Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
medRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39148840

RESUMO

Dissecting biological pathways highlighted by Mendelian gene discovery has provided critical insights into the pathogenesis of Parkinson's disease (PD) and neurodegeneration. This approach ultimately catalyzes the identification of potential biomarkers and therapeutic targets. Here, we identify PSMF1 as a new gene implicated in PD and childhood neurodegeneration. We find that biallelic PSMF1 missense and loss-of-function variants co-segregate with phenotypes from early-onset PD and parkinsonism to perinatal lethality with neurological manifestations across 15 unrelated pedigrees with 22 affected subjects, showing clear genotype-phenotype correlation. PSMF1 encodes the proteasome regulator PSMF1/PI31, a highly conserved, ubiquitously expressed partner of the 20S proteasome and neurodegeneration-associated F-box-O 7 and valosin-containing proteins. We demonstrate that PSMF1 variants impair mitochondrial membrane potential, dynamics and mitophagy in patient-derived fibroblasts. Additionally, we develop models of psmf1 knockdown Drosophila and Psmf1 conditional knockout mouse exhibiting age-dependent motor impairment, with diffuse gliosis in mice. These findings unequivocally link defective PSMF1 to early-onset PD and neurodegeneration and suggest mitochondrial dysfunction as a mechanistic contributor.

2.
Curr Opin Genet Dev ; 85: 102156, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354530

RESUMO

Emerging evidence supports the existence of dedicated molecular mechanisms under evolutionary selection to control time during neurogenesis. Here, we briefly review these mechanisms and discuss a potentially useful conceptual framework inspired by computer science to think about how these biological mechanisms operate during brain development and evolution.


Assuntos
Proteínas CLOCK , Neurogênese , Neurogênese/genética , Algoritmos , Evolução Biológica
3.
Cell Rep ; 42(7): 112772, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37453418

RESUMO

Sensitivity to numbers is a crucial cognitive ability. The lack of experimental models amenable to systematic genetic and neural manipulation has precluded discovering neural circuits required for numerical cognition. Here, we demonstrate that Drosophila flies spontaneously prefer sets containing larger numbers of objects. This preference is determined by the ratio between the two numerical quantities tested, a characteristic signature of numerical cognition across species. Individual flies maintained their numerical choice over consecutive days. Using a numerical visual conditioning paradigm, we found that flies are capable of associating sucrose with numerical quantities and can be trained to reverse their spontaneous preference for large quantities. Finally, we show that silencing lobula columnar neurons (LC11) reduces the preference for more objects, thus identifying a neuronal substrate for numerical cognition in invertebrates. This discovery paves the way for the systematic analysis of the behavioral and neural mechanisms underlying the evolutionary conserved sensitivity to numerosity.


Assuntos
Cognição , Drosophila melanogaster , Animais , Cognição/fisiologia , Drosophila , Neurônios/fisiologia
4.
Sci Adv ; 9(24): eadd5002, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327344

RESUMO

Neurogenesis in the developing human cerebral cortex occurs at a particularly slow rate owing in part to cortical neural progenitors preserving their progenitor state for a relatively long time, while generating neurons. How this balance between the progenitor and neurogenic state is regulated, and whether it contributes to species-specific brain temporal patterning, is poorly understood. Here, we show that the characteristic potential of human neural progenitor cells (NPCs) to remain in a progenitor state as they generate neurons for a prolonged amount of time requires the amyloid precursor protein (APP). In contrast, APP is dispensable in mouse NPCs, which undergo neurogenesis at a much faster rate. Mechanistically, APP cell-autonomously contributes to protracted neurogenesis through suppression of the proneurogenic activator protein-1 transcription factor and facilitation of canonical WNT signaling. We propose that the fine balance between self-renewal and differentiation is homeostatically regulated by APP, which may contribute to human-specific temporal patterns of neurogenesis.


Assuntos
Precursor de Proteína beta-Amiloide , Células-Tronco Neurais , Humanos , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Diferenciação Celular , Neurônios/metabolismo , Neurogênese
5.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333418

RESUMO

During neuronal circuit formation, local control of axonal organelles ensures proper synaptic connectivity. Whether this process is genetically encoded is unclear and if so, its developmental regulatory mechanisms remain to be identified. We hypothesized that developmental transcription factors regulate critical parameters of organelle homeostasis that contribute to circuit wiring. We combined cell type-specific transcriptomics with a genetic screen to discover such factors. We identified Telomeric Zinc finger-Associated Protein (TZAP) as a temporal developmental regulator of neuronal mitochondrial homeostasis genes, including Pink1 . In Drosophila , loss of dTzap function during visual circuit development leads to loss of activity-dependent synaptic connectivity, that can be rescued by Pink1 expression. At the cellular level, loss of dTzap/TZAP leads to defects in mitochondrial morphology, attenuated calcium uptake and reduced synaptic vesicle release in fly and mammalian neurons. Our findings highlight developmental transcriptional regulation of mitochondrial homeostasis as a key factor in activity-dependent synaptic connectivity.

6.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184296

RESUMO

Neurodegenerative diseases are characterized by the progressive loss of structure or function of neurons. In this Spotlight, we explore the idea that genetic forms of neurodegenerative disorders might be rooted in neural development. Focusing on Alzheimer's, Parkinson's and Huntington's disease, we first provide a brief overview of the pathology for these diseases. Although neurodegenerative diseases are generally thought of as late-onset diseases, we discuss recent evidence promoting the notion that they might be considered neurodevelopmental disorders. With this view in mind, we consider the suitability of animal models for studying these diseases, highlighting human-specific features of human brain development. We conclude by proposing that one such feature, human-specific regulation of neurogenic time, might be key to understanding the etiology and pathophysiology of human neurodegenerative disease.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Animais , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doença de Huntington/genética , Modelos Animais , Encéfalo/patologia
7.
Autophagy ; 19(10): 2814-2816, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36779622

RESUMO

A recent characterization of the role of autophagy in two different neuron types during brain development in Drosophila revealed two different mechanisms to regulate synapse formation. In photoreceptor neurons, autophagosome formation in synaptogenic filopodia destabilizes presumptive synaptic contacts and thereby restricts incorrect synaptic partnerships. In dorsal cluster neurons, autophagy is actively suppressed to keep mature synapses stable during axonal branching. These findings indicate that different neuron types can require activation or suppression of synaptic autophagy during the same developmental period to ensure proper synapse formation and brain connectivity.


Assuntos
Autofagia , Neurônios , Animais , Sinapses/fisiologia , Neurogênese , Encéfalo , Drosophila
8.
Curr Biol ; 33(3): 517-532.e5, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640763

RESUMO

The development of neuronal connectivity requires stabilization of dynamic axonal branches at sites of synapse formation. Models that explain how axonal branching is coupled to synaptogenesis postulate molecular regulators acting in a spatiotemporally restricted fashion to ensure branching toward future synaptic partners while also stabilizing the emerging synaptic contacts between such partners. We investigated this question using neuronal circuit development in the Drosophila brain as a model system. We report that epidermal growth factor receptor (EGFR) activity is required in presynaptic axonal branches during two distinct temporal intervals to regulate circuit wiring in the developing Drosophila visual system. EGFR is required early to regulate primary axonal branching. EGFR activity is then independently required at a later stage to prevent degradation of the synaptic active zone protein Bruchpilot (Brp). Inactivation of EGFR results in a local increase of autophagy in presynaptic branches and the translocation of active zone proteins into autophagic vesicles. The protection of synaptic material during this later interval of wiring ensures the stabilization of terminal branches, circuit connectivity, and appropriate visual behavior. Phenotypes of EGFR inactivation can be rescued by increasing Brp levels or downregulating autophagy. In summary, we identify a temporally restricted molecular mechanism required for coupling axonal branching and synaptic stabilization that contributes to the emergence of neuronal wiring specificity.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Axônios/fisiologia , Drosophila/genética , Receptores ErbB/metabolismo , Autofagia , Sinapses/fisiologia , Receptores de Peptídeos de Invertebrados/metabolismo
9.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720500

RESUMO

FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.


Assuntos
Deficiência Intelectual , Ribose , Humanos , Metilação , Deficiência Intelectual/genética , Metiltransferases/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética
10.
Brain ; 146(4): 1496-1510, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36073231

RESUMO

The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.


Assuntos
Deficiência Intelectual , Transtornos Parkinsonianos , Animais , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Deficiência Intelectual/genética , Transtornos Parkinsonianos/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Fosfoproteínas Fosfatases/metabolismo
11.
Elife ; 112022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214451

RESUMO

The differentiation of oligodendroglia from oligodendrocyte precursor cells (OPCs) to complex and extensive myelinating oligodendrocytes (OLs) is a multistep process that involves large-scale morphological changes with significant strain on the cytoskeleton. While key chromatin and transcriptional regulators of differentiation have been identified, their target genes responsible for the morphological changes occurring during OL myelination are still largely unknown. Here, we show that the regulator of focal adhesion, Tensin3 (Tns3), is a direct target gene of Olig2, Chd7, and Chd8, transcriptional regulators of OL differentiation. Tns3 is transiently upregulated and localized to cell processes of immature OLs, together with integrin-ß1, a key mediator of survival at this transient stage. Constitutive <i>Tns3</i> loss of function leads to reduced viability in mouse and humans, with surviving knockout mice still expressing Tns3 in oligodendroglia. Acute deletion of <i>Tns3</i> in vivo, either in postnatal neural stem cells (NSCs) or in OPCs, leads to a twofold reduction in OL numbers. We find that the transient upregulation of Tns3 is required to protect differentiating OPCs and immature OLs from cell death by preventing the upregulation of p53, a key regulator of apoptosis. Altogether, our findings reveal a specific time window during which transcriptional upregulation of Tns3 in immature OLs is required for OL differentiation likely by mediating integrin-ß1 survival signaling to the actin cytoskeleton as OL undergo the large morphological changes required for their terminal differentiation.


Assuntos
Adesões Focais , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Adesões Focais/metabolismo , Proteína Supressora de Tumor p53/genética , Oligodendroglia/metabolismo , Diferenciação Celular/genética , Camundongos Knockout , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Integrinas/metabolismo
12.
Cell Rep ; 37(12): 110145, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936868

RESUMO

Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Temperatura , Adaptação Fisiológica , Animais , Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Neurogênese , Células Fotorreceptoras de Invertebrados/metabolismo
13.
STAR Protoc ; 2(3): 100760, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467229

RESUMO

The architecturally stereotypical structure of cerebellum is ideal for investigating the generation of neuronal diversity, but in vitro models for assessing early cerebellar progenitor differentiation were lacking. Here, we report a detailed protocol for long-term in vitro generation of Pax6+ granule cells and Calbindin+ Purkinje cells from common Sox2+ embryonic cerebellar progenitors. We describe the procedure for dissecting mouse cerebellar anlage, cell seeding, and tamoxifen-induced labeling of progenitor cells, followed by time-lapse video recording of clonal expansion and neuronal differentiation. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021).


Assuntos
Técnicas de Cultura de Células/métodos , Cerebelo/citologia , Neurônios/citologia , Células de Purkinje/citologia , Animais , Calbindinas/metabolismo , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Camundongos Transgênicos , Fator de Transcrição PAX6/metabolismo , Imagem com Lapso de Tempo
14.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34515635

RESUMO

The Amyloid Precursor Protein (APP) and its homologues are transmembrane proteins required for various aspects of neuronal development and activity, whose molecular function is unknown. Specifically, it is unclear whether APP acts as a receptor, and if so what its ligand(s) may be. We show that APP binds the Wnt ligands Wnt3a and Wnt5a and that this binding regulates APP protein levels. Wnt3a binding promotes full-length APP (flAPP) recycling and stability. In contrast, Wnt5a promotes APP targeting to lysosomal compartments and reduces flAPP levels. A conserved Cysteine-Rich Domain (CRD) in the extracellular portion of APP is required for Wnt binding, and deletion of the CRD abrogates the effects of Wnts on flAPP levels and trafficking. Finally, loss of APP results in increased axonal and reduced dendritic growth of mouse embryonic primary cortical neurons. This phenotype can be cell-autonomously rescued by full length, but not CRD-deleted, APP and regulated by Wnt ligands in a CRD-dependent manner.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Receptores Wnt/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/citologia , Células Cultivadas , Clonagem Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Corpos Pedunculados/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transporte Proteico , Receptores Wnt/genética , Transdução de Sinais
15.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34162555

RESUMO

The identity of the cell of origin is a key determinant of cancer subtype, progression, and prognosis. Group 3 medulloblastoma (MB) is a malignant childhood brain cancer with poor prognosis and few candidates as putative cell of origin. We overexpressed the group 3 MB genetic drivers MYC and Gfi1 in different candidate cells of origin in the postnatal mouse cerebellum. We found that S100b+ cells are competent to initiate group 3 MB, and we observed that S100b+ cells have higher levels of Notch1 pathway activity compared to Math1+ cells. We found that additional activation of Notch1 in Math1+ and Sox2+ cells was sufficient to induce group 3 MB upon MYC/Gfi1 expression. Together, our data suggest that the Notch1 pathway plays a critical role in group 3 MB initiation.

16.
Cell Rep ; 35(10): 109208, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107249

RESUMO

Brain neurons arise from relatively few progenitors generating an enormous diversity of neuronal types. Nonetheless, a cardinal feature of mammalian brain neurogenesis is thought to be that excitatory and inhibitory neurons derive from separate, spatially segregated progenitors. Whether bi-potential progenitors with an intrinsic capacity to generate both lineages exist and how such a fate decision may be regulated are unknown. Using cerebellar development as a model, we discover that individual progenitors can give rise to both inhibitory and excitatory lineages. Gradations of Notch activity determine the fates of the progenitors and their daughters. Daughters with the highest levels of Notch activity retain the progenitor fate, while intermediate levels of Notch activity generate inhibitory neurons, and daughters with very low levels of Notch signaling adopt the excitatory fate. Therefore, Notch-mediated binary cell fate choice is a mechanism for regulating the ratio of excitatory to inhibitory neurons from common progenitors.


Assuntos
Cerebelo/fisiologia , Neurônios/metabolismo , Receptores Notch/metabolismo , Diferenciação Celular , Humanos
17.
Front Cell Dev Biol ; 9: 612645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968921

RESUMO

Neurogenesis is achieved through a sequence of steps that include specification and differentiation of progenitors into mature neurons. Frequently, precursors migrate to distinct positions before terminal differentiation. The Slit-Robo pathway, formed by the secreted ligand Slit and its membrane bound receptor Robo, was first discovered as a regulator of axonal growth. However, today, it is accepted that this pathway can regulate different cellular processes even outside the nervous system. Since most of the studies performed in the nervous system have been focused on axonal and dendritic growth, it is less clear how versatile is this signaling pathway in the developing nervous system. Here we describe the participation of the Slit-Robo pathway in the development of motion sensitive neurons of the Drosophila visual system. We show that Slit and Robo receptors are expressed in different stages during the neurogenesis of motion sensitive neurons. Furthermore, we find that Slit and Robo regulate multiple aspects of their development including neuronal precursor migration, cell segregation between neural stem cells and daughter cells and formation of their connectivity pattern. Specifically, loss of function of slit or robo receptors in differentiated motion sensitive neurons impairs dendritic targeting, while knocking down robo receptors in migratory progenitors or neural stem cells leads to structural defects in the adult optic lobe neuropil, caused by migration and cell segregation defects during larval development. Thus, our work reveals the co-option of the Slit-Robo signaling pathway in distinct developmental stages of a neural lineage.

18.
PLoS Biol ; 18(12): e3000703, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33290404

RESUMO

The amyloid precursor protein (APP) is a structurally and functionally conserved transmembrane protein whose physiological role in adult brain function and health is still unclear. Because mutations in APP cause familial Alzheimer's disease (fAD), most research focuses on this aspect of APP biology. We investigated the physiological function of APP in the adult brain using the fruit fly Drosophila melanogaster, which harbors a single APP homologue called APP Like (APPL). Previous studies have provided evidence for the implication of APPL in neuronal wiring and axonal growth through the Wnt signaling pathway during development. However, like APP, APPL continues to be expressed in all neurons of the adult brain where its functions and their molecular and cellular underpinnings are unknown. We report that APPL loss of function (LOF) results in the dysregulation of endolysosomal function in neurons, with a notable enlargement of early endosomal compartments followed by neuronal cell death and the accumulation of dead neurons in the brain during a critical period at a young age. These defects can be rescued by reduction in the levels of the early endosomal regulator Rab5, indicating a causal role of endosomal function for cell death. Finally, we show that the secreted extracellular domain of APPL interacts with glia and regulates the size of their endosomes, the expression of the Draper engulfment receptor, and the clearance of neuronal debris in an axotomy model. We propose that APP proteins represent a novel family of neuroglial signaling factors required for adult brain homeostasis.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Drosophila/genética , Endossomos/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Morte Celular , Sobrevivência Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Mutação com Perda de Função/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia
19.
Nat Commun ; 11(1): 1325, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165611

RESUMO

Brain wiring is remarkably precise, yet most neurons readily form synapses with incorrect partners when given the opportunity. Dynamic axon-dendritic positioning can restrict synaptogenic encounters, but the spatiotemporal interaction kinetics and their regulation remain essentially unknown inside developing brains. Here we show that the kinetics of axonal filopodia restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses. Using 4D imaging in developing Drosophila brains, we show that filopodial kinetics are regulated by autophagy, a prevalent degradation mechanism whose role in brain development remains poorly understood. With surprising specificity, autophagosomes form in synaptogenic filopodia, followed by filopodial collapse. Altered autophagic degradation of synaptic building material quantitatively regulates synapse formation as shown by computational modeling and genetic experiments. Increased filopodial stability enables incorrect synaptic partnerships. Hence, filopodial autophagy restricts inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity.


Assuntos
Autofagia , Encéfalo/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Pseudópodes/fisiologia , Sinapses/fisiologia , Animais , Atenção , Axônios/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinética , Mosaicismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteólise , Transmissão Sináptica/fisiologia
20.
Science ; 367(6482): 1112-1119, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139539

RESUMO

The genome versus experience dichotomy has dominated understanding of behavioral individuality. By contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using Drosophila melanogaster, we demonstrate a link between stochastic variation in brain wiring and behavioral individuality. A visual system circuit called the dorsal cluster neurons (DCN) shows nonheritable, interindividual variation in right/left wiring asymmetry and controls object orientation in freely walking flies. We show that DCN wiring asymmetry instructs an individual's object responses: The greater the asymmetry, the better the individual orients toward a visual object. Silencing DCNs abolishes correlations between anatomy and behavior, whereas inducing DCN asymmetry suffices to improve object responses.


Assuntos
Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Individualidade , Neurogênese , Campos Visuais/fisiologia , Vias Visuais/crescimento & desenvolvimento , Animais , Encéfalo/anatomia & histologia , Drosophila melanogaster/genética , Variação Genética , Orientação/fisiologia , Vias Visuais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA