Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410416, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134476

RESUMO

Precise control over the organic composition is crucial for tailoring the distinctive structures and properties of hybrid metal halides. However, this approach is seldom utilized to develop materials that exhibit stimuli-responsive circularly polarized luminescence (CPL). Herein, we present the synthesis and characterization of enantiomeric hybrid zinc bromides: biprotonated ((R/S)-C12H16N2)ZnBr4 ((R/S-LH2)ZnBr4) and monoprotonated ((R/S)-C12H15N2)2ZnBr4 ((R/S-LH1)2ZnBr4), derived from the chiral organic amine (R/S)-2,3,4,9-Tetrahydro-1H-carbazol-3-amine ((R/S)-C12H14N2). These compounds showcase luminescent properties; the zero-dimensional biprotonated form emits green light at 505 nm, while the monoprotonated form, with a pseudo-layered structure, displays red luminescence at 599 and 649 nm. Remarkably, the reversible local protonation-deprotonation behavior of the organic cations allows for exposure to polar solvents and heating to induce reversible structural and luminescent transformations between the two forms. Theoretical calculations reveal that the lower energy barrier associated with the deprotonation process within the pyrrole ring is responsible for the local protonation-deprotonation behavior observed. These enantiomorphic hybrid zinc bromides also exhibit switchable circular dichroism (CD) and CPL properties. Furthermore, their chloride counterparts were successfully obtained by adjusting the halogen ions. Importantly, the unique stimuli-responsive CPL characteristics position these hybrid zinc halides as promising candidates for applications information storage, anti-counterfeiting, and information encryption.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39133770

RESUMO

As attractive thermoelectric oxides, Ca3Co4O9-based materials have been intensively studied for their applications in recent years. However, their thermoelectric performance is enormously limited due to the contradiction of electrical resistivity and thermal conductivity. Herein, BaFe12O19 nanospheres were introduced into the Ca3Co4O9 matrix. The metallic Ag, ferrites, and matrix phase survived together, and a high density of nanoscale BaFe12O19 precipitation was observed. The reduction of work function could lead to band bending and form an interface potential due to the electro-thermo-magnetic effect contributing to the hole migration. As a result, a huge ZT value of 0.51 for the 8 wt % BaFe12O19/Ca3Co4O9 nanocomposites was obtained at 1073 K, accompanied by a low electrical resistivity of 6.7 mΩ·cm and a high Seebeck coefficient of 217.5 µV/K. In addition, a significant reduction of thermal conductivity (1.11 W/(m·K)) occurred, which was due to the nanoscale ferromagnetic phase effectively scattering the mid- and short-wavelength heat-carrying phonons. The synergistic enhancement of thermoelectric performance confirmed that the electro-thermo-magnetic effect is an effective way to solve the challenging problem of performance deterioration in oxide thermoelectric materials.

3.
Immunology ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022997

RESUMO

Tuberculosis (TB) is still an urgent global public health problem. Notably, mucosal-associated invariant T (MAIT) cells play an important role in early anti-TB immune response. Targeted control of them may be an effective method to improve vaccine efficacy and TB treatment. However, the biology and signal regulation mechanisms of MAIT cells in TB patients are still poorly understood. Previous studies have been limited by the lack of reagents to specifically identify MAIT cells. In addition, the use of alternative markers may subsume non-MAIT cell into MAIT cell populations. In this study, the human MR1 tetramer which can specifically identify MAIT cells was used to further explore the effect and mechanism of MAIT cells in anti-TB immune response. Our results showed that the tetramer+ MAIT cells in peripheral blood of TB patients were mainly CD8+ or CD4-CD8- cells, and very few were CD4+ cells. After BCG infecting autologous antigen-presenting cells, MAIT cells in patients produced significantly higher levels of cytokines, lysis and proliferation compared with healthy controls. After suppression of mTORC1 by the mTORC1-specific inhibitor rapamycin, the immune response of MAIT cells in patients was significantly reduced. This study demonstrates that peripheral blood tetramer+ MAIT cells from TB patients have significant anti-TB immune effect, which is regulated by mTORC1. This could provide ideas and potential therapeutic targets for the development of novel anti-TB immunotherapy.

4.
Nanoscale ; 16(30): 14402-14417, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39011858

RESUMO

Sulfuration reactions dominate the synthesis of transition-metal dichalcogenides via chemical vapor deposition. A neglected critical issue is the evolution of crystal domain morphology and growth models caused by boundary layer development. In this study, we propose two growth models within a laminar flow field to investigate the kinetic mechanism of uniformly grown MoS2. We used supercritical fluid pre-deposition to obtain a well-distributed and low-crystallinity Mo precursor on the surface of a substrate to avoid non-stoichiometric supply in sulfuration. The development of the boundary layer was suppressed through mainstream force by adjusting the substrate slope angle. For growth within the underdeveloped laminar boundary layer, monolayer MoS2 with a size of 50 µm uniformly distributed on the full substrate with R = 85% (relative change in boundary layer thickness). Moreover, the growth constrained by surface chemical reactions tended to promote spatially uniform growth. However, within the fully developed laminar flow, the crystal domains preferentially grew vertically, which was attributed to the excessive crystal growth rate (g). Our results provide new insights into the controllable preparation of two-dimensional materials.

5.
J Am Heart Assoc ; 13(15): e034203, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39023067

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS: Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS: Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.


Assuntos
Proliferação de Células , Modelos Animais de Doenças , Receptores de Inositol 1,4,5-Trifosfato , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Neointima/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Sinalização do Cálcio , Camundongos Endogâmicos C57BL , Masculino , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Camundongos , Fosforilação , Becaplermina/farmacologia , Becaplermina/metabolismo , Movimento Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia
6.
Rev Cardiovasc Med ; 25(5): 182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076485

RESUMO

Functional tricuspid regurgitation (FTR) is a common type of tricuspid regurgitation (TR), particularly in cases of left heart valve disease. Historically, cardiac surgeons have not placed much emphasis on FTR and instead focused primarily on managing left heart valve disease. However, as research has progressed, it has become evident that severe TR significantly impacts the prognosis of heart valve surgery. Furthermore, significant improvements in postoperative cardiac function and quality of life have been observed when addressing the tricuspid valve alongside left heart disease management. This article aims to review current approaches for and timing of the surgical management of FTR while also analyzing the limitations of existing tricuspid surgical strategies.

7.
Antib Ther ; 7(2): 164-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38933534

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.

8.
Mol Neurobiol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869810

RESUMO

Recent research has exposed a growing body of proof underscoring the importance of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in maintaining the physical composition of neurons and influencing cognitive functioning in both standard and atypical circumstances. Extensive research has been conducted on the possible application of miRNAs and lncRNAs as biomarkers for various diseases, with a particular focus on brain disorders, as they possess remarkable durability in cell-free surroundings and can endure repeated freezing and thawing processes. It is intriguing to note that miRNAs and lncRNAs have the ability to function through paracrine mechanisms, thereby playing a role in communication between different organs. Recent research has proposed that the improvement of cognitive abilities through physical exercise in mentally healthy individuals is a valuable method for uncovering potential connections between miRNAs, or microRNAs, and lncRNAs, and human cognitive function. The process of cross-correlating data from disease models and patients with existing data will be crucial in identifying essential miRNAs and lncRNAs, which can potentially act as biomarkers or drug targets in the treatment of cognitive disorders. By combining this method with additional research in animal models, we can determine the function of these molecules and their potential impact on therapy. This article discusses the latest research about the primary miRNAs, lncRNAs, and their exosomes that are affected by physical activity in terms of human cognitive function.

9.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 335-338, 2024 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-38863104

RESUMO

Objective: To design and test a device which is capable of accurately measuring and dynamically adjusting the axial pressure at the fracture end in real-time. Methods: Upon completion of the design, the pressure measurement and adjustment device was implemented in a canine tibial fracture external fixation model. A pressure sensor was mounted at the fracture end, and the displayed values of the pressure sensor were used as the standard for comparison. The relationship between the displayed values of the measurement and adjustment device and the pressure sensor under identical conditions was examined. Results: The device was utilized in external fixation models of tibial fractures in five beagles. A linear correlation was observed between the displayed values of the device and the pressure sensor at the fracture end. The measurement values from the device could be transformed into fracture end pressure through the application of coefficients, thereby facilitating accurate measurement and dynamic adjustment of the fracture end pressure. Conclusion: The pressure measurement and adjustment device at the fracture end is easy to operate, enabling precise measurement and dynamic regulation of the pressure at the fracture end. It is well-suited for animal experiments aimed at investigating the impact of axial compression on fracture healing, demonstrating promising potential for experimental applications.


Assuntos
Desenho de Equipamento , Pressão , Fraturas da Tíbia , Animais , Cães , Fixação de Fratura/instrumentação , Fixadores Externos , Consolidação da Fratura
10.
PLoS One ; 19(6): e0301223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837964

RESUMO

New immune checkpoints are emerging in a bid to improve response rates to immunotherapeutic drugs. The adenosine A2A receptor (A2AR) has been proposed as a target for immunotherapeutic development due to its participation in immunosuppression of the tumor microenvironment. Blockade of A2AR could restore tumor immunity and, consequently, improve patient outcomes. Here, we describe the discovery of a potent, selective, and tumor-suppressing antibody antagonist of human A2AR (hA2AR) by phage display. We constructed and screened four single-chain variable fragment (scFv) libraries-two synthetic and two immunized-against hA2AR and antagonist-stabilized hA2AR. After biopanning and ELISA screening, scFv hits were reformatted to human IgG and triaged in a series of cellular binding and functional assays to identify a lead candidate. Lead candidate TB206-001 displayed nanomolar binding of hA2AR-overexpressing HEK293 cells; cross-reactivity with mouse and cynomolgus A2AR but not human A1, A2B, or A3 receptors; functional antagonism of hA2AR in hA2AR-overexpressing HEK293 cells and peripheral blood mononuclear cells (PBMCs); and tumor-suppressing activity in colon tumor-bearing HuCD34-NCG mice. Given its therapeutic properties, TB206-001 is a good candidate for incorporation into next-generation bispecific immunotherapeutics.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Receptor A2A de Adenosina , Humanos , Animais , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/imunologia , Células HEK293 , Camundongos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Macaca fascicularis , Biblioteca de Peptídeos
11.
World Neurosurg ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871284

RESUMO

BACKGROUND: The fusion rate, clinical efficacy, and complications of minimally invasive fusion surgery and open fusion surgery in the treatment of lumbar degenerative disease are still unclear. METHODS: We conducted a literature search using PubMed, Embase, Cochrane Library, CNKI, and WANFANG databases. RESULTS: This study included 38 retrospective studies involving 3097 patients. Five intervention modalities were considered: unilateral biportal endoscopic-lumbar interbody fusion (UBE-LIF), percutaneous endoscopic-lumbar interbody fusion (PE-LIF), minimally invasive-transforaminal lumbar interbody fusion (MIS-TLIF), transforaminal lumbar interbody fusion (TLIF), and posterior lumbar interbody fusion (PLIF). Quality assessment indicated that each study met acceptable quality standards. PE-LIF demonstrated reduced low back pain (Odds Ratio = 0.50, Confidence Interval: 0.38-0.65) and lower complication rate (Odds Ratio = 0.46, Confidence Interval: 0.25-0.87) compared to PLIF. However, in indirect comparisons, PE-LIF showed the lowest fusion rates, with the ranking as follows: UBE-LIF (83.2%) > MIS-TLIF (59.6%) > TLIF (44.3%) > PLIF (39.8%) > PE-LIF (23.1%). With respect to low back pain relief, PE-LIF yielded the best results, with the order of relief as follows: PE-LIF (96.4%) > MIS-TLIF (64.8%) > UBE-LIF (62.6%) > TLIF (23.0%) > PLIF (3.2%). Global and local consistency tests showed satisfactory results, and heterogeneity tests indicated good stability. CONCLUSIONS: Compared to conventional open surgery, minimally invasive fusion surgery offered better scores for low back pain and Oswestry Disability Index, lower complication rates, reduced bleeding, and shorter hospital stays. However, minimally invasive fusion surgery did not show a significant advantage in terms of fusion rate and had a longer operative time.

12.
Biomedicines ; 12(5)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791090

RESUMO

AIM: C1q/TNF-related protein 6 (CTRP6) is a novel adipokine involved in insulin resistance. Thus, we aim to investigate the expression profile of CTRP6 in the plasma, adipose tissue and placenta of GDM patients and mice. METHODS: Chinese Han pregnant women (GDM n = 9, control n = 10) with a scheduled caesarean section delivery were recruited. A number of high-fat diet (HFD) induced-pregnancy C57BL/6 mice were chosen as an animal model of GDM. Circulating levels of CTRP6 and adiponectin were examined by ELISA. CTRP6 expression in adipose tissue and placenta were detected by real-time qPCR and WB. RESULT: Plasma CTRP6 levels were decreased during the first and second trimesters in mice, as well as the second and third trimesters in patients, while they were increased at delivery in GDM patients and mice. Plasma CTRP6 levels were significantly correlated with WBC, systolic pressure, diastolic pressure and fasting blood glucose. Moreover, CTRP6 mRNA expression in the subcutaneous (sWAT) and omental white adipose tissue (oWAT), as well as in the placenta, was significantly higher in GDM human patients at cesarean delivery. Furthermore, the mRNA expression of Ctrp6 was increased in the sWAT and visceral WAT (vWAT), whilst decreased in the interscapular brown adipose tissue (iBAT), of GDM mice at cesarean delivery. CONCLUSION: Dynamically expressed CTRP6 may be served as a candidate target for treatment of GDM.

13.
J Multidiscip Healthc ; 17: 2021-2030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716371

RESUMO

Objective: The objective of this study was to investigate the risk factors associated with cesarean scar pregnancy (CSP) and to develop a model for predicting intraoperative bleeding risk. Methods: We retrospectively analyzed the clinical data of 208 patients with CSP who were admitted to the People's Hospital of Leshan between January 2018 and December 2022. Based on whether intraoperative bleeding was ≥ 200 mL, we categorized them into two groups for comparative analysis: the excessive bleeding group (n = 27) and the control group (n = 181). Identifying relevant factors, we constructed a prediction model and created a nomogram. Results: We observed that there were significant differences between the two groups in several parameters. These included the time of menstrual cessation (P = 0.002), maximum diameter of the gestational sac (P < 0.001), thickness of the myometrium at the uterine scar (P = 0.001), pre-treatment blood HCG levels (P = 0.016), and the grade of blood flow signals (P < 0.001). We consolidated the above data and constructed a clinical prediction model. The model exhibited favorable results in terms of predictive efficacy, discriminative ability (C-index = 0.894, specificity = 0.834, sensitivity = 0.852), calibration precision (mean absolute error = 0.018), and clinical decision-making utility, indicating its effectiveness. Conclusion: The clinical prediction model related to the risk of hemorrhage that we developed in this experiment can assist in the development of appropriate interventions and effectively improve patient prognosis.

14.
J Immunother Cancer ; 12(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749538

RESUMO

BACKGROUND: Only a subset of patients with gastric cancer experience long-term benefits from immune checkpoint inhibitors (ICIs). Currently, there is a deficiency in precise predictive biomarkers for ICI efficacy. The aim of this study was to develop and validate a pathomics-driven ensemble model for predicting the response to ICIs in gastric cancer, using H&E-stained whole slide images (WSI). METHODS: This multicenter study retrospectively collected and analyzed H&E-stained WSIs and clinical data from 584 patients with gastric cancer. An ensemble model, integrating four classifiers: least absolute shrinkage and selection operator, k-nearest neighbors, decision trees, and random forests, was developed and validated using pathomics features, with the objective of predicting the therapeutic efficacy of immune checkpoint inhibition. Model performance was evaluated using metrics including the area under the curve (AUC), sensitivity, and specificity. Additionally, SHAP (SHapley Additive exPlanations) analysis was used to explain the model's predicted values as the sum of the attribution values for each input feature. Pathogenomics analysis was employed to explain the molecular mechanisms underlying the model's predictions. RESULTS: Our pathomics-driven ensemble model effectively stratified the response to ICIs in training cohort (AUC 0.985 (95% CI 0.971 to 0.999)), which was further validated in internal validation cohort (AUC 0.921 (95% CI 0.839 to 0.999)), as well as in external validation cohort 1 (AUC 0.914 (95% CI 0.837 to 0.990)), and external validation cohort 2 (0.927 (95% CI 0.802 to 0.999)). The univariate Cox regression analysis revealed that the prediction signature of pathomics-driven ensemble model was a prognostic factor for progression-free survival in patients with gastric cancer who underwent immunotherapy (p<0.001, HR 0.35 (95% CI 0.24 to 0.50)), and remained an independent predictor after multivariable Cox regression adjusted for clinicopathological variables, (including sex, age, carcinoembryonic antigen, carbohydrate antigen 19-9, therapy regime, line of therapy, differentiation, location and programmed death ligand 1 (PD-L1) expression in all patients (p<0.001, HR 0.34 (95% CI 0.24 to 0.50)). Pathogenomics analysis suggested that the ensemble model is driven by molecular-level immune, cancer, metabolism-related pathways, and was correlated with the immune-related characteristics, including immune score, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data score, and tumor purity. CONCLUSIONS: Our pathomics-driven ensemble model exhibited high accuracy and robustness in predicting the response to ICIs using WSIs. Therefore, it could serve as a novel and valuable tool to facilitate precision immunotherapy.


Assuntos
Imunoterapia , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Masculino , Feminino , Imunoterapia/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Idoso
15.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588611

RESUMO

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Assuntos
Chaperonina 60 , Cardiopatias Congênitas , Animais , Camundongos , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cardiopatias Congênitas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miócitos Cardíacos/metabolismo
16.
J Proteome Res ; 23(5): 1788-1800, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619924

RESUMO

As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.


Assuntos
Envelhecimento , Fator de Crescimento Insulin-Like I , Plasma Rico em Plaquetas , Proteômica , Humanos , Plasma Rico em Plaquetas/metabolismo , Plasma Rico em Plaquetas/química , Proteômica/métodos , Idoso , Adulto , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Feminino , Proteoma/análise , Proteoma/metabolismo , Adulto Jovem , Regulação para Cima , Apoptose , Fatores Etários
17.
Nano Lett ; 24(17): 5332-5341, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634554

RESUMO

Alloying-type anode materials provide high capacity for lithium-ion batteries; however, they suffer pulverization problems resulting from the volume change during cycling. Realizing the cycling reversibility of these anodes is therefore critical for sustaining their electrochemical performance. Here, we investigate the structural reversibility of Sn NPs during cycling at atomic-level resolution utilizing in situ high-resolution TEM. We observed a surprisingly near-perfect structural reversibility after a complete cycle. A three-step phase transition happens during lithiation, accompanied by the generation of a significant number of defects, grain boundaries, and up to 202% volume expansion. In subsequent delithiation, the volume, morphology, and crystallinity of the Sn NPs were restored to their initial state. Theoretical calculations show that compressive stress drives the removal of vacancies generated within the NPs during delithiation, therefore maintaining their intact morphology. This work demonstrates that removing vacancies during cycling can efficiently improve the structural reversibility of high-capacity anode materials.

18.
J Med Virol ; 96(3): e29503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445750

RESUMO

Enterovirus C116 (EV-C116) is a new member of the enterovirus C group which is closely associated with several infectious diseases. Although sporadic studies have detected EV-C116 in clinical samples worldwide, there is currently limited information available. In this study, two EV-C-positive fecal specimens were detected in apparently healthy children, which harbored low abundance, through meta-transcriptome sequencing. Based on the prototypes of several EV-Cs, two lineages were observed. Lineage 1 included many types that could not cause EV-like cytopathic effect in cell culture. Three genogroups of EV-C116 were divided in the maximum likelihood tree, and the two strains in this study (XZ2 and XZ113) formed two different lineages, suggesting that EV-C116 still diffuses worldwide. Obvious inter-type recombination events were observed in the XZ2 strain, with CVA22 identified as a minor donor. However, another strain (XZ113) underwent different recombination situations, highlighting the importance of recombination in the formation of EV-Cs biodiversity. The EV-C116 strains could propagate in rhabdomyosarcoma cell cultures at low titer; however, EV-like cytopathic effects were not observed. HEp-2, L20B, VERO, and 293T cell lines did not provide an appropriate environment for EV-C116 growth. These results challenge the traditional recognition of the uncultured nature of EV-C116 strains and explain the difficulty of clinical detection.


Assuntos
Infecções por Enterovirus , Enterovirus , Criança , Humanos , Enterovirus/genética , Infecções por Enterovirus/epidemiologia , China/epidemiologia , Antígenos Virais , Células HEK293
19.
Bioact Mater ; 36: 157-167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38463554

RESUMO

Much effort has been devoted to improving treatment efficiency for osteosarcoma (OS). However, most current approaches result in poor therapeutic responses, thus indicating the need for the development of other therapeutic options. This study developed a multifunctional nanoparticle, PDA-MOF-E-M, an aggregation of OS targeting, programmed death targeting, and near-infrared (NIR)-aided targeting. At the same time, a multifunctional nanoparticle that utilises Fe-MOFs to create a cellular iron-rich environment and erastin as a ferroptosis inducer while ensuring targeted delivery to OS cells through cell membrane encapsulation is presented. The combination of PDA-MOF-E-M and PTT increased intracellular ROS and LPO levels and induced ferroptosis-related protein expression. A PDA-based PTT combined with erastin showed significant synergistic therapeutic improvement in the anti-tumour efficiency of the nanoparticle in vitro and vivo. The multifunctional nanoparticle efficiently prevents the osteoclasia progression of OS xenograft bone tumors in vivo. Finally, this study provides guidance and a point of reference for clinical approaches to treating OS.

20.
ACS Appl Mater Interfaces ; 16(11): 14345-14356, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38443330

RESUMO

Remotely controllable soft actuators have promising potential applications in many fields including soft robotics, exploration, and invasion medical treatment. Shape memory polymers could store and release energy, resulting in shape deformation, and have been regarded as promising candidates to fabricate untethered soft robots. Herein, an untethered and battery-free soft navigator and gripper based on a shape memory hydrogel is presented. The shape memory hydrogel is obtained through hydrogen bonding between gelatin and tannic acid, and the hydrogel displays excellent shape memory properties on the basis of hydrogen bonding and the coil-triple helix transition of gelatin. Moreover, Fe3O4 nanoparticles are introduced to endow the hydrogel magnetic responsiveness and photothermal conversion capacity. Finally, the shape memory hydrogel in a stretched state is assembled with an inert hydrogel to achieve a bilayer hydrogel actuator, which could produce complex shape transformation due to the shape recovery of the shape memory layer induced by heat or light. Taking advantage of the magnetically control and light-responsive shape deformation, remotely controllable soft grippers that could navigate through tortuous paths and grasp objects from a hard-to-reach place have been accomplished. This approach will inspire the design and fabrication of novel shape memory hydrogels as remotely controllable soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA