Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Plant Cell Environ ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016637

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.

2.
Plant Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917205

RESUMO

Plant virus-derived vectors are rapid and cost-effective for protein expression and gene functional studies in plants, particularly for species that are difficult to genetically transform. However, few efficient viral vectors are available for functional studies in Asteraceae plants. Here, we identified a potyvirus named zinnia mild mottle virus (ZiMMV) from common zinnia (Zinnia elegans Jacq.) through next-generation sequencing. Using a yeast homologous recombination strategy, we established a full-length infectious cDNA clone of ZiMMV under the control of the cauliflower mosaic virus 35S promoter. Furthermore, we developed an efficient expression vector based on ZiMMV for the persistent and abundant expression of foreign proteins in the leaf, stem, root, and flower tissues with mild symptoms during viral infection in common zinnia. We showed that the ZiMMV-based vector can express ZeMYB9, which encodes a transcript factor inducing dark red speckles in leaves and flowers. Additionally, the expression of a gibberellic acid (GA) biosynthesis gene from the ZiMMV vector substantially accelerated plant height growth, offering a rapid and cost-effective method. In summary, our work provides a powerful tool for gene expression, functional studies, and genetic improvement of horticultural traits in Asteraceae plant hosts.

3.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of Glycine 14 to Threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-green fluorescent protein (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.

4.
J Integr Plant Biol ; 66(7): 1481-1499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695653

RESUMO

Vicinal oxygen chelate (VOC) proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities. However, the biological functions of VOC proteins in plants are poorly understood. Here, we show that a VOC in Nicotiana benthamiana (NbVOC1) facilitates viral infection. NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus (BNYVV). Transient overexpression of NbVOC1 or its homolog from Beta vulgaris (BvVOC1) enhanced BNYVV infection in N. benthamiana, which required the nuclear localization of VOC1. Consistent with this result, overexpressing NbVOC1 facilitated BNYVV infection, whereas, knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N. benthamiana plants. NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28, which enhances their self-interaction and DNA binding to the promoters of unfolded protein response (UPR)-related genes. We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription, forming a positive feedback loop to induce the UPR and facilitating BNYVV infection. Collectively, our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.


Assuntos
Nicotiana , Proteínas de Plantas , Resposta a Proteínas não Dobradas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/virologia , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genética , Dioxigenases/metabolismo , Dioxigenases/genética
5.
Virology ; 593: 110013, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373359

RESUMO

Tobacco streak virus induces severe diseases on a wide range of plants and becomes an emerging threat to crop yields. However, the infectious clones of TSV remain to be developed for reverse genetics studies. Here, we obtained the full genome sequence of a TSV-CNB isolate and analyzed the phylogenetic characteristics. Subsequently, we developed the full-length infectious cDNA clones of TSV-CNB driven by 35 S promoter using yeast homologous recombination. Furthermore, the host range of TSV-CNB isolate was determined by Agrobacterium infiltration and mechanical inoculation. The results reveal that TSV-CNB can infect 10 plant species in 5 families including Glycine max, Vigna radiate, Lactuca sativa var. Ramosa, Dahlia pinnate, E. purpurea, Calendula officinalis, Helianthus annuus, Nicotiana. Benthamiana, Nicotiana tabacum and Chenopodium quinoa. Taken together, the TSV infectious clones will be a useful tool for future studies on viral pathogenesis and host-virus interactions.


Assuntos
Echinacea , Ilarvirus , Humanos , DNA Complementar/genética , Ilarvirus/genética , Echinacea/genética , Filogenia , Doenças das Plantas , Nicotiana , Saccharomyces cerevisiae/genética , Células Clonais , Especificidade de Hospedeiro
6.
Arch Virol ; 168(12): 289, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950823

RESUMO

In 2021, Plumbago indica plants with necrotic spots on their leaves were observed in Beijing, China. Through high-throughput sequencing, we discovered a putative novel member of the genus Cytorhabdovirus, which was provisionally named "plumbago necrotic spot-associated virus" (PNSaV). The full-length negative-sense single-stranded RNA genome of this virus is 13,180 nucleotides in length and contains eight putative open reading frames (ORFs), in the order 3' leader-N-(P')-P-P3-M-G-P6-L-5' trailer. Phylogenetic analysis and pairwise comparisons suggested that PNSaV is most closely related to pastinaca cytorhabdovirus 1, with 59.2% nucleotide sequence identity in the complete genome and 56.4% amino acid sequence identity in the L protein. These findings suggest that PNSaV should be considered a new member of the genus Cytorhabdovirus.


Assuntos
Plumbaginaceae , Rhabdoviridae , Plumbaginaceae/genética , Genoma Viral , Filogenia , RNA Viral/genética , Rhabdoviridae/genética , Fases de Leitura Aberta , Doenças das Plantas
7.
Biology (Basel) ; 12(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37887019

RESUMO

A plant's Q-type C2H2-type ZFP plays key roles in plant growth and development and responses to biotic and abiotic stresses. Sugar beet (Beta vulgaris L.) is an important crop for sugar production. Salt stress and viral infection significantly reduce the root yield and sugar content of sugar beet. However, there is a lack of comprehensive genome-wide analyses of Q-type C2H2 ZFPs and their expression patterns in sugar beet under stress. In this study, 35 sugar beet Q-type C2H2 ZFPs (BvZFPs) containing at least one conserved "QALGGH" motif were identified via bioinformatics techniques using TBtools software. According to their evolutionary relationship, the BvZFPs were classified into five subclasses. Within each subclass, the physicochemical properties and motif compositions showed strong similarities. A Ka/Ks analysis indicated that the BvZFPs were conserved during evolution. Promoter cis-element analysis revealed that most BvZFPs are associated with elements related to phytohormone, biotic or abiotic stress, and plant development. The expression data showed that the BvZFPs in sugar beet are predominantly expressed in the root. In addition, BvZFPs are involved in the response to abiotic and biotic stresses, including salt stress and viral infection. Overall, these results will extend our understanding of the Q-type C2H2 gene family and provide valuable information for the biological breeding of sugar beet against abiotic and biotic stresses in the future.

8.
Nat Commun ; 14(1): 5754, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717061

RESUMO

Transmission of many plant viruses relies on phloem-feeding insect vectors. However, how plant viruses directly modulate insect behavior is largely unknown. Barley yellow striate mosaic virus (BYSMV) is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus). Here, we show that BYSMV infects the central nervous system (CNS) of SBPHs, induces insect hyperactivity, and prolongs phloem feeding duration. The BYSMV accessory protein P6 interacts with the COP9 signalosome subunit 5 (LsCSN5) of SBPHs and suppresses LsCSN5-regulated de-neddylation from the Cullin 1 (CUL1), hereby inhibiting CUL1-based E3 ligases-mediated degradation of the circadian clock protein Timeless (TIM). Thus, virus infection or knockdown of LsCSN5 compromises TIM oscillation and induces high insect locomotor activity for transmission. Additionally, expression of BYSMV P6 in the CNS of transgenic Drosophila melanogaster disturbs circadian rhythm and induces high locomotor activity. Together, our results suggest the molecular mechanisms whereby BYSMV modulates locomotor activity of insect vectors for transmission.


Assuntos
Sistema Nervoso Central , Drosophila melanogaster , Animais , Complexo do Signalossomo COP9 , Insetos Vetores , Locomoção
9.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751381

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Assuntos
Vírus do Mosaico , Viroses , Interferência de RNA , Triticum/genética , Calmodulina/genética , Viroses/genética , Vírus do Mosaico/genética , Doenças das Plantas/genética
10.
Biology (Basel) ; 12(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508340

RESUMO

Viruses in the genus Polerovirus infect a wide range of crop plants and cause severe economic crop losses. BrYV belongs to the genus Polerovirus and is transmitted by Myzus persicae. However, the changes in transcriptome and proteome profiles of M. persicae during viral infection are unclear. Here, RNA-Seq and TMT-based quantitative proteomic analysis were performed to compare the differences between viruliferous and nonviruliferous aphids. In total, 1266 DEGs were identified at the level of transcription with 980 DEGs being upregulated and 286 downregulated in viruliferous aphids. At the protein level, among the 18 DEPs identified, the number of upregulated proteins in viruliferous aphids was twice that of the downregulated DEPs. Enrichment analysis indicated that these DEGs and DEPs were mainly involved in epidermal protein synthesis, phosphorylation, and various metabolic processes. Interestingly, the expressions of a number of cuticle proteins and tubulins were upregulated in viruliferous aphids. Taken together, our study revealed the complex regulatory network between BrYV and its vector M. persicae from the perspective of omics. These findings should be of great benefit to screening key factors involved in the process of virus circulation in aphids and provide new insights for BrYV prevention via vector control in the field.

11.
Nat Commun ; 14(1): 3852, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385991

RESUMO

Selective autophagy is a double-edged sword in antiviral immunity and regulated by various autophagy receptors. However, it remains unclear how to balance the opposite roles by one autophagy receptor. We previously identified a virus-induced small peptide called VISP1 as a selective autophagy receptor that facilitates virus infections by targeting components of antiviral RNA silencing. However, we show here that VISP1 can also inhibit virus infections by mediating autophagic degradation of viral suppressors of RNA silencing (VSRs). VISP1 targets the cucumber mosaic virus (CMV) 2b protein for degradation and attenuates its suppression activity on RNA silencing. Knockout and overexpression of VISP1 exhibit compromised and enhanced resistance against late infection of CMV, respectively. Consequently, VISP1 induces symptom recovery from CMV infection by triggering 2b turnover. VISP1 also targets the C2/AC2 VSRs of two geminiviruses and enhances antiviral immunity. Together, VISP1 induces symptom recovery from severe infections of plant viruses through controlling VSR accumulation.


Assuntos
Traumatismos Craniocerebrais , Cucumovirus , Infecções por Citomegalovirus , Humanos , Macroautofagia , Autofagia/genética , Antivirais , Cucumovirus/genética
12.
J Fungi (Basel) ; 9(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37233256

RESUMO

Anastomosis groups (AGs) or subgroups of 244 Rhizoctonia isolates recovered from sugar beet roots with symptoms of root and crown rot were characterized to be AG-A, AG-K, AG-2-2IIIB, AG-2-2IV, AG-3 PT, AG-4HGI, AG-4HGII, and AG-4HGIII, with AG-4HGI (108 isolates, 44.26%) and AG-2-2IIIB (107 isolates, 43.85%) being predominate. Four unclassified mycoviruses and one hundred and one putative mycoviruses belonging to six families, namely Mitoviridae (60.00%), Narnaviridae (18.10%), Partitiviridae (7.62%), Benyviridae (4.76%), Hypoviridae (3.81%), and Botourmiaviridae (1.90%), were found to be present in these 244 Rhizoctonia isolates, most of which (88.57%) contained positive single-stranded RNA genome. The 244 Rhizoctonia isolates were all sensitive to flutolanil and thifluzamide, with average median effective concentration (EC50) value of 0.3199 ± 0.0149 µg·mL-1 and 0.1081 ± 0.0044 µg·mL-1, respectively. Among the 244 isolates, except for 20 Rhizoctonia isolates (seven isolates of AG-A and AG-K, one isolate of AG-4HGI, and 12 isolates of AG-4HGII), 117 isolates of AG-2-2IIIB, AG-2-2IV, AG-3 PT, and AG-4HGIII, 107 isolates of AG-4HGI, and six isolates of AG-4HGII were sensitive to pencycuron, with average EC50 value of 0.0339 ± 0.0012 µg·mL-1. Correlation index (ρ) of cross-resistance level between flutolanil and thifluzamide, flutolanil and pencycuron, and thifluzamide and pencycuron was 0.398, 0.315, and 0.125, respectively. This is the first detailed study on AG identification, mycovirome analysis, and sensitivity to flutolanil, thifluzamide, and pencycuron of Rhizoctonia isolates associated with sugar beet root and crown rot.

13.
Biology (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829481

RESUMO

Viruses are obligate parasites that only undergo genomic replication in their host organisms. ORF3a, a newly identified non-AUG-initiated ORF encoded by members of the genus Polerovirus, is required for long-distance movement in plants. However, its interactions with host proteins still remain unclear. Here, we used Brassica yellows virus (BrYV)-P3a as bait to screen a plant split-ubiquitin-based membrane yeast two-hybrid (MYTH) cDNA library to explain the functional role of P3a in viral infections. In total, 138 genes with annotations were obtained. Bioinformatics analyses revealed that the genes from carbon fixation in photosynthetic, photosynthesis pathways, and MAPK signaling were affected. Furthermore, Arabidopsis thaliana purine permease 14 (AtPUP14), glucosinolate transporter 1 (AtGTR1), and nitrate transporter 1.7 (AtNRT1.7) were verified to interact with P3a in vivo. P3a and these three interacting proteins mainly co-localized in the cytoplasm. Expression levels of AtPUP14, AtGTR1, and AtNRT1.7 were significantly reduced in response to BrYV during the late stages of viral infection. In addition, we characterized the roles of AtPUP14, AtGTR1, and AtNRT1.7 in BrYV infection in A. thaliana using T-DNA insertion mutants, and the pup14, gtr1, and nrt1.7 mutants influenced BrYV infection to different degrees.

14.
J Fungi (Basel) ; 10(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38248940

RESUMO

In the present study, sixteen novel RNA mycoviruses co-infecting a single strain of Rhizoctonia zeae (strain D40) were identified and molecularly characterized using metatranscriptome sequencing combined with a method for rapid amplification of cDNA ends. The fungal strain was isolated from diseased seedlings of sugar beet with damping-off symptoms. Based on genome analysis and phylogenetic analysis of amino acid sequences of RNA-dependent RNA polymerase, the sixteen mycoviruses associated with strain D40 contained three genome types with nine distinct lineages, including positive single-stranded RNA (Hypoviridae, Yadokariviridae, Botourmiaviridae, and Gammaflexiviridae), double-stranded RNA (Phlegiviridae, Megabirnaviridae, Megatotiviridae, and Yadonushiviridae), and negative single-stranded RNA (Tulasviridae), suggesting a complex composition of a mycoviral community in this single strain of R. zeae (strain D40). Full genome sequences of six novel mycoviruses and the nearly full-length sequences of the remaining ten novel mycoviruses were obtained. Furthermore, seven of these sixteen mycoviruses were confirmed to assemble virus particles present in the R. zeae strain D40. To the best of our knowledge, this is the first detailed study of mycoviruses infecting R. zeae.

15.
J Fungi (Basel) ; 8(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35887471

RESUMO

Oligogalacturonides (OGs) are a bioactive carbohydrate derived from homogalacturonan. The OGs synthesized in this study significantly inhibited the mycelial growth of Rhizoctonia solani AG-4HGI in vitro, even at a low concentration (10 mg/L). The seed vigor test demonstrated that the application of 50 mg/L OGs to sugar beet seeds significantly increased average germination percentage, germination energy, germination index, and seedling vigor index. The same concentration of OGs also improved the seedling emergence percentage of sugar beet when seeds were sown in soil inoculated with D2 and D31 isolates, respectively. The lesion diameter on mature sugar beet roots caused by R. solani AG-4HGI isolates D2 and D31 also decreased by 40.60% and 39.86%, respectively, in sugar beets roots first treated with 50 mg/mL OGs in the wound site, relative to lesion size in untreated/pathogen inoculated wounds. Sugar beet roots treated with 50 mg/mL OGs prior to inoculation with the D2 isolate exhibited up-regulation of the defense-related genes glutathione peroxidase (GPX) and superoxide dismutase (SOD) by 2.4- and 1.6-fold, respectively, relative to control roots. Sugar beet roots treated with 50 mg/mL OGs prior to inoculation with D31 exhibited a 2.0- and 1.6-fold up-regulation of GPX and SOD, respectively, relative to the control. Our results indicate that OGs have the potential to be used for the protection of sugar beet against R. solani AG-4HGI.

16.
EMBO J ; 41(13): e110060, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35642376

RESUMO

Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.


Assuntos
Lipoilação , Vírus de Plantas , Nicotiana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
17.
Plant Physiol ; 189(3): 1715-1727, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35325212

RESUMO

Salicylic acid (SA) acts as a signaling molecule to perceive and defend against pathogen infections. Accordingly, pathogens evolve versatile strategies to disrupt the SA-mediated signal transduction, and how plant viruses manipulate the SA-dependent defense responses requires further characterization. Here, we show that barley stripe mosaic virus (BSMV) infection activates the SA-mediated defense signaling pathway and upregulates the expression of Nicotiana benthamiana thioredoxin h-type 1 (NbTRXh1). The γb protein interacts directly with NbTRXh1 in vivo and in vitro. The overexpression of NbTRXh1, but not a reductase-defective mutant, impedes BSMV infection, whereas low NbTRXh1 expression level results in increased viral accumulation. Similar with its orthologs in Arabidopsis (Arabidopsis thaliana), NbTRXh1 also plays an essential role in SA signaling transduction in N. benthamiana. To counteract NbTRXh1-mediated defenses, the BSMV γb protein targets NbTRXh1 to dampen its reductase activity, thereby impairing downstream SA defense gene expression to optimize viral cell-to-cell movement. We also found that NbTRXh1-mediated resistance defends against lychnis ringspot virus, beet black scorch virus, and beet necrotic yellow vein virus. Taken together, our results reveal a role for the multifunctional γb protein in counteracting plant defense responses and an expanded broad-spectrum antibiotic role of the SA signaling pathway.


Assuntos
Vírus de Plantas , Ácido Salicílico , Oxirredutases/metabolismo , Doenças das Plantas , Vírus de Plantas/metabolismo , Ácido Salicílico/metabolismo , Tiorredoxina h/genética , Tiorredoxina h/metabolismo , Nicotiana/metabolismo
18.
Plant Dis ; 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286127

RESUMO

Tobacco streak virus (TSV) is a member of the genus Ilarvirus in the family Bromoviridae (Vinodkumar et al. 2017). TSV is transmitted by thrips, seeds, pollen, and mechanical injury and has a broad host range, causing severe damage to several horticultural, oil and food crops including tobacco, sunflower, peanut, cotton, and soybean (Zambrana-Echevarría et al. 2021). TSV is now distributed mainly in the United States (McDaniel et al. 1992; Zambrana-Echevarría et al. 2021), India (Jain et al. 2008), Iran (Hosseini et al. 2012), Australia (Sharman et al. 2009) and Mexico (Silva-Rosales et al. 2013). Purple coneflower (Echinacea purpurea L.) is widely grown in China as an important herbal ornamental plant. In June 2020, Echinacea purpurea with the symptoms of necrosis lesions, malformation, and stunting were observed in the field of Haidian district, Beijing, China (40°2'69″ N, 116°28'28″ E) (Supplementary Fig. 1A). Total RNA of leaf tissue extracted using the hot borate method (Liang et al. 2020) was used for high-throughput sequencing on Illumina HiSeq X-10 platform at Biomarker Technologies (Beijing, China). Overall, 23,988,298 reads were generated. The final contigs assembled by Mega-Hit (v1.2.9) and Cap3 (Version Date: 02/10/15) were subjected to BLAST against GenBank using BLASTn and BLASTx algorithms. Of these contigs, 297 shared high nucleotide sequence similarities to the genomic sequence of broad bean wilt virus 2, while 9 contigs showed high nt sequence similarities (95-100%) to the genomic sequence of TSV. To confirm the presence of TSV, 30 randomly selected samples from Haidian district (40°2'69″ N, 116°28'28″ E) were tested by the double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using a TSV specific monoclonal antibody (Agdia, SAR 25500/0500), where 18 samples were positive. In addition, total RNAs from 4 DAS-ELISA positive plants were extracted for TSV detection by reverse transcription-polymerase chain reactions (RT-PCR) using primer pair specific for the coat protein gene of TSV (TSV-CP-F, 5'-ATGAATACTTTGATCCAAGGTCC-3'; TSV-CP-R, 5'-TCAGTCTTGATTCACCAGAAAA-3'). The fragment with the expected size (~700 bp) was amplified in all 4 plants (Supplementary Fig. 1B) and subjected to direct Sanger sequencing. The CP gene of TSV CNB isolate was deposited in GenBank (MZ542767) and shared 100% sequence identity at the nucleotide level with the Gyp isolate infecting Ajuga reptans from Australia (JX463347.1). Furthermore, the local lesion host Chenopodium quinoa was used to purify and propagate TSV by mechanical inoculation with infected leaf sap. A pure culture of the TSV CNB isolate was obtained by single local lesion isolation after 3 serial passages on C. quinoa and back inoculated on E. purpurea seedlings. Systemic symptomology including leaf malformation was observed on E. purpurea three weeks post-inoculation (Supplementary Fig. 2A). The existence of TSV in two symptomatic leaf samples of E. purpurea was further verified by RT-PCR using specific primer pair (TSV-CP-F/R) (Supplementary Fig. 2B). In addition, the purified TSV CNB isolate was also inoculated to Nicotiana tabacum (Supplementary Fig. 2C). As previously reported (More et al. 2017), the Nicotiana tabacum plants infected with TSV developed typical streaks in systemic leaves. To the best of our knowledge, this is the first report of TSV on E. purpurea in China. This finding will assist further investigation into the epidemiology of diseases caused by TSV in China. Future studies are required to determine the incidence and impact that TSV might have on E. purpurea and other hosts in China.

19.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216065

RESUMO

P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.


Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologia
20.
Phytopathology ; 112(3): 567-578, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34615378

RESUMO

Thifluzamide, a succinate dehydrogenase (SDH) inhibitor, possesses high activity against Rhizoctonia. In this study, 144 Rhizoctonia solani AG-4 (4HGI, 4HGII, and 4HGIII) isolates, the predominate pathogen associated with sugar beet seedling damping-off, were demonstrated to be sensitive to thifluzamide with a calculated mean median effective concentration of 0.0682 ± 0.0025 µg/ml. Thifluzamide-resistant isolates were generated using fungicide-amended media, resulting in four AG-4HGI isolates and eight AG-4HGII isolates with stable resistance and almost no loss in fitness. Evaluation of cross-resistance of the 12 thifluzamide-resistant isolates and their corresponding parental-sensitive isolates revealed a moderately positive correlation between thifluzamide resistance and the level of resistance to eight other fungicides from three groups, the exception being fludioxonil. An active efflux of fungicide through ATP-binding cassette and major facilitator superfamily transporters was found to be correlated to the resistance of R. solani AG-4HGII isolates to thifluzamide based on RNA-sequencing and quantitative reverse transcription-PCR analyses. Sequence analysis of sdhA, sdhB, sdhC, and sdhD revealed replacement of isoleucine by phenylalanine at position 61 in SDHC in 9 of the 12 generated thifluzamide-resistant isolates. No other mutations were found in any of the other genes. Collectively, the data indicate that the active efflux of fungicide and a point mutation in sdhC may contribute to the resistance of R. solani AG-4HGI and AG-4HGII isolates to thifluzamide in vitro. This is the first characterization of the potential molecular mechanism associated with the resistance of R. solani AG-4 isolates to thifluzamide and provides practical guidance for the use of this fungicide.


Assuntos
Rhizoctonia , Succinato Desidrogenase , Anilidas , Doenças das Plantas , Rhizoctonia/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Ácido Succínico/farmacologia , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA