Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Med Technol ; 6: 1388207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770028

RESUMO

Introduction: Numerical simulations have demonstrated the superior bending flexibility of auxetic stents compared to conventional stent designs for endovascular procedures. However, conventional stent manufacturing techniques struggle to produce complex auxetic stent designs, fueling the adoption of additive manufacturing techniques. Methods: In this study, we employed DMLS additive manufacturing to create Titanium Ti64 alloy stent prototypes based on auxetic stent designs investigated in a previous study. These prototypes were then subjected to experimental three-point bending tests. Result: The experimental results were replicated using a finite element model, which showed remarkable accuracy in predicting the bending flexibility of four auxetic stents and two conventional stents. Discussion: Although this validation study demonstrates the promising potential of DMLS and other additive manufacturing methods for fabricating auxetic stents, further optimization of current stent design limitations and the incorporation of post-processing techniques are essential to enhance the reliability of these additive manufacturing processes.

2.
Cardiovasc Eng Technol ; 15(2): 199-210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110763

RESUMO

PURPOSE: Inappropriate stent-graft (SG) flexibility has been frequently associated with endovascular aortic repair (EVAR) complications such as endoleaks, kinks, and SG migration, especially in tortuous arteries. Stents derived from auxetic unit cells have shown some potential to address these issues as they offer an optimum trade-off between radial stiffness and bending flexibility. METHODS: In this study, we utilized an established finite element (FE)-based approach to replicate the mechanical response of a SG iliac limb derived from auxetic unit cells in a virtual tortuous iliac aneurysm using a combination of a 180° U-bend and intraluminal pressurization. This study aimed to compare the mechanical performance (flexibility and durability) of SG limbs derived from auxetic unit cells and two commercial SG limbs (Z-stented SG and circular-stented SG models) in a virtual tortuous iliac aneurysm. Maximal graft strain and maximum stress in stents were employed as criteria to estimate the durability of SGs, whereas the maximal luminal reduction rate and the bending stiffness were used to assess the flexibility of the SGs. RESULTS: SG limbs derived from auxetic unit cells demonstrated low luminal reduction (range 4-12%) with no kink, in contrast to Z-stented SG, which had a kink in its central area alongside a high luminal reduction (44%). CONCLUSIONS: SG limbs derived from auxetic unit cells show great promise for EVAR applications even at high angulations such as 180°, with acceptable levels of durability and flexibility.


Assuntos
Implante de Prótese Vascular , Prótese Vascular , Procedimentos Endovasculares , Análise de Elementos Finitos , Modelos Cardiovasculares , Desenho de Prótese , Stents , Estresse Mecânico , Humanos , Procedimentos Endovasculares/instrumentação , Implante de Prótese Vascular/instrumentação , Aneurisma Ilíaco/cirurgia , Aneurisma Ilíaco/fisiopatologia , Aneurisma Ilíaco/diagnóstico por imagem , Teste de Materiais , Falha de Prótese , Maleabilidade , Simulação por Computador
3.
Clin Biomech (Bristol, Avon) ; 108: 106070, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37595368

RESUMO

BACKGROUND: Although impairments in dorso-lumbar spine mobility have been previously reported in patients with low back pain, its exact mechanism is not yet clear. Therefore, the purpose of this systematic review and meta-analysis is to investigate and compare spinal kinematics between subjects with and without low back pain and identify appropriate tools to evaluate it. METHODS: The PubMed, Scopus and Web of Science databases were searched for relevant literature. The search strategy was mainly focused on studies investigating lumbar kinematics in subjects with and without low back pain during clinical functional tests, gait, sports and daily functional activities. Papers were selected if at least one of these outputs was reported: lumbar range of motion, lumbar velocity, lumbar acceleration and deceleration, lordosis angle or lumbar excursion. FINDINGS: Among 804 papers, 48 met the review eligibility criteria and 29 were eligible to perform a meta-analysis. Lumbar range of motion was the primary outcome measured. A statistically significant limitation of the lumbar mobility was found in low back pain group in all planes, and in the frontal and transverse planes for thoracic range of motion, but there is no significant limitation for pelvic mobility. The amount of limitation was found to be more important in the lumbar sagittal plane and during challenging functional activities in comparison with simple activities. INTERPRETATION: The findings of this review provide insight into the impact of low back pain on spinal kinematics during specific movements, contributing to our understanding of this relationship and suggesting potential clinical implications.


Assuntos
Dor Lombar , Coluna Vertebral , Humanos , Fenômenos Biomecânicos , Dor Lombar/complicações , Coluna Vertebral/fisiopatologia
4.
J Mech Behav Biomed Mater ; 138: 105644, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608533

RESUMO

With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs. The objective of this study is to propose different auxetic stent candidates and to compare their mechanical performance with two conventional stent candidates for endovascular applications using numerical simulation through crimp/crushing tests for their radial stiffness and three-point bending/kinking tests for their flexibility, respectively. The results demonstrate that the novel hybrid auxetic designs (CRE and CSTAR) possess the best trade-off between radial stiffness and bending flexibility characteristics among all candidates for stent-graft applications.


Assuntos
Aneurisma da Aorta Abdominal , Procedimentos Endovasculares , Humanos , Prótese Vascular , Correção Endovascular de Aneurisma , Resultado do Tratamento , Stents , Aneurisma da Aorta Abdominal/cirurgia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32637399

RESUMO

The mechanical behavior of the foot is often studied through the movement of the segments composing it and not through the movement of each individual bone, preventing an accurate and unambiguous study of soft tissue strains and foot posture. In order to describe the internal behavior of the foot under static load, we present here an original methodology that automatically tracks bone positions and ligament deformations through a series of CT acquisitions for a foot under load. This methodology was evaluated in a limited clinical study based on three cadaveric feet in different static load cases, first performed with bare feet and then with a sports shoe to get first insights on how the shoe influences the foot's behavior in different configurations. A model-based tracking technique using hierarchical distance minimization was implemented to track the position of 28 foot bones for each subject, while a mesh-morphing technique mapped the ligaments from a generic model to the patient-specific model in order to obtain their deformations. Comparison of these measurements between the ex vivo loaded bare foot and the shod foot showed evidence that wearing a shoe affects the deformation of specific ligaments, has a significant impact on the relative movement of the bones and alters the posture of the foot skeleton (plantar-dorsal flexion, arch sagging, and forefoot abduction-adduction on the midfoot). The developed method may provide new clinical indicators to guide shoe design and valuable data for detailed foot model validation.

6.
PLoS One ; 14(3): e0212681, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840688

RESUMO

Lower back pain is a major public health problem. Despite claims that lumbar belts change spinal posture due to applied pressure on the trunk, no mechanical model has yet been published to prove this treatment. This paper describes a first model for belt design, based on the one hand on the mechanical properties of the fabrics and the belt geometry, and on the other hand on the trunk geometrical and mechanical description. The model provides the estimation of the pressure applied to the trunk, and a unique indicator of the belt mechanical efficiency is proposed: pressure is integrated into a bending moment characterizing the belt delordosing action on the spine. A first in-silico clinical study of belt efficiency for 15 patients with 2 different belts was conducted. Results are very dependent on the body shape: in the case of high BMI patients, the belt effect is significantly decreased, and can be even inverted, increasing the lordosis. The belt stiffness proportionally increases the pressure applied to the trunk, but the influence of the design itself on the bending moment is clearly outlined. Moreover, the belt/trunk interaction, modeled as sticking contact and the specific way patients lock their belts, dramatically modifies the belt action. Finally, even if further developments and tests are still necessary, the model presented in this paper seems suitable for in-silico pre-clinical trials on real body shapes at a design stage.


Assuntos
Lordose , Dor Lombar , Vértebras Lombares , Modelos Biológicos , Adulto , Feminino , Humanos , Lordose/patologia , Lordose/fisiopatologia , Dor Lombar/patologia , Dor Lombar/fisiopatologia , Vértebras Lombares/patologia , Vértebras Lombares/fisiopatologia , Região Lombossacral/patologia , Região Lombossacral/fisiopatologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA