Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Pharmaceutics ; 16(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931907

RESUMO

To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications in dentistry treatments due to its prominent antimicrobial, anti-inflammatory, and antioxidant properties. This study aimed to produce and characterize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with berberine and evaluate its antimicrobial activity against relevant endodontic pathogens, Enterococcus faecalis, and Candida albicans. Additionally, its cytocompatibility using gingival fibroblasts was assessed. The polymeric nanoparticle was prepared by the nanoprecipitation method. Physicochemical characterization revealed spheric nanoparticles around 140 nm with ca, -6 mV of surface charge, which was unaffected by the presence of BBR. The alkaloid was successfully incorporated at an encapsulation efficiency of 77% and the designed nanoparticles were stable upon 20 weeks of storage at 4 °C and 25 °C. Free BBR reduced planktonic growth at ≥125 µg/mL. Upon incorporation into PLGA nanoparticles, 20 µg/mL of [BBR]-loaded nanoparticles lead to a significant reduction, after 1 h of contact, of both planktonic bacteria and yeast. Sessile cells within biofilms were also considered. At 30 and 40 µg/mL, [BBR]-loaded PLGA nanoparticles reduced the viability of the sessile endodontic bacteria, upon 24 h of exposure. The cytotoxicity of BBR-loaded nanoparticles to oral fibroblasts was negligible. The novel berberine-loaded polymeric nanoparticles hold potential as a promising supplementary approach in the treatment of endodontic infections.

2.
FASEB J ; 37(10): e23166, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650876

RESUMO

Osteomyelitis is a pathological condition of the bone, frequently associated with the presence of infectious agents - namely Staphylococcus aureus - that induce inflammation and tissue destruction. Recent advances in the understanding of its pathophysiology and the identification of innovative therapeutic approaches were gathered from experimental in vitro and in vivo systems. However, cell culture models offer limited representativeness of the cellular functionality and the cell-cell and cell-matrix interactions, further failing to mimic the three-dimensional tissue organization; and animal models allow for limited mechanistic assessment given the complex nature of systemic and paracrine regulatory systems and are endorsed with ethical constraints. Accordingly, this study aims at the establishment and assessment of a new ex vivo bone infection model, upon the organotypic culture of embryonic chicken femurs colonized with S. aureus, highlighting the model responsiveness at the molecular, cellular, and tissue levels. Upon infection with distinct bacterial inoculums, data reported an initial exponential bacterial growth, followed by diminished metabolic activity. At the tissue level, evidence of S. aureus-mediated tissue destruction was attained and demonstrated through distinct methodologies, conjoined with decreased osteoblastic/osteogenic and increased osteoclastic/osteoclastogenic functionalities-representative of the osteomyelitis clinical course. Overall, the establishment and characterization of an innovative bone tissue infection model that is simple, reproducible, easily manipulated, cost-effective, and simulates many features of human osteomyelitis, further allowing the maintenance of the bone tissue's three-dimensional morphology and cellular arrangement, was achieved. Model responsiveness was further demonstrated, showcasing the capability to improve the research pipeline in bone tissue infection-related research.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Embrião de Galinha , Humanos , Staphylococcus aureus , Osso e Ossos , Osteogênese , Inflamação
3.
J Funct Biomater ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367277

RESUMO

Calcium silicate-based cements are used in a variety of clinical conditions affecting the pulp tissue, relying on their inductive effect on tissue mineralization. This work aimed to evaluate the biological response of calcium silicate-based cements with distinct properties-the fast-setting Biodentine™ and TotalFill® BC RRM™ Fast Putty, and the classical slow-setting ProRoot® MTA, in an ex vivo model of bone development. Briefly, eleven-day-old embryonic chick femurs were cultured for 10 days in organotypic conditions, being exposed to the set cements' eluates and, at the end of the culture period, evaluated for osteogenesis/bone formation by combining microtomographic analysis and histological histomorphometric assessment. ProRoot® MTA and TotalFill® extracts presented similar levels of calcium ions, although significantly lower than those released from BiodentineTM. All extracts increased the osteogenesis/tissue mineralization, assayed by microtomographic (BV/TV) and histomorphometric (% of mineralized area; % of total collagen area, and % of mature collagen area) indexes, although displaying distinct dose-dependent patterns and quantitative values. The fast-setting cements displayed better performance than that of ProRoot® MTA, with BiodentineTM presenting the best performance, within the assayed experimental model.

4.
J Bone Miner Metab ; 41(4): 431-442, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37036531

RESUMO

INTRODUCTION: Tetracyclines (TCs) embrace a class of broad-spectrum antibiotics with unrelated effects at sub-antimicrobial levels, including an effective anti-inflammatory activity and stimulation of osteogenesis, allowing their repurposing for different clinical applications. Recently, sarecycline (SA)-a new-generation molecule with a narrower antimicrobial spectrum-was clinically approved due to its anti-inflammatory profile and reduced adverse effects verified with prolonged use. Notwithstanding, little is known about its osteogenic potential, previously verified for early generation TCs. MATERIALS AND METHODS: Accordingly, the present study is focused on the assessment of the response of human bone marrow-derived mesenchymal stromal cells (hBMSCs) to a concentration range of SA, addressing the metabolic activity, morphology and osteoblastic differentiation capability, further detailing the modulation of Wnt, Hedgehog, and Notch signaling pathways. In addition, an ex vivo organotypic bone development system was established in the presence of SA and characterized by microtomographic and histochemical analysis. RESULTS: hBMSCs cultured with SA presented a significantly increased metabolic activity compared to control, with an indistinguishable cell morphology. Moreover, RUNX2 expression was upregulated 2.5-fold, and ALP expression was increased around sevenfold in the presence of SA. Further, GLI2 expression was significantly upregulated, while HEY1 and HNF1A were downregulated, substantiating Hedgehog and Notch signaling pathways' modulation. The ex vivo model developed in the presence of SA presented a significantly enhanced collagen deposition, extended migration areas of osteogenesis, and an increased bone mineral content, substantiating an increased osteogenic development. CONCLUSION: Summarizing, SA is a promising candidate for drug repurposing within therapies envisaging the enhancement of bone healing/regeneration.


Assuntos
Reposicionamento de Medicamentos , Ouriços , Humanos , Animais , Osteogênese , Diferenciação Celular , Tetraciclinas/farmacologia , Células Cultivadas , Células da Medula Óssea
5.
Biomater Sci ; 11(7): 2427-2444, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36756939

RESUMO

Titanium (Ti) and its alloys are the most widely used metallic biomaterials in total joint replacement; however, increasing evidence supports the degradation of its surface due to corrosion and wear processes releasing debris (ions, and micro and nanoparticles) and contribute to particle-induced osteolysis and implant loosening. Cell-to-cell communication involving several cell types is one of the major biological processes occurring during bone healing and regeneration at the implant-bone interface. In addition to the internal response of cells to the uptake and intracellular localization of wear debris, a red flag is the ability of titanium dioxide nanoparticles (mimicking wear debris) to alter cellular communication with the tissue background, disturbing the balance between osseous tissue integrity and bone regenerative processes. This study aims to understand whether titanium dioxide nanoparticles (TiO2 NPs) alter osteoblast-derived exosome (Exo) biogenesis and whether exosomal protein cargos affect the communication of osteoblasts with human mesenchymal stem/stromal cells (HMSCs). Osteoblasts are derived from mesenchymal stem cells coexisting in the bone microenvironment during development and remodelling. We observed that TiO2 NPs stimulate immature osteoblast- and mature osteoblast-derived Exo secretion that present a distinct proteomic cargo. Functional tests confirmed that Exos derived from both osteoblasts decrease the osteogenic differentiation of HMSCs. These findings are clinically relevant since wear debris alter extracellular communication in the bone periprosthetic niche, contributing to particle-induced osteolysis and consequent prosthetic joint failure.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Nanopartículas , Osteólise , Humanos , Osteogênese , Titânio/efeitos adversos , Osteólise/induzido quimicamente , Exossomos/metabolismo , Proteômica , Osteoblastos , Diferenciação Celular , Fatores Imunológicos , Comunicação Celular
6.
Biomater Adv ; 146: 213280, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682201

RESUMO

Despite bone's innate self-renewal capability, some periodontal pathologic and traumatic defects' size inhibits full spontaneous regeneration. This current research characterized a 3D porous biodegradable nano-hydroxyapatite/chitosan (nHAp/CS, 70/30) scaffold for periodontal bone regeneration, which preparation method includes the final solvent extraction and sterilization through supercritical CO2 (scCO2). Micro-CT analysis revealed the fully interconnected porous microstructure of the nHAp/CS scaffold (total porosity 78 %, medium pore size 200 µm) which is critical for bone regeneration. Scanning electron microscopy (SEM) showed HAp crystals forming on the surface of the nHAp/CS scaffold after 21 days in simulated body fluid, demonstrating its bioactivity in vitro. The presence of nHAp in the scaffolds promoted a significantly lower biodegradation rate compared to a plain CS scaffold in PBS. Dynamic mechanical analysis confirmed their viscoelasticity, but the presence of nHAp significantly enhanced the storage modulus (42.34 ± 6.09 kPa at 10 Hz after 28 days in PBS), showing that it may support bone ingrowth at low-load bearing bone defects. Both scaffold types significantly inhibited the growth, attachment and colony formation abilities of S. aureus and E. coli, enhancing the relevance of chitosan in the grafts' composition for the naturally contaminated oral environment. At SEM and laser scanning confocal microscopy, MG63 cells showed normal morphology and could adhere and proliferate inside the biomaterials' porous structure, especially for the nHAp/CS scaffold, reaching higher proliferative rate at day 14. MG63 cells seeded within nHAp/CS scaffolds presented a higher expression of RUNX2, collagen A1 and Sp7 osteogenic genes compared to the CS samples. The in vivo subcutaneous implantation in mice of both scaffold types showed lower biodegradability with the preservation of the scaffolds porous structure that allowed the ingrowth of connective tissue until 5 weeks. Histology shows an intensive and progressive ingrowth of new vessels and collagen between the 3rd and the 5th week, especially for the nHAp/CS scaffold. So far, the scCO2 method enabled the production of a cost-effective and environment-friendly ready-to-use nHAp/CS scaffold with microstructural, chemical, mechanical and biocompatibility features that make it a suitable bone graft alternative for defect sites in an adverse environment as in periodontitis and peri-implantitis.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/química , Quitosana/farmacologia , Durapatita/química , Durapatita/farmacologia , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Dióxido de Carbono , Escherichia coli , Staphylococcus aureus , Regeneração Óssea , Colágeno/química , Esterilização
7.
Materials (Basel) ; 16(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614788

RESUMO

Calcium silicate-based cements (CSCs) are endodontic materials widely used in vital pulp-capping approaches. Concerning the clinical application, the reduced set time and pre-mixed formulations are relevant characteristics during the operative management of pulpal exposure, aiming to optimise the work time and improve cross-infection/asepsis control. Additionally, clinical success seems to be greatly dependent on the biological performance of the materials that directly contact the living pulp. As such, this work approaches an integrative biological characterisation (i.e., antibacterial, irritation, and cytocompatibility assays) of three fast-setting CSCs-BiodentineTM, TotalFill® BC RRM™ Fast Putty, and Theracal LC®. These cements, after setting for 24 h, presented the expected topography and elemental composition (assessed by scanning electron microscopy, coupled with EDS analysis), in accordance with the information of the manufacturer. The set cements displayed a significant and similar antibiofilm activity against S. mutans, in a direct contact assay. Twenty-four-hour eluates were not irritant in the standardised CAM assay, but elicited distinct dose- and time-dependent cytotoxicity profiles on fibroblastic cells-i.e., Biodentine was devoid of toxicity, TotalFill presented a slight dose-dependent initial toxicity that was easily overcome, and Theracal LC was deleterious at high concentrations. When compared to long-setting ProRoot MTA cement, which highlighted the pursued integrative approach, Biodentine presented a similar profile, but TotalFill and Theracal LC displayed a poorer performance regarding antibiofilm activity/cytocompatibility features, and Theracal LC suggested eventual safety concerns.

8.
J Prosthet Dent ; 130(1): 87-95, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34711406

RESUMO

STATEMENT OF PROBLEM: Microgap and bacterial microleakage at the implant-prosthetic abutment interface are recognized concerns for implant-supported restorations, leading to inflammation of the peri-implant tissues, with deleterious consequences for crestal bone levels. However, little is known regarding the interface established between the implant and the healing abutment or cover screw placed for the osseointegration phase. PURPOSE: The purpose of this in vitro study was to characterize the implant-cover screw and implant-healing abutment interfaces of a platform-switched implant system to determine the microgap and bacterial microleakage of the system and evaluate the biological response and functionality of an interface sealing agent. MATERIAL AND METHODS: The interfacial microgaps of the implant-healing abutment and implant-cover screw interfaces were characterized by scanning electron microscopy (n=10), and bacterial microleakage was evaluated after colonization with Enterococcus faecalis in a 30-day follow-up (n=10). The sealing efficacy and irritation potential of a silicone-based sealer were determined by using the hen's egg test on chorioallantoic membrane assay. The 2-sample t test was performed to compare means between groups, and data presented with the Kaplan-Meier method were compared statistically by using the log-rank test (α=.05). RESULTS: The interfacial microgap was less than 2.5 µm for both systems. Bacterial microleakage was noted in approximately 50% of the specimens, particularly at early time points, at both the healing abutment and cover screw interfaces. The silicone-based sealer prevented bacterial leakage in the experimental setting. CONCLUSIONS: The implant-healing abutment and implant-cover screw interfaces of the tested system, despite the low microgap, allowed for bacterial microleakage after internal colonization. The use of a nonirritating silicone-based sealing agent effectively sealed the system.


Assuntos
Implantes Dentários , Osseointegração , Animais , Feminino , Galinhas , Dente Suporte , Implantes Dentários/microbiologia , Bactérias , Projeto do Implante Dentário-Pivô
9.
Int J Pharm ; 632: 122541, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566824

RESUMO

Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.


Assuntos
Mel , Staphylococcus aureus , Humanos , Gelatina , Testes de Sensibilidade Microbiana , Escherichia coli , Cicatrização , Mel/análise , Antibacterianos/química , Impressão Tridimensional , Hidrogéis
10.
Colloids Surf B Biointerfaces ; 221: 113008, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401958

RESUMO

Zinc is a biodegradable candidate material for bone regeneration; however, concomitant implant-related infection and rejection require new solutions to raise the biomedical potential of zinc. Functionalization towards localized drug administration with bioactive frameworks can be a solution. It is herein reported for the first time an eco-friendly approach for coating zinc with multibioactive antibiotic coordination frameworks (ACF). ACF1, a new 1D framework with deprotonated nalidixic and salicylic acids, obtained by mechanochemistry, results from the coordination of Ca(II) centers to the organic acids anions. To maximize ACF1 loading and cells' adhesion, the surface area was increased by creating a porous 3D Zn layer. A coverage of ∼70% of the surface with ACF1, achieved by electrophoretic deposition in an aqueous solution, preserved the desired Zn degradation as |Z| in the order of 103 Ω.cm2 is attained for both bare and coated samples in physiological conditions. The bioactivities of the ACF1 powder are a strong antibacterial activity against Escherichia coli (MIC of 1.95 µg/mL) and weaker against Staphylococcus aureus (MIC of 250 µg/mL), while osteoblasts' cytocompatibility is achieved for concentration ranging between 10 and 100 µg/mL. In its coating form, the degradation of Zn coated with ACF1 results in nalidixic acid release, which may convey antibacterial activity to the implant. The osteoinduction observe over this new biomaterial relates to the precipitation of an apatite layer built from the Ca(II) of ACF1. The work described herein, where unexplored eco-friendly approaches were used, presents a new trend for the design of multibioactive coatings on bioresorbable metallic materials.


Assuntos
Antibacterianos , Zinco , Zinco/farmacologia , Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Regeneração Óssea , Osso e Ossos , Escherichia coli , Compostos Orgânicos
11.
Colloids Surf B Biointerfaces ; 217: 112643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35759895

RESUMO

The development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH)2 NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs. They exhibited a spherical shape with a diameter of ~10 nm, low crystallinity compared to non-functionalized NPs, high polyphenol content, and negative zeta potential in three different media (H2O, TSB, and cell medium). The resulting RH-functionalized Mg-based NPs also exhibited an increased antibacterial activity against Gram-positive (S. Epidermis and S. aureus) and Gram-negative (E. Coli) bacteria compared to those prepared in pure water (0 % RH), an effect that was well evident with low NPs contents (250 µg/mL). A preliminary attempt to elucidate their mechanism of action revealed that RH-functionalized Mg-based NPs could disrupt cellular structures (bacterial cell wall and cytoplasmic membrane) and damage the bacterial cell, as confirmed by TEM imaging. Noteworthy is that Mg-based NPs exhibited higher toxicity to bacteria than to eukaryotic cells. More significantly, was their enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model, when infected with S. aureus bacteria. Overall, our findings indicate that well-engineered Rosehip magnesium-based nanoparticles can be used as a green non-cytotoxic polyphenolic source in different antibacterial applications for the biomedical industry.


Assuntos
Nanopartículas Metálicas , Rosa , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Staphylococcus aureus
12.
Acta Odontol Scand ; 80(8): 588-595, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35430959

RESUMO

OBJECTIVE: To ensure a successful endodontic treatment, it is important to have a proper disinfection of the root canal. The current study compares the root canal cleanliness and smear layer score between sonic and ultrasonic activation. METHOD: Systematic literature review was implemented, using 12 databases. All in vitro studies comparing the efficacy of sonic and ultrasonic activation and reporting at least one outcome of interest were included. RESULTS: At the apical level, pooling the data in the random-effects model (I2=64%, p = .1) revealed a statistically significant lower smear layer score within the sonic activation group (MD-0.48; 95% CI-0.92, -0.04; p = .03). Furthermore, there was a statistically significant lower push-out bond strength value among the sonic group, in contrast to the ultrasonic group at the middle (MD-0.69; 95% CI-1.13, -0.25; p = .002) and at the apical levels (MD-0.78; 95% CI-1.09, -0.46; p < .0001) of the root canal. CONCLUSIONS: Sonic activation accomplished advancement relative to ultrasonic agitation in removing the smear layer, while ultrasonic activation resulted in significant cohesion between the sealers and the dentine tubules, decreasing the vulnerability of apical leakage and tooth fracture.


Assuntos
Camada de Esfregaço , Humanos , Irrigantes do Canal Radicular , Preparo de Canal Radicular/métodos , Cavidade Pulpar , Ultrassom , Hipoclorito de Sódio , Irrigação Terapêutica/métodos , Ácido Edético , Microscopia Eletrônica de Varredura
13.
J Mech Behav Biomed Mater ; 129: 105137, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35235862

RESUMO

Biodegradable magnesium (Mg)-based metal matrix composites are promising candidates for orthopaedic applications since magnesium is an abundant mineral in the human body. To improve the bioactivity and cytocompatibility of these Mg composites, hydroxyapatite nanoparticles (HAP) and fluorapatite (FA) microparticles synthesised by a citrate-derived hydrothermal method were introduced into a Mg matrix. These innovative Mg/HAP/FA composites were produced by multi-pass upward friction stir processing (UFSP). Microstructural observation and Micro-CT reconstruction of the composite revealed that HAP and FA particles are well dispersed in the Mg matrix and the magnesium grain size was significantly reduced after the UFSP process. The in vitro bioactivity behaviour of UFSP processed Mg/HAP/FA composites was investigated in simulated body fluid. The results revealed the formation of a fluoride-rich apatite layer on the composites, which was attributed to the release of fluoride ions from the composite and their precipitation in a different configuration. Moreover, cytocompatibility results revealed that the presence of FA particles, together with HAP nanoparticles, were able to favour osteoblasts-biomaterial interaction.


Assuntos
Fluoretos , Magnésio , Apatitas/química , Durapatita/química , Fricção , Humanos , Magnésio/química
14.
Odontology ; 110(2): 231-239, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34448952

RESUMO

The present study aims to characterize, for the first time, the microgap and bacterial microleakage of a platform-switched implant system with hybrid connection, screwed at distinct torque values (manufacturer recommended torque-25 N cm-and a reduced torque-5 N cm-mimicking the long-term functional use), in the absence or presence of a silicon-based sealing agent. Microgap was determined through scanning electron microscopy and bacterial microleakage was evaluated in vitro, upon Enterococcus faecalis colonization of the system. The sealing efficacy was evaluated in the absence or presence of a commercially available silicon-based sealer. The cytotoxicity of the sealer was further addressed in vitro, with a fibroblastic cell line, in accordance with reference standards. A low microgap of the implant system was verified, regardless of the applied torque load-maximal values ranged around 0.25 and 1.25 µm, for 25 and 5 N cm torques, respectively. No bacterial microleakage was reported at 25 N cm, while at 5 N cm, leakage was verified on 38% of the samples. The application of a silicon-based sealer-with an adequate cytocompatible profile-was effective on preventing the bacterial microleakage on the assayed experimental setting. The assayed platform-switched implant system with hybrid connection presented a low interfacial misfit and an effective sealing capability at manufacturer recommended torque. Despite the increased microleakage at low torque conditions, the application of a cytocompatible silicon-based sealing agent restored the sealing effectiveness of the system. The use of a silicon-based sealing agent can assist on the maintenance of the sealing effectiveness even at low torque conditions.


Assuntos
Implantes Dentários , Infiltração Dentária , Dente Suporte , Projeto do Implante Dentário-Pivô , Infiltração Dentária/microbiologia , Infiltração Dentária/prevenção & controle , Humanos , Silicones , Torque
15.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361365

RESUMO

Considering the role of magnesium in bone metabolism and the increasing relevance of plant-mediated green-synthesis, this work compares the bone cytocompatibility of magnesium hydroxide nanoparticles (NPs) produced by using pure water, Mg(OH)2, or a rosehip (RH) aqueous extract, Mg(OH)2RH. The NPs were evaluated for dose- and time-dependent effects on human osteoblastic and osteoclastic response, due to the direct involvement of the two cell types in bone metabolism. Mg(OH)2 NPs presented nanoplatelet-like morphology (mean diameter ~90 nm) and a crystalline structure (XRD analysis); the RH-mediated synthesis yielded smaller rounded particles (mean diameter <10 nm) with decreased crystallinity. On the ATR-FTIR spectra, both NPs presented the characteristic Mg-OH peaks; Mg(OH)2RH exhibited additional vibration bands associated with the presence of phytochemicals. On osteoblastic cells, NPs did not affect cell growth and morphology but significantly increased alkaline phosphatase (ALP) activity; on osteoclastic cells, particles had little effect in protein content, tartrate-resistant acid phosphatase (TRAP) activity, percentage of multinucleated cells, and cell area. However, compared with Mg(OH)2, Mg(OH)2RH increased osteoblastic differentiation by inducing ALP activity and promoting the expression of Runx2, SP7, Col1a1, and ALP, and had a negative effect on the expression of the osteoclastic genes NFATC1, CA2, and CTSK. These observations suggest the potential usefulness of Mg(OH)2RH NPs in bone regeneration.

16.
J Biomed Mater Res B Appl Biomater ; 109(12): 2213-2226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34037321

RESUMO

To modulate the physicochemical features of poly(ethylene terephthalate) (PET) multifilaments surface composing a complex textile structure (core and shell system), intended to improve upon current implants for high extension injuries of the Achilles tendon or even for its total replacement, two surface treatments with different purposes (bioactive and biopassive) were studied. The first treatment is based on amino groups grafting using ethylenediamine molecules to be applied in the structure core to improve cell adhesion and proliferation. The other treatment relates to a polytetrafluoroethylene (PTFE) coating to be applied in the structure shell to decrease its coefficient of friction and avoid adhesions. Both treatments were optimized to reach their purposed goals without harming the tensile properties of PET yarns, which were evaluated by static tensile tests. The resazurin assay and scanning electron microscopy analysis showed that the purposed goals related to fibroblast adhesion were achieved for both treatments and in the case of PTFE coating, the abrasion resistance was also improved according to the yarn-on-yarn abrasion tests.


Assuntos
Polietilenotereftalatos , Têxteis , Etilenos , Fibroblastos , Ácidos Ftálicos
17.
Mater Sci Eng C Mater Biol Appl ; 120: 111761, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545902

RESUMO

Implant surfaces with cytocompatible and antibacterial properties are extremely desirable for the prevention of implant's infection and the promotion of osseointegration. In this work, both micro-arc oxidation (MAO) and DC magnetron sputtering techniques were combined in order to endow tantalum-based surfaces with osteoblastic cytocompatibility and antibacterial activity. Porous Ta2O5 layers containing calcium (Ca) and phosphorous (P) were produced by MAO (TaCaP) to mimic the bone tissue morphology and chemical composition (Ca/P ratio close to 1.67). Furthermore, zinc (Zn) nanoparticles were deposited onto the previous surfaces by DC magnetron sputtering without or with an additional thin carbon layer deposited over the nanoparticles (respectively, TaCaP-Zn and TaCaP-ZnC) to control the Zn ions (Zn2+) release. Before osteoblastic cell seeding, the surfaces were leached for three time-points in PBS. All modified samples were cytocompatible. TaCaP-Zn slightly impaired cell adhesion but this was improved in the samples leached for longer immersion times. The initial cell adhesion was clearly improved by the deposition of the carbon layer on the Zn nanoparticles, which also translated to a higher proliferation rate. Both Zn-containing surfaces presented antibacterial activity against S. aureus. The two surfaces were active against planktonic bacteria, and TaCaP-Zn also inhibited sessile bacteria. Attributing to the excellent in vitro performance of the nanostructured Ta surface, with osteoconductive elements by MAO followed by antimicrobial nanoparticles incorporation by magnetron sputtering, this work is clearly a progress on the strategy to develop a new generation of dental implants.


Assuntos
Implantes Dentários , Nanopartículas , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Óxidos , Porosidade , Staphylococcus aureus , Propriedades de Superfície , Tantálio , Titânio
18.
Photochem Photobiol ; 97(1): 198-204, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777098

RESUMO

The aim of the present study was to evaluate the comparative effects of red (660-nm) and near-infrared (780-nm) low-level laser therapy (LLLT) on viability, mitochondrial activity, morphology and gene expression of growth factors on Schwann cells (SC). ST88-14 cells were grown in RPMI 1640 with 10 mM of HEPES, 2 mM of glutamine, 10% fetal bovine serum and 1% antibiotic-antimycotic solution at 37°C in humidified atmosphere of 5% CO2 . Cells were detached with trypsin and centrifugated at 231 g for 5 min at 10°C, and the pellet (8 × 104  cells/tube) was irradiated at the bottom of 50 ml polypropylene tube with a Twin-Laser system (660 and 780 nm, 40 mW, 1 mW cm-2 , 3.2 and 6.4 J, 80 and 160 J cm-2 with 80 and 160 s). After 1, 3 and 7 days, the analysis was performed. After irradiation, the SC increase mitochondrial activity, gene expression of the neural growth factors NGF and BDNF, and cell migration and increase the G2/M cells. SC showed neuronal morphology, normal F-actin cytoskeleton organization and positive labeling for S100. PBM increased metabolic activity, mitosis and gene expression when irradiated with red and infrared LLLT. An increase in cell migration was obtained when irradiated with infrared LLLT.


Assuntos
Terapia a Laser , Células de Schwann/efeitos da radiação , Ciclo Celular , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Mitocôndrias/efeitos da radiação , Fatores de Tempo
19.
Materials (Basel) ; 13(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708117

RESUMO

OBJECTIVES: This study reports the efficacy of two solvent mixtures on the dissolution of gutta-percha and AH Plus sealer, together with the cytotoxicity. METHODS: Methyl ethyl ketone (MEK), orange oil, tetrachloroethylene, MEK/tetrachloroethylene (1:1), MEK/orange oil (1:1), and chloroform (control) were tested. Twelve groups (n = 15) of standardized stainless-steel molds filled with softened gutta-percha cones and twelve (n = 15) filled with AH Plus were immersed in the corresponding mixture or individual solvent, in an ultrasonic bath, for either 2 or 5 min. The effect of the solvents was assessed qualitatively by a topographical analysis (scanning electron microscopy) and chemical analysis (Fourier transform infrared spectroscopy), and quantitatively by a weight loss and viscoelastic property (dynamic mechanical analysis) evaluation. The cytotoxicity was assessed on MG63 human osteoblastic cells. RESULTS: The mixtures did not show the formation of new compounds. Both presented significantly higher efficacies compared to their individual solvents, suggesting a synergistic effect. Their dissolution efficacy was similar to that of chloroform, showing high cytocompatibility. CONCLUSIONS: The proposed strategy, incorporating ultrasound agitation and profiting from the synergy of adequate solvents, might enhance root canal cleanliness allowing a single-step procedure to dissolve gutta-percha and the sealer remnants, while assuring cytocompatibility with the periapical tissues.

20.
Mater Sci Eng C Mater Biol Appl ; 115: 111147, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600733

RESUMO

The development of biomaterials that mimicking the hydroxyapatite nanoparticles existent in the immature bone tissue is crucial, especially to accelerate the bone remodeling and regeneration. In this work, it was developed for the first time, hydroxyapatite nanoparticles (NPs) incorporating citrate and zinc (cit-Zn-Hap) in their composition towards a one-step hydrothermal procedure. For comparison purposes, hydroxyapatite NPs incorporating only zinc (Zn-Hap) or citrate (cit-Hap), as well as hydroxyapatite without any of these elements (Hap) were synthesised. The physicochemical characterization was carried out reveling that, the presence of zinc on hydroxyapatite (cit-Zn-Hap), reduced the size of nanoparticles, changed the phosphate environment and decreased the surface charge when compared with cit-Hap nanoparticles. The osteogenic potential of cit-Zn-Hap NPs was analysed in human bone marrow-derived stromal cells (BMSCs), in the absence of osteoinductive factors. NPs were internalized by endocytosis appearing trapped in endosomes and lysosomes scattered through the cytoplasm. Exposure to these NPs resulted in a significant induction of ALP activity, extracellular matrix mineralization, and gene expression of early and later osteogenic transcription factors, as well as of osteoblastic markers. The osteoinductive effect might be regulated, at least in part, by the increased signalling through the canonical WNT pathway. Evaluation of the cell behaviour following exposure to Zn-Hap and cit-Hap strongly suggested a synergistic effect of citrate and Zn in cit-Zn-Hap NPs towards the induction of the osteogenic commitment and functionality of BMSCs. These findings will allow the design of new biomimetic hydroxyapatite nanoparticles with great potential for bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Durapatita/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células Cultivadas , Citratos/química , Durapatita/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Nanotubos , Tamanho da Partícula , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA