RESUMO
2D semiconductors show promise as a competitive candidate for developing future integrated circuits due to their immunity to short-channel effects and high carrier mobility at atomic layer thicknesses. The inherent defects and Fermi level pinning effect lead to n-type transport characteristics in most 2D semiconductors, while unstable and unsustainable p-type doping by various strategies hinders their application in many areas, such as complementary metal-oxide-semiconductor (CMOS) devices. In this study, an intralayer/interlayer codoping strategy is introduced that stabilizes p-type doping in 2D semiconductors. By incorporating oppositely charged ions (F and Li) with the intralayer/interlayer of 2D semiconductors, remarkable p-type doping in WSe2 and MoTe2 with air stability up to 9 months is achieved. Notably, the hole mobility presents a 100-fold enhancement (0.7 to 92 cm2 V-1 s-1) with the codoping procedure. Structural and elemental characterizations, combined with theoretical calculations validate the codoping mechanism. Moreover, a CMOS inverter and more complex logic functions such as NOR and XNOR, as well as large-area device arrays are demonstrated to showcase its applications and scalability. These findings suggest that stable and straightforward intralayer/interlayer codoping strategy with charge-space synergy holds the key to unlocking the potential of 2D semiconductors in complex and scalable device applications.
RESUMO
Creating high-quality contacts between high-melting-point metals and delicate two-dimensional (2D) semiconductors poses a critical challenge to polarity control due to inevitable chemical disorder and Fermi-level pinning observed in the contact regions. Here, we report a van der Waals (vdW) integration strategy to precisely tailor the WSe2 polarity by meticulously modulating metal contact compositions. Controlling the low-melting-point bismuth (Bi) thickness effectively modulates the Bi/Au dominant contact with WSe2. This facilitates the precise polarity transformation between n-type, ambipolar, and p-type, with exceptional field-effect mobilities of 200 cm2 V-1 s-1 for electrons and 136 cm2 V-1 s-1 for holes. Within this vdW geometry, we further demonstrate the fundamental electrical components such as diodes and complementary inverters with enhanced rectification ratios and voltage gains. Our results showcase an effective and compatible with mass manufacturing method for precise polarity modulation of 2D semiconductors, providing a promising pathway toward large-scale high-performance 2D electronics and integrated circuits.
RESUMO
Monolayer WTe2 has attracted significant attention for its unconventional superconductivity and topological edge states. However, its air sensitivity poses challenges for studying intrinsic defect structures. This study addresses this issue using a custom-built inert gas interconnected system, and investigate the intrinsic grain boundary (GB) structures of monolayer polycrystalline 1T' WTe2 grown by nucleation-controlled chemical vapor deposition (CVD) method. These findings reveal that GBs in this system are predominantly governed by W-Te rhombi with saturated coordination, resulting in three specific GB prototypes without dislocation cores. The GBs exhibit anisotropic orientations influenced by kinks formed from these fundamental units, which in turn affect the distribution of grains in various shapes within polycrystalline flakes. Scanning tunneling microscopy/spectroscopy (STM/S) analysis further reveals metallic states along the intrinsic 120° twin grain boundary (TGB), consistent with computed band structures. This systematic exploration of GBs in air-sensitive 1T' WTe2 monolayers provides valuable insights into emerging GB-related phenomena.
RESUMO
Skin infection is a major health issue that usually is caused by the continuous proliferation of bacteria in wounds. With the abuse of antibiotics worldwide, the battle against skin infection is becoming more and more difficult. Therefore, the development of new ways with different antibacterial mechanisms to current antibiotics is urgently needed. Inspired by the powerful inhibition of ferroptosis used in cancer therapy, here in our study, ferric-loaded lipid nanoparticles (Fe-LNPs) with unform size (â¼130 nm) and surface charge (â¼12 mV) were constructed and found to effectively inhibit the growth of both Gram positive (Staphylococcus aureus, S. aureus) and negative (Escherichia coli, E. coli) strains, possibly due to induction of ferroptosis-like cell death mechanisms. Most importantly, Fe-LNPs can also effectively inhibit the proliferation of S. aureus in a skin infection model and promote the healing of wounds. The Fe-LNPs can be applied as a powerful antibacterial formulation for future application in clinic.
Assuntos
Ferroptose , Staphylococcus aureus , Escherichia coli , Cicatrização , Eletrólitos , Antibacterianos/farmacologia , Morte CelularRESUMO
PURPOSE: To evaluate the agreement of 4D flow cMRI-derived bulk flow features and fluid (blood) velocities in the carotid bifurcation using prospective and retrospective gating techniques. METHODS: Prospective and retrospective ECG-gated three-dimensional (3D) cine phase-contrast cardiac MRI with three-direction velocity encoding (i.e., 4D flow cMRI) data were acquired in ten carotid bifurcations from men (n = 3) and women (n = 2) that were cardiovascular disease-free. MRI sequence parameters were held constant across all scans except temporal resolution values differed. Velocity data were extracted from the fluid domain and evaluated across the entire volume or at defined anatomic planes (common, internal, external carotid arteries). Qualitative agreement between gating techniques was performed by visualizing flow streamlines and topographical images, and statistical comparisons between gating techniques were performed across the fluid volume and defined anatomic regions. RESULTS: Agreement in the kinematic data (e.g., bulk flow features and velocity data) were observed in the prospectively and retrospectively gated acquisitions. Voxel differences in time-averaged, peak systolic, and diastolic-averaged velocity magnitudes between gating techniques across all volunteers were 2.7%, 1.2%, and 6.4%, respectively. No significant differences in velocity magnitudes or components ([Formula: see text], [Formula: see text], [Formula: see text]) were observed. Importantly, retrospective acquisitions captured increased retrograde flow in the internal carotid artery (i.e., carotid sinus) compared to prospective acquisitions (10.4 ± 6.3% vs. 4.6 ± 5.3%; [Formula: see text] < 0.05). CONCLUSION: Prospective and retrospective ECG-gated 4D flow cMRI acquisitions provide comparable evaluations of fluid velocities, including velocity vector components, in the carotid bifurcation. However, the increased temporal coverage of retrospective acquisitions depicts increased retrograde flow patterns (i.e., disturbed flow) not captured by the prospective gating technique.
Assuntos
Artérias Carótidas , Imageamento por Ressonância Magnética , Masculino , Humanos , Feminino , Estudos Retrospectivos , Estudos Prospectivos , Velocidade do Fluxo Sanguíneo , Imageamento por Ressonância Magnética/métodos , Artérias Carótidas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Reprodutibilidade dos TestesRESUMO
Emerging functionalities in two-dimensional materials, such as ferromagnetism, superconductivity and ferroelectricity, open new avenues for promising nanoelectronic applications. Here, we report the discovery of intrinsic in-plane room-temperature ferroelectricity in two-dimensional Bi2TeO5 grown by chemical vapor deposition, where spontaneous polarization originates from Bi column displacements. We found an intercalated buffer layer consist of mixed Bi/Te column as 180° domain wall which enables facile polarized domain engineering, including continuously tunable domain width by pinning different concentration of buffer layers, and even ferroelectric-antiferroelectric phase transition when the polarization unit is pinned down to single atomic column. More interestingly, the intercalated Bi/Te buffer layer can interconvert to polarized Bi columns which end up with series terraced domain walls and unusual fan-shaped ferroelectric domain. The buffer layer induced size and shape tunable ferroelectric domain in two-dimensional Bi2TeO5 offer insights into the manipulation of functionalities in van der Waals materials for future nanoelectronics.
RESUMO
2H-1T' MoTe2 van der Waals heterostructures (vdWHs) have promising applications in optoelectronics due to a seamlessly homogeneous semiconductor-metal coupled interface. However, the existing methods to fabricate such vdWHs involved complicated steps that may deteriorate the interfacial coupling and are also lacking precise thickness control capability. Here, a one-step growth method was developed to controllably grow bilayer 2H-1T' MoTe2 vdWHs in the small growth window overlapped for both phases. Atomic-resolution low-voltage transmission electron microscopy shows the distinct moiré patterns in the bilayer vdWHs, revealing the epitaxial nature of the top 2H phase with the lattice parameters regulated by the underneath 1T' phase. Such epitaxially stacked bilayer vdWHs modulate the interlayer coupling by resonating their vibration modes, as unveiled by the angle-resolved polarized Raman spectroscopy and first-principles calculations.
RESUMO
Screw dislocation is important not only for understanding plastic deformation of crystals but also for optical and electrical properties of materials. However, characterizations of screw dislocations are still challenging since there is almost no atom distortion when viewed along the dislocation line. In particular, although it is theoretically known that shear strains in heteroepitaxy systems may be relaxed via screw dislocation grids, the specific structures and thickness-dependent evolutions of these grids are still largely unknown. Here, by using orthorhombic [001]-oriented DyScO3 substrates we have directly observed large-scale screw dislocation grids in the DyScO3/BiFeO3 oxide heteroepitaxies exhibiting large shear strain. Pure screw dislocations with a[100] and a[01Ì 0] Burgers vectors were confirmed by multiscale transmission electron microscopy study. Our results directly confirm screw dislocation grids as a factor to tailor shear strains in epitaxial systems and suggest a practical platform for studying structures and induced responses corresponding to screw dislocations.
RESUMO
Intrinsic antiferromagnetism in van der Waals (vdW) monolayer (ML) crystals enriches our understanding of two-dimensional (2D) magnetic orders and presents several advantages over ferromagnetism in spintronic applications. However, studies of 2D intrinsic antiferromagnetism are sparse, owing to the lack of net magnetisation. Here, by combining spin-polarised scanning tunnelling microscopy and first-principles calculations, we investigate the magnetism of vdW ML CrTe2, which has been successfully grown through molecular-beam epitaxy. We observe a stable antiferromagnetic (AFM) order at the atomic scale in the ML crystal, whose bulk is ferromagnetic, and correlate its imaged zigzag spin texture with the atomic lattice structure. The AFM order exhibits an intriguing noncollinear spin reorientation under magnetic fields, consistent with its calculated moderate magnetic anisotropy. The findings of this study demonstrate the intricacy of 2D vdW magnetic materials and pave the way for their in-depth analysis.
RESUMO
Probing large-scale intrinsic structure of air-sensitive 2D materials with atomic resolution is so far challenging due to their rapid oxidization and contamination. Here, by keeping the whole experiment including growth, transfer, and characterizations in an interconnected atmosphere-control environment, the large-scale intact lattice structure of air-sensitive monolayer 1T'-WTe2 is directly visualized by atom-resolved scanning transmission electron microscopy. Benefit from the large-scale atomic mapping, collective lattice distortions are further unveiled due to the presence of anisotropic rippling, which propagates perpendicular to only one of the preferential lattice planes in the same WTe2 monolayer. Such anisotropic lattice rippling modulates the intrinsic point defect (Te vacancy) distribution, in which they aggregate at the constrictive inner side of the undulating structure, presumably due to the ripple-induced asymmetric strain as elaborated by density functional theory. The results pave the way for atomic characterizations and defect engineering of air-sensitive 2D layered materials.
RESUMO
Wrinkling two-dimensional (2D) transition metal dichalcogenides (TMDCs) provides a mechanism to adjust the physical and chemical properties as per need. Traditionally, TMDCs wrinkles achieved by transferring exfoliated materials on prestretched polymer suffer from poor control and limited sample area, which significantly hinders desirable applications. Herein, we fabricate large-area monolayer TMDCs wrinkle arrays directly on the m-quartz substrate using strained epitaxy. The uniaxial thermal expansion coefficient mismatch between the substrate and TMDCs materials enables the generation of large uniaxial thermal strain. By quenching the TMDCs after growth, this uniaxial thermal strain can be quickly released as a form of wrinkle arrays along the [0001]quartz direction. Using WS2 as a model system, the size of as-grown wrinkles can be finely modulated within sub-100 nm by changing the quenching temperature. These WS2 wrinkles can be locally folded and form various multilayer structures with odd layer numbers during the transfer process. Besides, the corrugated structures in WS2 wrinkles induce significant changes to optical properties including anisotropic Raman response, enhanced photoluminescence, and second harmonic generation emissions. Furthermore, these wrinkle arrays exhibit enhanced chemical reactivity that can be selectively engineered to ribbon arrays with improved electrocatalytic performance. The developed strategy of strained epitaxy here should enable flexibility in the design of more sophisticated 2D-based structures, offering a simple but effective way toward the modulation of properties with enhanced performances.
RESUMO
This article presents a comprehensive study of rendering techniques for 3D line sets with transparency. The rendering of transparent lines is widely used for visualizing trajectories of tracer particles in flow fields. Transparency is then used to fade out lines deemed unimportant, based on, for instance, geometric properties or attributes defined along with them. Accurate blending of transparent lines requires rendering the lines in back-to-front or front-to-back order, yet enforcing this order for space-filling 3D line sets with extremely high-depth complexity becomes challenging. In this article, we study CPU and GPU rendering techniques for transparent 3D line sets. We compare accurate and approximate techniques using optimized implementations and several benchmark data sets. We discuss the effects of data size and transparency on quality, performance, and memory consumption. Based on our study, we propose two improvements to per-pixel fragment lists and multi-layer alpha blending. The first improves the rendering speed via an improved GPU sorting operation, and the second improves rendering quality via transparency-based bucketing.
RESUMO
[This corrects the article on p. 3858 in vol. 12, PMID: 32774740.].
RESUMO
NSUN5, a gene encodes a cytosine-5 RNA methyltransferase, is rarely mentioned in cancers. Our study is the first one to evaluate the role of NSUN5 in the progression of colorectal cancer. Data from TCGA was used to show the different expression of NSUN5 between CRC tumor tissues and adjacent normal ones. The NSUN5 expression in the tissue microarray was detected by immunohistochemistry (IHC). qRT-PCR was conducted for NSUN5 expression examination in CRC cell lines. Cell proliferation was analyzed by the Celigo machine. GESA and correlation analysis were performed to reveal the possible underlying mechanism. The effects of NSUN5 expression on CRC cell behavior in vitro were analyzed by flow cytometry and ß-galactosidase staining. The expression of cell-cycle related proteins were evaluated by western blot. Subcutaneously implanted tumor model was carried out for animal experiment. NSUN5 expression was up-regulated in CRC tumor tissues and cells, and associated with advanced tumor stages (III, IV). NSUN5 could promote cell proliferation, trigger cell cycle arrest in vitro and boost tumor growth in vivo. In addition, knockdown of NSUN5 could lead to a higher expression of Rb and a lower expression of CDK4, CDK6, p-Rb and CCNE1, but made no difference on P21, Bcl-2, caspase3 and C-Caspase3 of CRC cells. Taken together, we identify NSUN5 as a promoter in CRC development via cell cycle regulation.
RESUMO
MnBi2Te4 is an antiferromagnetic topological insulator that has stimulated intense interest due to its exotic quantum phenomena and promising device applications. The surface structure is a determinant factor to understand the magnetic and topological behavior of MnBi2Te4, yet its precise atomic structure remains elusive. Here we discovered a surface collapse and reconstruction of few-layer MnBi2Te4 exfoliated under delicate protection. Instead of the ideal septuple-layer structure in the bulk, the collapsed surface is shown to reconstruct as a Mn-doped Bi2Te3 quintuple layer and a MnxBiyTe double layer with a clear van der Waals gap in between. Combined with first-principles calculations, such surface collapse is attributed to the abundant intrinsic Mn-Bi antisite defects and the tellurium vacancy in the exfoliated surface, which is further supported by in situ annealing and electron irradiation experiments. Our results shed light on the understanding of the intricate surface-bulk correspondence of MnBi2Te4 and provide an insightful perspective on the surface-related quantum measurements in MnBi2Te4 few-layer devices.
RESUMO
Background: Clear cell renal cell carcinoma (ccRCC) is a common type of malignant tumors in urinary system. Evaluating the prognostic outcome at the time of initial diagnosis is essential for patients. Autophagy is known to play a significant role in tumors. Here, we attempted to construct an autophagy-related prognostic risk signature based on the expression profile of autophagy-related genes (ARGs) for predicting the long-term outcome and effect of precise treatments for ccRCC patients. Methods: We obtained the expression profile of ccRCC from the cancer genome atlas (TCGA) database and extract the portion of ARGs. We conducted differentially expressed analysis on ARGs and then performed enrichment analyses to confirm the anomalous autophagy-related biological functions. Then, we performed univariate Cox regression to screen out overall survival (OS)-related ARGs. With these genes, we established an autophagy-related risk signature by least absolute shrinkage and selection operator (LASSO) Cox regression. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis, survival analysis, clinic correlation analysis, and Cox regression. Then we analyzed the function of each gene in the signature by single-gene gene set enrichment analysis (GSEA). Finally, we analyzed the correlation between our risk score and expression level of several targets of immunotherapy and targeted therapy. Results: We established a seven-gene prognostic risk signature, according to which we could divide patients into high or low risk groups and predict their outcomes. ROC analysis and survival analysis validated the reliability of the signature. Clinic correlation analysis found that the risk group is significantly correlated with severity of ccRCC. Multivariate Cox regression revealed that the risk score could act as an independent predictor for the prognosis of ccRCC patients. Correlation analysis between risk score and targets of precise treatments showed that our risk signature could predict the effects of precise treatment powerfully. Conclusion: Our study provided a brand new autophagy-related seven-gene prognostic risk signature, which could perform as a prognostic indicator for ccRCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and suggest therapeutic strategies in the category of precise treatment in ccRCC.
RESUMO
We present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our approach within the OSPRay ray tracing framework, and evaluate it on a range of interactive visualization use cases of fixed- and varying-radius streamlines, pathlines, complex neuron morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality rendering, with low memory overhead.
RESUMO
Controlling domain width, orientation, and patterns in oxide ferroelectrics are not only important for fundamental research but also for potential electronic application. Here, a series of PbTiO3 thin films under various cooling rates were deposited on (110)-oriented NdScO3 substrates by pulsed laser deposition and investigated by using conventional transmission electron microscopy, Cs-corrected scanning TEM and piezoresponse force microscopy. Contrast analysis and electron diffraction revealed that PbTiO3 films are a1/a2 domain patterns under large tensile strains with different cooling rates. The a1/a2 domains distribute periodically and the domain width increases with decrease in the cooling rates. Upon increasing the cooling rate, the domain density increases and the domain configurations become complicated. There are special square frame-like domain patterns with charged domain walls found in the PTO films with the fast cooling rate. PFM measurement shows that the PTO films with high cooling rate exhibit enhanced piezoresponse behavior which is ascribed to the high density domain/domain walls and special domain configurations. The formation mechanism of the different domain configurations is discussed in terms of the effect of cooling rates, defects and thermal kinetics. These results are expected to provide useful information for domain/domain wall control and thus facilitate further modulation of the properties for potential applications.
RESUMO
Strongly correlated oxides exhibit multiple degrees of freedoms, which can potentially mediate exotic phases with exciting physical properties, such as the polar vortex recently found in ferroelectric oxide films. A polar vortex is stabilized by competition between charge, lattice, and/or orbital degrees of freedom, which displays vortex-ferroelectric phase transitions and emergent chirality, making it a potential candidate for designing information storage and processing devices. Here, by a combination of controlled film growth and aberration-corrected scanning transmission electron microscopy, we obtain nanoscale vortex arrays in [110]-oriented BiFeO3 films. These vortex arrays are stabilized in ultrathin BiFeO3 layers sandwiched by two coherently grown orthorhombic scandate layers, exhibiting a ferroelectric morphotropic phase boundary constituted by a mixed-phase structure of polar orthorhombic BiFeO3 and rhombohedral BiFeO3. Clear polarization switching and piezoelectric signals were observed in these multilayers as revealed by piezoresponse force microscopy. This work presents a feature of a polar vortex in BiFeO3 films showing morphotropic phase boundary character, which offers a potential degree of manipulating phase components and properties of ferroelectric topological structures.
RESUMO
Oxygen vacancy configurations and concentration are coupled with the magnetic, electronic, and transport properties of perovskite oxides, and manipulating the physical properties by tuning the vacancy structures of thin films is crucial for applications in many functional devices. In this study, we report a direct atomic resolution observation of the preferred orientation of vacancy ordering structure in the epitaxial LaCoO3- x (LCO) thin films under various strains from large compressive to large tensile strain utilizing scanning transmission electron microscopy (STEM). Under compressive strains, the oxygen vacancy ordering prefers to be along the planes parallel to the heterointerface. Changing the strains from compressive to tensile, the oxygen vacancy planes turn to be perpendicular to the heterointerface. Aberration-corrected STEM images, electron diffractions, and X-ray diffraction combined with X-ray photoelectron spectroscopy demonstrate that the vacancy concentration increases with increasing misfit strains and vacancy distribution is more ordered and homogeneous. The temperature-dependent magnetization curves show the Curie temperature increases, displaying a positive correlation with the misfit strains. With change in the strain from compressive to tensile, anisotropy fields vary and show large values under tensile strains. It is proposed that oxygen vacancy concentration and preferred ordering planes are responsible for the enhanced magnetic properties of LCO films. Our results have realized a controllable preparation of oxygen vacancy ordering structures via strains and thus provide an effective method to regulate and optimize the physical properties such as magnetic properties by strain engineering.