Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Rep ; 43(2): 113734, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349790

RESUMO

Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/ß-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/ß-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.


Assuntos
Lesões Encefálicas , beta Catenina , Humanos , Via de Sinalização Wnt , Diferenciação Celular , Ventrículos do Coração , Metiltransferases , Neurogênese , Ventrículos Laterais
2.
Biomed Pharmacother ; 166: 115384, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657260

RESUMO

Prefrontal cortex (PFC) inputs to the hippocampus are supposed to be critical in memory processes. Astrocytes are involved in several brain functions, such as homeostasis, neurotransmission, synaptogenesis. However, their role in PFC-mediated modulation of memory has yet to be studied. The present study aims at uncovering the role of PFC astroglia in memory performance and synaptic plasticity in the hippocampus. Using chemogenetic and lesions approaches of infralimbic PFC (IL-PFC) astrocytes, we evaluated memory performance in the novel object recognition task (NOR) and dorsal hippocampus synaptic plasticity. We uncovered a surprising role of PFC astroglia in modulating object recognition memory. In opposition to the astroglia PFC lesion, we show that chemogenetic activation of IL-PFC astrocytes increased memory performance in the novel object recognition task and facilitated in vivo dorsal hippocampus synaptic metaplasticity. These results redefine the involvement of PFC in recognition mnemonic processing, uncovering an important role of PFC astroglia.


Assuntos
Astrócitos , Reconhecimento Psicológico , Animais , Ratos , Cognição , Memória , Hipocampo
3.
Sci Adv ; 9(18): eabq7553, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146152

RESUMO

The ventricular-subventricular zone (V-SVZ) is the largest neurogenic region of the postnatal forebrain, containing neural stem cells (NSCs) that emerge from both the embryonic pallium and subpallium. Despite of this dual origin, glutamatergic neurogenesis declines rapidly after birth, while GABAergic neurogenesis persists throughout life. We performed single-cell RNA sequencing of the postnatal dorsal V-SVZ for unraveling the mechanisms leading to pallial lineage germinal activity silencing. We show that pallial NSCs enter a state of deep quiescence, characterized by high bone morphogenetic protein (BMP) signaling, reduced transcriptional activity and Hopx expression, while in contrast, subpallial NSCs remain primed for activation. Induction of deep quiescence is paralleled by a rapid blockade of glutamatergic neuron production and differentiation. Last, manipulation of Bmpr1a demonstrates its key role in mediating these effects. Together, our results highlight a central role of BMP signaling in synchronizing quiescence induction and blockade of neuronal differentiation to rapidly silence pallial germinal activity after birth.


Assuntos
Ventrículos Laterais , Neurônios , Ventrículos Laterais/metabolismo , Diferenciação Celular/genética , Neurogênese , Análise de Célula Única
4.
Brain ; 145(6): 1978-1991, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35141747

RESUMO

Absence epilepsy belongs to genetic epilepsies and is characterized by recurrent generalized seizures that are concomitant with alterations of consciousness and associated with cognitive comorbidities. Little is known about the mechanisms leading to occurrence of epileptic seizures (i.e. epileptogenesis) and, in particular, it remains an open question as to whether neuronal hypersynchronization, a key feature in seizure initiation, could result from aberrant structural connectivity within neuronal networks endowing them with epileptic properties. In the present study, we addressed this question using a genetic model of absence epilepsy in the rat where seizures initiate in the whisker primary somatosensory cortex (wS1). We hypothesized that alterations in structural connectivity of neuronal networks within wS1 contribute to pathological neuronal synchronization responsible for seizures. First, we used rabies virus-mediated retrograde synaptic tracing and showed that cortical neurons located in both upper- and deep-layers of wS1 displayed aberrant and significantly increased connectivity in the genetic model of absence epilepsy, as highlighted by a higher number of presynaptic partners. Next, we showed at the functional level that disrupting these aberrant wS1 neuronal networks with synchrotron X-ray-mediated cortical microtransections drastically decreased both the synchronization and seizure power of wS1 neurons, as revealed by in vivo local field potential recordings with multichannel probes. Taken together, our data provide for the first time strong evidence that increased structural connectivity patterns of cortical neurons represent critical pathological substrates for increased neuronal synchronization and generation of absence seizures.


Assuntos
Epilepsia Tipo Ausência , Animais , Eletroencefalografia , Epilepsia Tipo Ausência/genética , Neurônios/fisiologia , Ratos , Convulsões , Vibrissas
5.
Cell Stem Cell ; 28(12): 2104-2121.e10, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34592167

RESUMO

Reprogramming brain-resident glial cells into clinically relevant induced neurons (iNs) is an emerging strategy toward replacing lost neurons and restoring lost brain functions. A fundamental question is now whether iNs can promote functional recovery in pathological contexts. We addressed this question in the context of therapy-resistant mesial temporal lobe epilepsy (MTLE), which is associated with hippocampal seizures and degeneration of hippocampal GABAergic interneurons. Using a MTLE mouse model, we show that retrovirus-driven expression of Ascl1 and Dlx2 in reactive hippocampal glia in situ, or in cortical astroglia grafted in the epileptic hippocampus, causes efficient reprogramming into iNs exhibiting hallmarks of interneurons. These induced interneurons functionally integrate into epileptic networks and establish GABAergic synapses onto dentate granule cells. MTLE mice with GABAergic iNs show a significant reduction in both the number and cumulative duration of spontaneous recurrent hippocampal seizures. Thus glia-to-neuron reprogramming is a potential disease-modifying strategy to reduce seizures in therapy-resistant epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Animais , Neurônios GABAérgicos , Hipocampo , Interneurônios , Camundongos , Neuroglia , Convulsões
6.
Front Neurosci ; 14: 571315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071745

RESUMO

Cell lineage in the adult hippocampus comprises multipotent and neuron-committed progenitors. In the present work, we fate-mapped neuronal progenitors using Dcx-CreERT2 and CAG-CAT-EGFP double-transgenic mice (cDCX/EGFP). We show that 3 days after tamoxifen-mediated recombination in cDCX/EGFP adult mice, GFP+ cells in the dentate gyrus (DG) co-expresses DCX and about 6% of these cells are proliferative neuronal progenitors. After 30 days, 20% of GFP+ generated from these progenitors differentiate into GFAP+ astrocytes. Unilateral intrahippocampal administration of the chemoconvulsants kainic acid (KA) or pilocarpine (PL) triggered epileptiform discharges and led to a significant increase in the number of GFP+ cells in both ipsi and contralateral DG. However, while PL favored the differentiation of neurons in both ipsi- and contralateral sides, KA stimulated neurogenesis only in the contralateral side. In the ipsilateral side, KA injection led to an unexpected increase of astrogliogenesis in the Dcx-lineage. We also observed a small number of GFP+/GFAP+ cells displaying radial-glia morphology ipsilaterally 3 days after KA administration, suggesting that some Dcx-progenitors could regress to a multipotent stage. The boosted neurogenesis and astrogliogenesis observed in the Dcx-lineage following chemoconvulsants administration correlated, respectively, with preservation or degeneration of the parvalbuminergic plexus in the DG. Increased inflammatory response, by contrast, was observed both in the DG showing increased neurogenesis or astrogliogenesis. Altogether, our data support the view that cell lineage progression in the adult hippocampus is not unidirectional and could be modulated by local network activity and GABA-mediated signaling.

7.
Trends Mol Med ; 25(10): 897-914, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371156

RESUMO

Injury to the human central nervous system (CNS) is devastating because our adult mammalian brain lacks intrinsic regenerative capacity to replace lost neurons and induce functional recovery. An emerging approach towards brain repair is to instruct fate conversion of brain-resident non-neuronal cells into induced neurons (iNs) by direct lineage reprogramming. Considerable progress has been made in converting various source cell types of mouse and human origin into clinically relevant iNs. Recent achievements using transcriptomics and epigenetics have shed light on the molecular mechanisms underpinning neuronal reprogramming, while the potential capability of iNs in promoting functional recovery in pathological contexts has started to be evaluated. Although future challenges need to be overcome before clinical translation, lineage reprogramming holds promise for effective cell-replacement therapy in regenerative medicine.


Assuntos
Encéfalo/fisiopatologia , Reprogramação Celular , Neurônios/citologia , Animais , Encéfalo/metabolismo , Humanos , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Regeneração
8.
Stem Cell Reports ; 11(3): 770-783, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30174314

RESUMO

The largest diversity of neural lineages generated from the subventricular zone (SVZ) occurs early after birth and is regulated in a spatiotemporal manner depending on the expression of specific transcriptional cues. Transcriptomics and fate-mapping approaches were employed to explore the relationship between regional expression of transcription factors by neural stem cells (NSCs) and the specification of distinct neural lineages. Our results support an early priming of NSCs for the genesis of defined cell types depending on their spatial location in the SVZ and identify HOPX as a marker of a subpopulation primed toward astrocytic fates. Manipulation of HOPX expression, however, showed no effect on astrogenesis but resulted in marked changes in the number of NSCs and of their progenies. Taken together, our results highlight transcriptional and spatial heterogeneity of postnatal NSCs and reveal a key role for HOPX in controlling SVZ germinal activity.


Assuntos
Astrócitos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Astrócitos/metabolismo , Linhagem da Célula , Ventrículos Laterais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Transcriptoma
9.
Brain Stimul ; 11(6): 1336-1347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30146428

RESUMO

BACKGROUND: Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative action of ECT remain incompletely understood. OBJECTIVE: Unravel biological basis of electroconvulsive stimulation (ECS) efficacy, the animal equivalent of ECT. METHODS: Using MAP6 KO mouse, a genetic model that constitutively exhibits features relevant to some aspects of depression; we analyzed the behavioral and biological consequences of ECS treatment alone (10 stimulations over a 2-week period) and associated with a continuation protocol (2 stimulations per week for 5 weeks). RESULTS: ECS treatment had a beneficial effect on constitutive behavioral defects. We showed that behavioral improvement is associated with a strong increase in the survival and integration of neurons born before ECS treatment. Retroviral infection revealed the larger number of integrated neurons to exhibit increased dendritic complexity and spine density, as well as remodeled synapses. Furthermore, our results show that ECS triggers a cortical increase in synaptogenesis. A sustained newborn neuron survival rate, induced by ECS treatment, is associated with the behavioral improvement, but relapse occurred 40 days after completing the ECS treatment. However, a 5-week continuation protocol following the initial ECS treatment led to persistent improvement of behavior correlated with sustained rate survival of newborn neurons. CONCLUSION: Altogether, these results reveal that increased synaptic connectivity and extended neuronal survival are key to the short and long-term efficacy of ECS.


Assuntos
Sobrevivência Celular/fisiologia , Depressão/terapia , Modelos Animais de Doenças , Eletroconvulsoterapia/métodos , Neurônios/fisiologia , Animais , Depressão/genética , Depressão/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Neurogênese/fisiologia , Fatores de Tempo , Resultado do Tratamento
10.
Adv Sci (Weinh) ; 4(9): 1700080, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28932668

RESUMO

Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu2ZnGeS4-x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.

11.
Cell Stem Cell ; 18(3): 396-409, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26748418

RESUMO

Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Transdução Genética , Animais , Camundongos , Neuroglia/citologia , Neurônios/citologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética
12.
Inorg Chem ; 54(16): 7818-27, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26213290

RESUMO

The incongruently melting single-filled skutterudite InxCo4Sb12 is known as a promising bulk thermoelectric material. However, the products of current bulk syntheses contain always impurities of InSb, Sb, CoSb, or CoSb2, which prevent an unbiased determination of its thermoelectric properties. We report a new two-step synthesis of high-purity InxCo4Sb12 with nominal compositions x = 0.12, 0.15, 0.18, and 0.20 that separates the kieftite (CoSb3) formation from the topotactic filler insertion. This approach allows conducting the reactions at lower temperatures with shorter reaction times and circumventing the formation of impurity phases. The synthesis can be extended to other filled skutterudites. High-density (>98%) pellets for thermoelectric characterization were prepared by current-assisted short-time sintering. Sample homogeneity was demonstrated by potential and Seebeck microprobe measurements of the complete pellet surfaces. Synchrotron X-ray diffraction showed a purity of 99.9% product with traces (≤0.1%) of InSb in samples of nominal composition In0.18Co4Sb12 and In0.20Co4Sb12. Rietveld refinements revealed a linear correlation between the true In occupancy and the lattice parameter a. This allows the determination of the true In filling in skutterudites and predicting the In content of unknown AxCo4Sb12. The high purity of InxCo4Sb12 allowed studying the transport properties without bias from side phases. A figure of merit close to unity at 420 °C was obtained for a sample of a true composition of In0.160(2)Co4Sb12 (nominal composition In0.18Co4Sb12). The lower degree of In filling has a dramatic effect on the thermoelectric properties as demonstrated by the sample of nominal composition In0.20Co4Sb12. The presence of InSb in amounts of ∼0.1 vol% led to a substantially lower degree of interstitial site filling of 0.144, and the figure of merit zT decreased by 18%, which demonstrates the significance of the true filler atom content in skutterudite materials.

13.
Med Sci (Paris) ; 31(1): 35-42, 2015 Jan.
Artigo em Francês | MEDLINE | ID: mdl-25658729

RESUMO

In order to overcome the quasi-total inability of the mammalian central nervous system to regenerate in response to injuries, and in parallel to the studies dedicated to prevent neuronal loss under these circumstances, alternative approaches based on the programming of pluripotent cells or the reprogramming of somatic cells into neurons have recently emerged. These uniquely combine growing knowledge of the mechanisms that underlie neurogenesis and neuronal specification during development to the most recent findings of the molecular and epigenetic mechanisms that govern the acquisition and maintenance of cellular identity. Here, we discuss the possibility to instruct the regeneration of the central nervous system from within for therapeutic purposes, in light of the recent works reporting on the generation of neurons by direct conversion of various cerebral cell types in vitro and in vivo.


Assuntos
Encéfalo/fisiologia , Regeneração Nervosa/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Células-Tronco Adultas/fisiologia , Encéfalo/citologia , Diferenciação Celular , Transdiferenciação Celular , Fibroblastos/fisiologia , Humanos , Neuroglia/fisiologia
14.
Nat Cell Biol ; 17(3): 204-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25720960

RESUMO

Vital organs such as the pancreas and the brain lack the capacity for effective regeneration. To overcome this limitation, an emerging strategy consists of converting resident tissue-specific cells into the cell types that are lost due to disease by a process called in vivo lineage reprogramming. Here we discuss recent breakthroughs in regenerating pancreatic ß-cells and neurons from various cell types, and highlight fundamental challenges that need to be overcome for the translation of in vivo lineage reprogramming into therapy.


Assuntos
Células Acinares/citologia , Encéfalo/citologia , Reprogramação Celular , Células Secretoras de Insulina/citologia , Neuroglia/citologia , Neurônios/citologia , Pâncreas/citologia , Células Acinares/fisiologia , Encéfalo/fisiologia , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Encefalopatias/terapia , Diferenciação Celular , Linhagem da Célula , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Células Secretoras de Insulina/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Pâncreas/fisiologia , Pancreatopatias/patologia , Pancreatopatias/fisiopatologia , Pancreatopatias/terapia , Regeneração
15.
Stem Cell Reports ; 3(6): 1000-14, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25458895

RESUMO

The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX)(+) neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX(+) cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.


Assuntos
Transdiferenciação Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOXB1/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Reprogramação Celular/genética , Córtex Cerebral/lesões , Proteína Duplacortina , Expressão Gênica , Camundongos , Fatores de Transcrição SOXB1/metabolismo , Potenciais Sinápticos/genética
16.
J Am Chem Soc ; 136(1): 442-8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24279340

RESUMO

Knowledge of structure-property relationships is a key feature of materials design. The control of thermal transport has proven to be crucial for the optimization of thermoelectric materials. We report the synthesis, chemical characterization, thermoelectric transport properties, and thermal transport calculations of the complete solid solution series Cu2ZnGeSe(4-x)S(x) (x = 0-4). Throughout the substitution series a continuous Vegard-like behavior of the lattice parameters, bond distances, optical band gap energies, and sound velocities are found, which enables the tuning of these properties adjusting the initial composition. Refinements of the special chalcogen positions revealed a change in bonding angles, resulting in crystallographic strain possibly affecting transport properties. Thermal transport measurements showed a reduction in the room-temperature thermal conductivity of 42% triggered by the introduced disorder. Thermal transport calculations of mass and strain contrast revealed that 34% of the reduction in thermal conductivity is due to the mass contrast only and 8% is due to crystallographic strain.

17.
Phys Chem Chem Phys ; 15(37): 15399-403, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23936907

RESUMO

Engineering of nanoscale structures is a requisite for controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require a conflicting combination of low thermal conductivity and low electrical resistivity. We report the thermoelectric properties of spark plasma sintered Magnéli phases WO2.90 and WO2.722. The crystallographic shear planes, which are a typical feature of the crystal structures of Magnéli-type metal oxides, lead to a remarkably low thermal conductivity for WO2.90. The figures of merit (ZT = 0.13 at 1100 K for WO2.90 and 0.07 at 1100 K for WO2.722) are relatively high for tungsten-oxygen compounds and metal oxides in general. The electrical resistivity of WO2.722 shows a metallic behaviour with temperature, while WO2.90 has the characteristics of a heavily doped semiconductor. The low thermopower of 80 µV K(-1) at 1100 K for WO2.90 is attributed to its high charge carrier concentration. The enhanced thermoelectric performance for WO2.90 compared to WO2.722 originates from its much lower thermal conductivity, due to the presence of crystallographic shear and dislocations in the crystal structure. Our study is a proof of principle for the development of efficient and low-cost thermoelectric materials based on the use of intrinsically nanostructured materials rather than artificially structured layered systems to reduce lattice thermal conductivity.

18.
Cell Stem Cell ; 12(4): 426-39, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23561443

RESUMO

As a result of brain injury, astrocytes become activated and start to proliferate in the vicinity of the injury site. Recently, we had demonstrated that these reactive astrocytes, or glia, can form self-renewing and multipotent neurospheres in vitro. In the present study, we demonstrate that it is only invasive injury, such as stab wounding or cerebral ischemia, and not noninvasive injury conditions, such as chronic amyloidosis or induced neuronal death, that can elicit this increase in plasticity. Furthermore, we find that Sonic hedgehog (SHH) is the signal that acts directly on the astrocytes and is necessary and sufficient to elicit the stem cell response both in vitro and in vivo. These findings provide a molecular basis for how cells with neural stem cell lineage emerge at sites of brain injury and imply that the high levels of SHH known to enter the brain from extraneural sources after invasive injury can trigger this response.


Assuntos
Lesões Encefálicas/patologia , Proteínas Hedgehog/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Morte Celular , Proliferação de Células , Separação Celular , Córtex Cerebral/patologia , Modelos Animais de Doenças , Gliose/complicações , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
19.
J Am Chem Soc ; 135(2): 726-32, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23256607

RESUMO

Inspired by the promising thermoelectric properties of chalcopyrite-like quaternary chalcogenides, here we describe the synthesis and characterization of the solid solution Cu(2)Zn(1-x)Fe(x)GeSe(4). Upon substitution of Zn with the isoelectronic Fe, no charge carriers are introduced in these intrinsic semiconductors. However, a change in lattice parameters, expressed in an elongation of the c/a lattice parameter ratio with minimal change in unit cell volume, reveals the existence of a three-stage cation restructuring process of Cu, Zn, and Fe. The resulting local anisotropic structural disorder leads to phonon scattering not normally observed, resulting in an effective approach to reduce the lattice thermal conductivity in this class of materials.

20.
Cell Stem Cell ; 11(4): 471-6, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23040476

RESUMO

Reprogramming of somatic cells into neurons provides a new approach toward cell-based therapy of neurodegenerative diseases. A major challenge for the translation of neuronal reprogramming into therapy is whether the adult human brain contains cell populations amenable to direct somatic cell conversion. Here we show that cells from the adult human cerebral cortex expressing pericyte hallmarks can be reprogrammed into neuronal cells by retrovirus-mediated coexpression of the transcription factors Sox2 and Mash1. These induced neuronal cells acquire the ability of repetitive action potential firing and serve as synaptic targets for other neurons, indicating their capability of integrating into neural networks. Genetic fate-mapping in mice expressing an inducible Cre recombinase under the tissue-nonspecific alkaline phosphatase promoter corroborated the pericytic origin of the reprogrammed cells. Our results raise the possibility of functional conversion of endogenous cells in the adult human brain to induced neuronal fates.


Assuntos
Reprogramação Celular , Córtex Cerebral/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Pericitos/citologia , Potenciais de Ação , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Rede Nervosa , Doenças Neurodegenerativas/terapia , Retroviridae , Fatores de Transcrição SOXB1/metabolismo , Transplante de Células-Tronco , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA