Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Diabetologia ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864887

RESUMO

AIMS/HYPOTHESIS: Insulitis, a hallmark of inflammation preceding autoimmune type 1 diabetes, leads to the eventual loss of functional beta cells. However, functional beta cells can persist even in the face of continuous insulitis. Despite advances in immunosuppressive treatments, maintaining functional beta cells to prevent insulitis progression and hyperglycaemia remains a challenge. The cannabinoid type 1 receptor (CB1R), present in immune cells and beta cells, regulates inflammation and beta cell function. Here, we pioneer an ex vivo model mirroring human insulitis to investigate the role of CB1R in this process. METHODS: CD4+ T lymphocytes were isolated from peripheral blood mononuclear cells (PBMCs) from male and female individuals at the onset of type 1 diabetes and from non-diabetic individuals, RNA was extracted and mRNA expression was analysed by real-time PCR. Single beta cell expression from donors with type 1 diabetes was obtained from data mining. Patient-derived human islets from male and female cadaveric donors were 3D-cultured in solubilised extracellular matrix gel in co-culture with the same donor PBMCs, and incubated with cytokines (IL-1ß, TNF-α, IFN-γ) for 24-48 h in the presence of vehicle or increasing concentrations of the CB1R blocker JD-5037. Expression of CNR1 (encoding for CB1R) was ablated using CRISPR/Cas9 technology. Viability, intracellular stress and signalling were assayed by live-cell probing and real-time PCR. The islet function measured as glucose-stimulated insulin secretion was determined in a perifusion system. Infiltration of immune cells into the islets was monitored by microscopy. Non-obese diabetic mice aged 7 weeks were treated for 1 week with JD-5037, then euthanised. Profiling of immune cells infiltrated in the islets was performed by flow cytometry. RESULTS: CNR1 expression was upregulated in circulating CD4+ T cells from individuals at type 1 diabetes onset (6.9-fold higher vs healthy individuals) and in sorted islet beta cells from donors with type 1 diabetes (3.6-fold higher vs healthy counterparts). The peripherally restricted CB1R inverse agonist JD-5037 arrested the initiation of insulitis in humans and mice. Mechanistically, CB1R blockade prevented islet NO production and ameliorated the ATF6 arm of the unfolded protein response. Consequently, cyto/chemokine expression decreased in human islets, leading to sustained islet cell viability and function. CONCLUSIONS/INTERPRETATION: These results suggest that CB1R could be an interesting target for type 1 diabetes while highlighting the regulatory mechanisms of insulitis. Moreover, these findings may apply to type 2 diabetes where islet inflammation is also a pathophysiological factor. DATA AVAILABILITY: Transcriptomic analysis of sorted human beta cells are from Gene Expression Omnibus database, accession no. GSE121863, available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3448161 .

2.
J Am Soc Nephrol ; 35(3): 281-298, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38200648

RESUMO

SIGNIFICANCE STATEMENT: This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition. BACKGROUND: The impairment in ATP production and transport in RPTCs has been linked to the pathogenesis of obesity-induced CKD. This condition is characterized by kidney dysfunction, inflammation, lipotoxicity, and fibrosis. In this study, we investigated the role of ANT2, which serves as the primary regulator of cellular ATP content in RPTCs, in the development of obesity-induced CKD. METHODS: We generated RPTC-specific ANT2 knockout ( RPTC-ANT2-/- ) mice, which were then subjected to a 24-week high-fat diet-feeding regimen. We conducted comprehensive assessment of renal morphology, function, and metabolic alterations of these mice. In addition, we used large-scale transcriptomics, proteomics, and metabolomics analyses to gain insights into the role of ANT2 in regulating mitochondrial function, RPTC physiology, and overall renal health. RESULTS: Our findings revealed that obese RPTC-ANT2-/- mice displayed preserved renal morphology and function, along with a notable absence of kidney lipotoxicity and fibrosis. The depletion of Ant2 in RPTCs led to a fundamental rewiring of their primary metabolic program. Specifically, these cells shifted from oxidizing fatty acids as their primary energy source to favoring aerobic glycolysis, a phenomenon mediated by the testis-selective Ant4. CONCLUSIONS: We propose a significant role for RPTC-Ant2 in the development of obesity-induced CKD. The nullification of RPTC-Ant2 triggers a cascade of cellular mechanisms, including mitochondrial protection, enhanced RPTC survival, and ultimately the preservation of kidney function. These findings shed new light on the complex metabolic pathways contributing to CKD development and suggest potential therapeutic targets for this condition.


Assuntos
Rim , Insuficiência Renal Crônica , Masculino , Animais , Camundongos , Proteínas de Transporte da Membrana Mitocondrial , Fibrose , Trifosfato de Adenosina , Insuficiência Renal Crônica/etiologia
3.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36809274

RESUMO

Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.


Assuntos
Diabetes Mellitus Experimental , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Transportador 2 de Glucose-Sódio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Betaína , Glucose , Sódio/metabolismo , Metionina
4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835635

RESUMO

Renal ischemia-reperfusion (IR), a routine feature of partial nephrectomy (PN), can contribute to the development of acute kidney injury (AKI). Rodent studies show that the endocannabinoid system (ECS) is a major regulator of renal hemodynamics and IR injury; however, its clinical relevance remains to be established. Here, we assessed the clinical changes in systemic endocannabinoid (eCB) levels induced by surgical renal IR. Sixteen patients undergoing on-clamp PN were included, with blood samples taken before renal ischemia, after 10 min of ischemia time, and 10 min following blood reperfusion. Kidney function parameters (serum creatinine (sCr), blood urea nitrogen (BUN), and serum glucose) and eCB levels were measured. Baseline levels and individual changes in response to IR were analyzed and correlation analyses were performed. The baseline levels of eCB 2-arachidonoylglycerol (2-AG) were positively correlated with kidney dysfunction biomarkers. Unilateral renal ischemia increased BUN, sCr, and glucose, which remained elevated following renal reperfusion. Renal ischemia did not induce changes in eCB levels for all patients pooled together. Nevertheless, stratifying patients according to their body mass index (BMI) revealed a significant increase in N-acylethanolamines (anandamide, AEA; N-oleoylethanolamine, OEA; and N-palmitoylethanolamine, PEA) in the non-obese patients. No significant changes were found in obese patients who had higher N-acylethanolamines baseline levels, positively correlated with BMI, and more cases of post-surgery AKI. With the inefficiency of 'traditional' IR-injury 'preventive drugs', our data support future research on the role of the ECS and its manipulation in renal IR.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Endocanabinoides , Nefrectomia , Rim , Isquemia , Obesidade
5.
Cannabis Cannabinoid Res ; 8(4): 623-633, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35647939

RESUMO

Background: The endocannabinoid system (ECS) plays a key physiological role in bladder function and it has been suggested as a potential target for relieving lower urinary tract symptoms (LUTSs). Whereas most studies indicate that activating the ECS has some beneficial effects on the bladder, some studies imply the opposite. In this study, we investigated the therapeutic potential of peripheral cannabinoid-1 receptor (CB1R) blockade in a mouse model for LUTSs. Materials and Methods: To this end, we used the cyclophosphamide (CYP; 300 mg/kg, intraperitoneal)-induced cystitis model of bladder dysfunction, in which 12-week-old, female C57BL/6 mice were treated with the peripherally restricted CB1R antagonist, JD5037 (3 mg/kg), or vehicle for three consecutive days. Bladder dysfunction was assessed using the noninvasive voiding spot assay (VSA) as well as the bladder-to-body weight (BW) ratio and gene and protein expression levels; ECS tone was assessed at the end of the study. Results: Peripheral CB1R blockade significantly ameliorated the severity of CYP-induced cystitis, manifested by reduced urination events measured in the VSA and an increased bladder-to-BW ratio. Moreover, JD5037 normalized CYP-mediated bladder ECS tone imbalance by affecting both the expression of CB1R and the endocannabinoid levels. These effects were associated with the ability of JD5037 to reduce CYP-induced inflammatory response, manifested by a reduction in levels of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), in the bladder and serum. Conclusions: Collectively, our results highlight the therapeutic relevance of peripheral CB1R blockade in ameliorating CYP-induced cystitis; they may further support the preclinical development and clinical use of peripherally restricted CB1R antagonism for treatment of LUTSs.


Assuntos
Canabinoides , Cistite , Camundongos , Animais , Feminino , Endocanabinoides , Receptores de Canabinoides , Camundongos Endogâmicos C57BL , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Cistite/metabolismo , Canabinoides/efeitos adversos
6.
J Control Release ; 353: 254-269, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442615

RESUMO

Over-activation of the endocannabinoid/CB1R system is a hallmark feature of obesity and its related comorbidities, most notably type 2 diabetes (T2D), and non-alcoholic fatty liver disease (NAFLD). Although the use of drugs that widely block the CB1R was found to be highly effective in treating all metabolic abnormalities associated with obesity, they are no longer considered a valid therapeutic option due to their adverse neuropsychiatric side effects. Here, we describe a novel nanotechnology-based drug delivery system for repurposing the abandoned first-in-class global CB1R antagonist, rimonabant, by encapsulating it in polymeric nanoparticles (NPs) for effective hepatic targeting of CB1Rs, enabling effective treatment of NAFLD and T2D. Rimonabant-encapsulated NPs (Rimo-NPs) were mainly distributed in the liver, spleen, and kidney, and only negligible marginal levels of rimonabant were found in the brain of mice treated by iv/ip administration. In contrast to freely administered rimonabant treatment, no CNS-mediated behavioral activities were detected in animals treated with Rimo-NPs. Chronic treatment of diet-induced obese mice with Rimo-NPs resulted in reduced hepatic steatosis and liver injury as well as enhanced insulin sensitivity, which were associated with enhanced cellular uptake of the formulation into hepatocytes. Collectively, we successfully developed a method of encapsulating the centrally acting CB1R blocker in NPs with desired physicochemical properties. This novel drug delivery system allows hepatic targeting of rimonabant to restore the metabolic advantages of blocking CB1R in peripheral tissues, especially in the liver, without the negative CB1R-mediated neuropsychiatric side effects.


Assuntos
Canabinoides , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Rimonabanto/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Canabinoides/uso terapêutico
7.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628417

RESUMO

Obesity is a global medical problem; its common form is known as diet-induced obesity (DIO); however, there are several rare genetic disorders, such as Prader-Willi syndrome (PWS), that are also associated with obesity (genetic-induced obesity, GIO). The currently available therapeutics for treating DIO and GIO are very limited, and they result in only a partial improvement. Cannabidiolic acid (CBDA), a constituent of Cannabis sativa, gradually decarboxylates to cannabidiol (CBD). Whereas the anti-obesity properties of CBD have been reasonably identified, our knowledge of the pharmacology of CBDA is more limited due to its instability. To stabilize CBDA, a new derivative, CBDA-O-methyl ester (HU-580, EPM301), was synthesized. The therapeutic potential of EPM301 in appetite reduction, weight loss, and metabolic improvements in DIO and GIO was tested in vivo. EPM301 (40 mg/kg/d, i.p.) successfully resulted in weight loss, increased ambulation, as well as improved glycemic and lipid profiles in DIO mice. Additionally, EPM301 ameliorated DIO-induced hepatic dysfunction and steatosis. Importantly, EPM301 (20 and 40 mg/kg/d, i.p.) effectively reduced body weight and hyperphagia in a high-fat diet-fed Magel2null mouse model for PWS. In addition, when given to standard-diet-fed Magel2null mice as a preventive treatment, EPM301 completely inhibited weight gain and adiposity. Lastly, EPM301 increased the oxidation of different nutrients in each strain. All together, EPM301 ameliorated obesity and its metabolic abnormalities in both DIO and GIO. These results support the idea to further promote this synthetic CBDA derivative toward clinical evaluation in humans.


Assuntos
Obesidade , Síndrome de Prader-Willi , Animais , Antígenos de Neoplasias/metabolismo , Canabinoides , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Knockout , Obesidade/tratamento farmacológico , Síndrome de Prader-Willi/genética , Proteínas/metabolismo , Redução de Peso
8.
Nat Commun ; 13(1): 1783, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379807

RESUMO

Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions.


Assuntos
Nefropatias Diabéticas , Receptor CB1 de Canabinoide , Animais , Nefropatias Diabéticas/patologia , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
9.
FEBS J ; 289(4): 901-921, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630415

RESUMO

Diabetes kidney disease (DKD) is a major healthcare problem associated with increased risk for developing end-stage kidney disease and high mortality. It is widely accepted that DKD is primarily a glomerular disease. Recent findings however suggest that kidney proximal tubule cells (KPTCs) may play a central role in the pathophysiology of DKD. In diabetes and obesity, KPTCs are exposed to nutrient overload, including glucose, free-fatty acids and amino acids, which dysregulate nutrient and energy sensing by mechanistic target of rapamycin complex 1 and AMP-activated protein kinase, with subsequent induction of tubular injury, inflammation, and fibrosis. Pharmacological treatments that modulate nutrient sensing and signaling in KPTCs, including cannabinoid-1 receptor antagonists and sodium glucose transporter 2 inhibitors, exert robust kidney protective effects. Shedding light on how nutrients are sensed and metabolized in KPTCs and in other kidney domains, and on their effects on signal transduction pathways that mediate kidney injury, is important for understanding the pathophysiology of DKD and for the development of novel therapeutic approaches in DKD and probably also in other forms of kidney disease.


Assuntos
Nefropatias Diabéticas/metabolismo , Nutrientes/metabolismo , Nefropatias Diabéticas/patologia , Humanos
10.
Cells ; 12(1)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36611887

RESUMO

Tubulopathy plays a central role in the pathophysiology of diabetic kidney disease (DKD). Under diabetic conditions, the kidney proximal tubule cells (KPTCs) are exposed to an extensive amount of nutrients, most notably glucose; these nutrients deteriorate KPTCs function and promote the development and progression of DKD. Recently, the facilitative glucose transporter 2 (GLUT2) in KPTCs has emerged as a central regulator in the pathogenesis of DKD. This has been demonstrated by identifying its specific role in enhancing glucose reabsorption and glucotoxicity, and by deciphering its effect in regulating the expression of the sodium-glucose transporter 2 (SGLT2) in KPTCs. Moreover, reduction/deletion of KPTC-GLUT2 has been recently found to ameliorate DKD, raising the plausible idea of considering it as a therapeutic target against DKD. However, the underlying molecular mechanisms by which GLUT2 exerts its deleterious effects in KPTCs remain vague. Herein, we review the current findings on the proximal tubule GLUT2 biology and function under physiologic conditions, and its involvement in the pathophysiology of DKD. Furthermore, we shed new light on its cellular regulation during diabetic conditions.


Assuntos
Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Glucose/metabolismo , Nefropatias Diabéticas/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
11.
J Am Soc Nephrol ; 32(8): 1898-1912, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33958489

RESUMO

BACKGROUND: Low nephron number at birth is associated with a high risk of CKD in adulthood because nephrogenesis is completed in utero. Poor intrauterine environment impairs nephron endowment via an undefined molecular mechanism. A calorie-restricted diet (CRD) mouse model examined the effect of malnutrition during pregnancy on nephron progenitor cells (NPCs). METHODS: Daily caloric intake was reduced by 30% during pregnancy. mRNA expression, the cell cycle, and metabolic activity were evaluated in sorted Six2 NPCs. The results were validated using transgenic mice, oral nutrient supplementation, and organ cultures. RESULTS: Maternal CRD is associated with low nephron number in offspring, compromising kidney function at an older age. RNA-seq identified cell cycle regulators and the mTORC1 pathway, among other pathways, that maternal malnutrition in NPCs modifies. Metabolomics analysis of NPCs singled out the methionine pathway as crucial for NPC proliferation and maintenance. Methionine deprivation reduced NPC proliferation and lowered NPC number per tip in embryonic kidney cultures, with rescue from methionine metabolite supplementation. Importantly, in vivo, the negative effect of caloric restriction on nephrogenesis was prevented by adding methionine to the otherwise restricted diet during pregnancy or by removing one Tsc1 allele in NPCs. CONCLUSIONS: These findings show that mTORC1 signaling and methionine metabolism are central to the cellular and metabolic effects of malnutrition during pregnancy on NPCs, contributing to nephrogenesis and later, to kidney health in adulthood.


Assuntos
Desnutrição/fisiopatologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Néfrons/embriologia , Células-Tronco/metabolismo , Animais , Restrição Calórica , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Proteínas de Homeodomínio/genética , Desnutrição/metabolismo , Metabolômica , Metionina/administração & dosagem , Metionina/deficiência , Metionina/farmacologia , Camundongos , Camundongos Transgênicos , Néfrons/metabolismo , Néfrons/patologia , Técnicas de Cultura de Órgãos , Gravidez , RNA Mensageiro , RNA-Seq , Transdução de Sinais , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética
12.
Cells ; 10(2)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671138

RESUMO

The renal proximal tubule cells (RPTCs), well-known for maintaining glucose and mineral homeostasis, play a critical role in the regulation of kidney function and bone remodeling. Deterioration in RPTC function may therefore lead to the development of diabetic kidney disease (DKD) and osteoporosis. Previously, we have shown that the cannabinoid-1 receptor (CB1R) modulates both kidney function as well as bone remodeling and mass via its direct role in RPTCs and bone cells, respectively. Here we employed genetic and pharmacological approaches that target CB1R, and found that its specific nullification in RPTCs preserves bone mass and remodeling both under normo- and hyper-glycemic conditions, and that its chronic blockade prevents the development of diabetes-induced bone loss. These protective effects of negatively targeting CB1R specifically in RPTCs were associated with its ability to modulate erythropoietin (EPO) synthesis, a hormone known to affect bone mass and remodeling. Our findings highlight a novel molecular mechanism by which CB1R in RPTCs remotely regulates skeletal homeostasis via a kidney-to-bone axis that involves EPO.


Assuntos
Glicemia/metabolismo , Remodelação Óssea/fisiologia , Túbulos Renais Proximais/efeitos dos fármacos , Osteoporose/metabolismo , Animais , Canabinoides/farmacologia , Nefropatias Diabéticas , Glucose/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Endogâmicos C57BL
13.
Elife ; 92020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210603

RESUMO

The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP.


When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body's energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.


Assuntos
Estresse do Retículo Endoplasmático , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição CHOP/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptores para Leptina/genética , Transdução de Sinais , Fator de Transcrição CHOP/genética
14.
Cell Rep ; 32(4): 107954, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726619

RESUMO

Diabetic kidney disease (DKD) increases the risk for mortality and is the leading cause of end-stage renal disease. Treatment with sodium-glucose cotransporter 2 inhibitors (SGLT2i) attenuates the progression of DKD, especially in patients with advanced kidney disease. Herein, we show that in diabetes, mTORC1 activity is increased in renal proximal tubule cells (RPTCs) along with enhanced tubule-interstitial fibrosis; this is prevented by SGLT2i. Constitutive activation of mTORC1 in RPTCs induces renal fibrosis and failure and abolishes the renal-protective effects of SGLT2i in diabetes. On the contrary, partial inhibition of mTORC1 in RPTCs prevents fibrosis and the decline in renal function. Stimulation of mTORC1 in RPTCs turns on a pro-fibrotic program in the renal cortex, whereas its inhibition in diabetes reverses the alterations in gene expression. We suggest that RPTC mTORC1 is a critical node that mediates kidney dysfunction in diabetes and the protective effects of SGLT2i by regulating fibrogenesis.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/etiologia , Humanos , Hipoglicemiantes/farmacologia , Rim/metabolismo , Falência Renal Crônica/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Suínos
15.
Artigo em Inglês | MEDLINE | ID: mdl-32218769

RESUMO

Both diabetes and obesity (diabesity) contribute significantly to the development of chronic kidney disease (CKD). In search of new remedies to reverse or arrest the progression of CKD, we examined the therapeutic potential of a novel compound, AN1284, in a mouse model of CKD induced by type 2 diabetes with obesity. Six-week-old BKS Cg-Dock 7m+/+ Leprdb/J mice with type 2 diabetes and obesity were treated with AN1284 (2.5 or 5 mg kg-1 per day) via micro-osmotic pumps implanted subcutaneously for 3 months. Measures included renal, pancreatic, and liver assessment as well as energy utilization. AN1284 improved kidney function in BSK-db/db animals by reducing albumin and creatinine and preventing renal inflammation and morphological changes. The treatment was associated with weight loss, decreased body fat mass, increased utilization of body fat toward energy, preservation of insulin sensitivity and pancreatic ß cell mass, and reduction of dyslipidemia, hepatic steatosis, and liver injury. This indoline derivative protected the kidney from the deleterious effects of hyperglycemia by ameliorating the metabolic abnormalities of diabetes. It could have therapeutic potential for preventing CKD in human subjects with diabesity.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Indóis/uso terapêutico , Obesidade/complicações , Substâncias Protetoras/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Glicemia/análise , Indóis/farmacologia , Resistência à Insulina , Hepatopatias/etiologia , Hepatopatias/prevenção & controle , Masculino , Camundongos , Camundongos Obesos , Substâncias Protetoras/farmacologia , Receptores para Leptina/fisiologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
16.
Br J Pharmacol ; 177(1): 110-127, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454063

RESUMO

BACKGROUND AND PURPOSE: Obesity, an important risk factor for developing chronic kidney disease (CKD), affects the kidneys by two main molecular signalling pathways: the endocannabinoid/CB1 receptor system, whose activation in obesity promotes renal inflammation, fibrosis, and injury, and the inducible NOS (iNOS), which generates ROS resulting in oxidative stress. Hence, a compound that inhibits both peripheral CB1 receptors and iNOS may serve as an effective therapeutic agent against obesity-induced CKD. EXPERIMENTAL APPROACH: Here, we describe the effect of a novel peripherally restricted, orally bioavailable dual CB1 receptor/iNOS antagonist, MRI-1867 (3 mg·kg-1 ), in ameliorating obesity-induced CKD, and compared its metabolic and renal efficacies to a stand-alone peripheral CB1 receptor antagonist (JD5037; 3 mg·kg-1 ), iNOS antagonist (1400W; 10 mg·kg-1 ), and pair feeding. Mice with high-fat diet-induced obesity were treated orally with these compounds or vehicle (Veh) for 28 days. Standard diet-fed mice treated with Veh served as controls. KEY RESULTS: Enhanced expression of CB1 receptors and iNOS in renal tubules was found in human kidney patients with obesity and other CKDs. The hybrid inhibitor ameliorated obesity-induced kidney morphological and functional changes via decreasing kidney inflammation, fibrosis, oxidative stress, and renal injury. Some of these features were independent of the improved metabolic profile mediated via inhibition of CB1 receptors. An additional interesting finding is that these beneficial effects on the kidney were partially associated with modulating renal adiponectin signalling. CONCLUSIONS AND IMPLICATIONS: Collectively, our results highlight the therapeutic relevance of blocking CB1 receptors and iNOS in ameliorating obesity-induced CKD.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Obesidade/prevenção & controle , Receptor CB1 de Canabinoide/antagonistas & inibidores , Insuficiência Renal Crônica/prevenção & controle , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/uso terapêutico , Linhagem Celular Transformada , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo
17.
PLoS One ; 14(6): e0217572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188842

RESUMO

Steroid-resistant GvHD is one of the most significant causes of mortality following allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Treatment with mesenchymal stromal cells (MSC) seems to be a promising solution, however the results from clinical studies are still equivocal. Better selection of candidate patients and improving monitoring of patients following MSC administration can increase treatment effectiveness. In order to determine which characteristics can be used to predict a good response and better monitoring of patients, blood samples were taken prior to therapy, one week and one month after therapy, from 26 allogeneic HSCT patients whom contracted GvHD and were treated with MSCs. Samples were examined for differential blood counts, bilirubin levels and cell surface markers. Serum cytokine levels were also measured. We found that the level of lymphocytes, in particular T and NK cells, may predict a good response to therapy. A better response was observed among patients who expressed low levels of IL-6 and IL-22, Th17 related cytokines, prior to therapy. Patients with high levels of bilirubin prior to therapy showed a poorer response. The results of this study may facilitate early prediction of success or failure of the treatment, and subsequently, will improve selection of patients for MSC therapy.


Assuntos
Anemia Aplástica/terapia , Doença Enxerto-Hospedeiro/diagnóstico , Neoplasias Hematológicas/terapia , Células Matadoras Naturais/patologia , Transplante de Células-Tronco Mesenquimais , Linfócitos T/patologia , Talassemia/terapia , Adolescente , Adulto , Anemia Aplástica/imunologia , Anemia Aplástica/mortalidade , Anemia Aplástica/patologia , Antineoplásicos/uso terapêutico , Bilirrubina , Biomarcadores/sangue , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/patologia , Humanos , Interleucina-6/sangue , Interleucinas , Células Matadoras Naturais/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença , Análise de Sobrevida , Linfócitos T/imunologia , Talassemia/imunologia , Talassemia/mortalidade , Talassemia/patologia , Transplante Homólogo , Resultado do Tratamento , Interleucina 22
18.
Nephron ; 143(1): 24-27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636250

RESUMO

Diabetic nephropathy (DN), a distinct manifestation of diabetic kidney disease, affects approximately 30% of patients with diabetes. While most attention has been focused on glomerular changes related to DN, there is growing evidence that tubulopathy is a key feature in the pathogenesis of this disease. The renal proximal tubule cells (RPTCs) are particularly sensitive to the deleterious effect of chronic hyperglycemia. However, the cellular changes that control the dysfunction of the RPTCs are not fully understood. Controlling glucose reabsorption in the proximal tubules via inhibition of glucose transporters (GLUT) has emerged as a promising therapeutic in ameliorating DN. Overactivation of the renal endocannabinoid (eCB) system via the cannabinoid-1 receptor (CB1R) contributes to the development of DN, and its blockade by globally acting or peripherally restricted CB1R antagonists has been shown to ameliorate renal dysfunction in different murine models for diabetes. Recently, we have utilized various pharmacological and genetic tools to show that the eCB/CB1R system contributes to the development of DN via regulating the expression, translocation, and activity of the facilitative GLUT2 located in the RPTCs. These findings have the potential to be translated into therapy, and support the rationale for the preclinical development of novel renal-specific CB1R and/or GLUT2 inhibitors for the treatment of DN.


Assuntos
Nefropatias Diabéticas/etiologia , Endocanabinoides/fisiologia , Glucose/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 2/fisiologia , Humanos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
19.
Eur J Intern Med ; 49: 23-29, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29336868

RESUMO

Endocannabinoids (eCBs) are internal lipid mediators recognized by the cannabinoid-1 and -2 receptors (CB1R and CB2R, respectively), which also mediate the different physiological effects of marijuana. The endocannabinoid system, consisting of eCBs, their receptors, and the enzymes involved in their biosynthesis and degradation, is present in a vast number of peripheral organs. In this review we describe the role of the eCB/CB1R system in modulating the metabolism in several peripheral organs. We assess how eCBs, via activating the CB1R, contribute to obesity and regulate food intake. In addition, we describe their roles in modulating liver and kidney functions, as well as bone remodeling and mass. Special importance is given to emphasizing the efficacy of the recently developed peripherally restricted CB1R antagonists, which were pre-clinically tested in the management of energy homeostasis, and in ameliorating both obesity- and diabetes-induced metabolic complications.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Endocanabinoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Remodelação Óssea/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Receptor CB1 de Canabinoide/metabolismo , Redução de Peso/efeitos dos fármacos
20.
J Am Soc Nephrol ; 29(2): 434-448, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030466

RESUMO

Altered glucose reabsorption via the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CB1R), which contributes to the development of diabetic nephropathy (DN). However, the link between CB1R and GLUT2 remains to be determined. Here, we show that chronic peripheral CB1R blockade or genetically inactivating CB1Rs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CB1R also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CB1R or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CB1R antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.


Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Túbulos Renais Proximais/patologia , Receptor CB1 de Canabinoide/metabolismo , Albuminúria/urina , Animais , Transporte Biológico , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/urina , Nefropatias Diabéticas/induzido quimicamente , Cães , Fibrose , Glucose/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Insulina/sangue , Ilhotas Pancreáticas/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase C beta/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Estreptozocina , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA