Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37050517

RESUMO

In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions.

2.
Med Phys ; 50(5): 2607-2624, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906915

RESUMO

BACKGROUND: Image-guided neurosurgery requires high localization and registration accuracy to enable effective treatment and avoid complications. However, accurate neuronavigation based on preoperative magnetic resonance (MR) or computed tomography (CT) images is challenged by brain deformation occurring during the surgical intervention. PURPOSE: To facilitate intraoperative visualization of brain tissues and deformable registration with preoperative images, a 3D deep learning (DL) reconstruction framework (termed DL-Recon) was proposed for improved intraoperative cone-beam CT (CBCT) image quality. METHODS: The DL-Recon framework combines physics-based models with deep learning CT synthesis and leverages uncertainty information to promote robustness to unseen features. A 3D generative adversarial network (GAN) with a conditional loss function modulated by aleatoric uncertainty was developed for CBCT-to-CT synthesis. Epistemic uncertainty of the synthesis model was estimated via Monte Carlo (MC) dropout. Using spatially varying weights derived from epistemic uncertainty, the DL-Recon image combines the synthetic CT with an artifact-corrected filtered back-projection (FBP) reconstruction. In regions of high epistemic uncertainty, DL-Recon includes greater contribution from the FBP image. Twenty paired real CT and simulated CBCT images of the head were used for network training and validation, and experiments evaluated the performance of DL-Recon on CBCT images containing simulated and real brain lesions not present in the training data. Performance among learning- and physics-based methods was quantified in terms of structural similarity (SSIM) of the resulting image to diagnostic CT and Dice similarity metric (DSC) in lesion segmentation compared to ground truth. A pilot study was conducted involving seven subjects with CBCT images acquired during neurosurgery to assess the feasibility of DL-Recon in clinical data. RESULTS: CBCT images reconstructed via FBP with physics-based corrections exhibited the usual challenges to soft-tissue contrast resolution due to image non-uniformity, noise, and residual artifacts. GAN synthesis improved image uniformity and soft-tissue visibility but was subject to error in the shape and contrast of simulated lesions that were unseen in training. Incorporation of aleatoric uncertainty in synthesis loss improved estimation of epistemic uncertainty, with variable brain structures and unseen lesions exhibiting higher epistemic uncertainty. The DL-Recon approach mitigated synthesis errors while maintaining improvement in image quality, yielding 15%-22% increase in SSIM (image appearance compared to diagnostic CT) and up to 25% increase in DSC in lesion segmentation compared to FBP. Clear gains in visual image quality were also observed in real brain lesions and in clinical CBCT images. CONCLUSIONS: DL-Recon leveraged uncertainty estimation to combine the strengths of DL and physics-based reconstruction and demonstrated substantial improvements in the accuracy and quality of intraoperative CBCT. The improved soft-tissue contrast resolution could facilitate visualization of brain structures and support deformable registration with preoperative images, further extending the utility of intraoperative CBCT in image-guided neurosurgery.


Assuntos
Aprendizado Profundo , Humanos , Projetos Piloto , Incerteza , Tomografia Computadorizada de Feixe Cônico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
3.
Phys Med Biol ; 67(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36240761

RESUMO

Purpose. The goal of this work is to create an active shape model segmentation method based on the statistical shape model of five regions of the globe on computed tomography (CT) scans and to use the method to categorize normal globe from globe injury.Methods. A set of 78 normal globes imaged with CT scans were manually segmented (vitreous cavity, lens, sclera, anterior chamber, and cornea) by two graders. A statistical shape model was created from the regions. An active shape model was trained using the manual segmentations and the statistical shape model and was assessed using leave-one-out cross validations. The active shape model was then applied to a set of globes with open globe injures, and the segmentations were compared to those of normal globes, in terms of the standard deviations away from normal.Results. The active shape model (ASM) segmentation compared well to ground truth, based on Dice similarity coefficient score in a leave-one-out experiment: 90.2% ± 2.1% for the cornea, 92.5% ± 3.5% for the sclera, 87.4% ± 3.7% for the vitreous cavity, 83.5% ± 2.3% for the anterior chamber, and 91.2% ± 2.4% for the lens. A preliminary set of CT scans of patients with open globe injury were segmented using the ASM and the shape of each region was quantified. The sclera and vitreous cavity were statistically different in shape from the normal. The Zone 1 and Zone 2 globes were statistically different than normal from the cornea and anterior chamber. Both results are consistent with the definition of the zonal injuries in OGI.Conclusion. The ASM results were found to be reproducible and accurately correlated with manual segmentations. The quantitative metrics derived from ASM of globes with OGI are consistent with existing medical knowledge in terms of structural deformation.


Assuntos
Cristalino , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Esclera/diagnóstico por imagem , Cristalino/diagnóstico por imagem , Modelos Estatísticos
4.
IEEE Trans Med Robot Bionics ; 4(1): 28-37, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35368731

RESUMO

Conventional neuro-navigation can be challenged in targeting deep brain structures via transventricular neuroendoscopy due to unresolved geometric error following soft-tissue deformation. Current robot-assisted endoscopy techniques are fairly limited, primarily serving to planned trajectories and provide a stable scope holder. We report the implementation of a robot-assisted ventriculoscopy (RAV) system for 3D reconstruction, registration, and augmentation of the neuroendoscopic scene with intraoperative imaging, enabling guidance even in the presence of tissue deformation and providing visualization of structures beyond the endoscopic field-of-view. Phantom studies were performed to quantitatively evaluate image sampling requirements, registration accuracy, and computational runtime for two reconstruction methods and a variety of clinically relevant ventriculoscope trajectories. A median target registration error of 1.2 mm was achieved with an update rate of 2.34 frames per second, validating the RAV concept and motivating translation to future clinical studies.

5.
J Med Imaging (Bellingham) ; 8(3): 035001, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34124283

RESUMO

Purpose: A method for fluoroscopic guidance of a robotic assistant is presented for instrument placement in pelvic trauma surgery. The solution uses fluoroscopic images acquired in standard clinical workflow and helps avoid repeat fluoroscopy commonly performed during implant guidance. Approach: Images acquired from a mobile C-arm are used to perform 3D-2D registration of both the patient (via patient CT) and the robot (via CAD model of a surgical instrument attached to its end effector, e.g; a drill guide), guiding the robot to target trajectories defined in the patient CT. The proposed approach avoids C-arm gantry motion, instead manipulating the robot to acquire disparate views of the instrument. Phantom and cadaver studies were performed to determine operating parameters and assess the accuracy of the proposed approach in aligning a standard drill guide instrument. Results: The proposed approach achieved average drill guide tip placement accuracy of 1.57 ± 0.47 mm and angular alignment of 0.35 ± 0.32 deg in phantom studies. The errors remained within 2 mm and 1 deg in cadaver experiments, comparable to the margins of errors provided by surgical trackers (but operating without the need for external tracking). Conclusions: By operating at a fixed fluoroscopic perspective and eliminating the need for encoded C-arm gantry movement, the proposed approach simplifies and expedites the registration of image-guided robotic assistants and can be used with simple, non-calibrated, non-encoded, and non-isocentric C-arm systems to accurately guide a robotic device in a manner that is compatible with the surgical workflow.

6.
J Med Imaging (Bellingham) ; 7(3): 035001, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32411814

RESUMO

Purpose: Measurement of global spinal alignment (GSA) is an important aspect of diagnosis and treatment evaluation for spinal deformity but is subject to a high level of inter-reader variability. Approach: Two methods for automatic GSA measurement are proposed to mitigate such variability and reduce the burden of manual measurements. Both approaches use vertebral labels in spine computed tomography (CT) as input: the first (EndSeg) segments vertebral endplates using input labels as seed points; and the second (SpNorm) computes a two-dimensional curvilinear fit to the input labels. Studies were performed to characterize the performance of EndSeg and SpNorm in comparison to manual GSA measurement by five clinicians, including measurements of proximal thoracic kyphosis, main thoracic kyphosis, and lumbar lordosis. Results: For the automatic methods, 93.8% of endplate angle estimates were within the inter-reader 95% confidence interval ( CI 95 ). All GSA measurements for the automatic methods were within the inter-reader CI 95 , and there was no statistically significant difference between automatic and manual methods. The SpNorm method appears particularly robust as it operates without segmentation. Conclusions: Such methods could improve the reproducibility and reliability of GSA measurements and are potentially suitable to applications in large datasets-e.g., for outcome assessment in surgical data science.

7.
J Med Imaging (Bellingham) ; 7(3): 031502, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32090136

RESUMO

Purpose: Data-intensive modeling could provide insight on the broad variability in outcomes in spine surgery. Previous studies were limited to analysis of demographic and clinical characteristics. We report an analytic framework called "SpineCloud" that incorporates quantitative features extracted from perioperative images to predict spine surgery outcome. Approach: A retrospective study was conducted in which patient demographics, imaging, and outcome data were collected. Image features were automatically computed from perioperative CT. Postoperative 3- and 12-month functional and pain outcomes were analyzed in terms of improvement relative to the preoperative state. A boosted decision tree classifier was trained to predict outcome using demographic and image features as predictor variables. Predictions were computed based on SpineCloud and conventional demographic models, and features associated with poor outcome were identified from weighting terms evident in the boosted tree. Results: Neither approach was predictive of 3- or 12-month outcomes based on preoperative data alone in the current, preliminary study. However, SpineCloud predictions incorporating image features obtained during and immediately following surgery (i.e., intraoperative and immediate postoperative images) exhibited significant improvement in area under the receiver operating characteristic (AUC): AUC = 0.72 ( CI 95 = 0.59 to 0.83) at 3 months and AUC = 0.69 ( CI 95 = 0.55 to 0.82) at 12 months. Conclusions: Predictive modeling of lumbar spine surgery outcomes was improved by incorporation of image-based features compared to analysis based on conventional demographic data. The SpineCloud framework could improve understanding of factors underlying outcome variability and warrants further investigation and validation in a larger patient cohort.

8.
J Med Imaging (Bellingham) ; 6(4): 044008, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31853461

RESUMO

Convolutional neural networks (CNNs) offer a promising means to achieve fast deformable image registration with accuracy comparable to conventional, physics-based methods. A persistent question with CNN methods, however, is whether they will be able to generalize to data outside of the training set. We investigated this question of mismatch between train and test data with respect to first- and second-order image statistics (e.g., spatial resolution, image noise, and power spectrum). A UNet-based architecture was built and trained on simulated CT images for various conditions of image noise (dose), spatial resolution, and deformation magnitude. Target registration error was measured as a function of the difference in statistical properties between the test and training data. Generally, registration error is minimized when the training data exactly match the statistics of the test data; however, networks trained with data exhibiting a diversity in statistical characteristics generalized well across the range of statistical conditions considered. Furthermore, networks trained on simulated image content with first- and second-order statistics selected to match that of real anatomical data were shown to provide reasonable registration performance on real anatomical content, offering potential new means for data augmentation. Characterizing the behavior of a CNN in the presence of statistical mismatch is an important step in understanding how these networks behave when deployed on new, unobserved data. Such characterization can inform decisions on whether retraining is necessary and can guide the data collection and/or augmentation process for training.

9.
IEEE Trans Med Imaging ; 38(9): 2016-2027, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30932834

RESUMO

Soft-tissue deformation presents a confounding factor to rigid image registration by introducing image content inconsistent with the underlying motion model, presenting non-correspondent structure with potentially high power, and creating local minima that challenge iterative optimization. In this paper, we introduce a model for registration performance that includes deformable soft tissue as a power-law noise distribution within a statistical framework describing the Cramer-Rao lower bound (CRLB) and root-mean-squared error (RMSE) in registration performance. The model incorporates both cross-correlation and gradient-based similarity metrics, and the model was tested in application to 3D-2D (CT-to-radiograph) and 3D-3D (CT-to-CT) image registration. Predictions accurately reflect the trends in registration error as a function of dose (quantum noise), and the choice of similarity metrics for both registration scenarios. Incorporating soft-tissue deformation as a noise source yields important insight on the limits of registration performance with respect to algorithm design and the clinical application or anatomical context. For example, the model quantifies the advantage of gradient-based similarity metrics in 3D-2D registration, identifies the low-dose limits of registration performance, and reveals the conditions for which the registration performance is fundamentally limited by soft-tissue deformation.


Assuntos
Imageamento Tridimensional/métodos , Modelos Estatísticos , Tomografia Computadorizada por Raios X/métodos , Humanos , Vértebras Lombares/diagnóstico por imagem
10.
Ann Biomed Eng ; 46(10): 1548-1557, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30051244

RESUMO

Recent work has yielded a method for automatic labeling of vertebrae in intraoperative radiographs as an assistant to manual level counting. The method, called LevelCheck, previously demonstrated promise in phantom studies and retrospective studies. This study aims to: (#1) Analyze the effect of LevelCheck on accuracy and confidence of localization in two modes: (a) Independent Check (labels displayed after the surgeon's decision) and (b) Active Assistant (labels presented before the surgeon's decision). (#2) Assess the feasibility and utility of LevelCheck in the operating room. Two studies were conducted: a laboratory study investigating these two workflow implementations in a simulated operating environment with 5 surgeons, reviewing 62 cases selected from a dataset of radiographs exhibiting a challenge to vertebral localization; and a clinical study involving 20 patients undergoing spine surgery. In Study #1, the median localization error without assistance was 30.4% (IQR = 5.2%) due to the challenging nature of the cases. LevelCheck reduced the median error to 2.4% for both the Independent Check and Active Assistant modes (p < 0.01). Surgeons found LevelCheck to increase confidence in 91% of cases. Study #2 demonstrated accuracy in all cases. The algorithm runtime varied from 17 to 72 s in its current implementation. The algorithm was shown to be feasible, accurate, and to improve confidence during surgery.


Assuntos
Algoritmos , Tomada de Decisões Assistida por Computador , Procedimentos Neurocirúrgicos/métodos , Medula Espinal/diagnóstico por imagem , Medula Espinal/cirurgia , Pesquisa Translacional Biomédica/métodos , Humanos , Procedimentos Neurocirúrgicos/instrumentação , Pesquisa Translacional Biomédica/instrumentação
11.
IEEE Trans Med Imaging ; 36(10): 1997-2009, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28708549

RESUMO

For image-guided procedures, the imaging task is often tied to the registration of intraoperative and preoperative images to a common coordinate system. While the accuracy of this registration is a vital factor in system performance, there is a relatively little work that relates registration accuracy to image quality factors, such as dose, noise, and spatial resolution. To create a theoretical model for such a relationship, we present a Fisher information approach to analyze registration performance in explicit dependence on the underlying image quality factors of image noise, spatial resolution, and signal power spectrum. The model yields analysis of the Cramer-Rao lower bound (CRLB), in registration accuracy as a function of factors governing image quality. Experiments were performed in simulation of computed tomography low-contrast soft tissue images and high-contrast bone (head and neck) images to compare the measured accuracy [root mean squared error (RMSE) of the estimated transformations] with the theoretical lower bound. Analysis of the CRLB reveals that registration performance is closely related to the signal-to-noise ratio of the cross-correlation space. While the lower bound is optimistic, it exhibits consistent trends with experimental findings and yields a method for comparing the performance of various registration methods and similarity metrics. Further analysis validated a method for determining optimal post-processing (image filtering) for registration. Two figures of merit (CRLB and RMSE) are presented that unify models of image quality with registration performance, providing an important guide to optimizing intraoperative imaging with respect to the task of registration.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Cabeça/diagnóstico por imagem , Humanos , Modelos Biológicos , Imagens de Fantasmas , Terapia Assistida por Computador
12.
Nanoscale Res Lett ; 12(1): 37, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28091948

RESUMO

In this paper, resistive random access memory (RRAM)-based crossbar arrays with the cell structure of Pt/[AlO y /HfO x ] m /TiN were fabricated by using atomic layer deposition (ALD) technique. The RRAM devices in the arrays show excellent performances such as good uniformity and high reliability. Based on the fabricated RRAM array, a complete set of basic logic operations including NOR and XNOR were successfully demonstrated.

13.
Adv Mater ; 28(44): 9758-9764, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717010

RESUMO

Resistance switching (RS) devices have potential to offer computing and memory function. A new computer unit is built of RS array, where processing and storing of information occur on same devices. Resistance states stored in devices located in arbitrary positions of RS array can be performed various nonvolatile logic operations. Logic functions can be reconfigured by altering trigger signals.

14.
Angew Chem Int Ed Engl ; 55(7): 2540-4, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26756398

RESUMO

Vinyl azide with a pendent diene can undergo thermal decomposition to a related azirine intermediate, which was used immediately in an intramolecular aza-Diels-Alder reaction to furnish an aziridine-containing trans-fused tricyclic core structure with excellent stereoselectivity. The method provides a facile entry to complex polycyclic alkaliods which can be further elaborated by ring-opening reactions and ring expansion of the aziridine moiety, as well as by dihydroxylation of the alkene group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA