Southern Italy cluster with their Italian-speaking neighbours suggesting a long-term history of presence in Southern Italy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA