Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
RNA ; 30(2): 113-123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071473

RESUMO

The structure of an RNA, and even more so its interactions with other RNAs, provide valuable information about its function. Secondary structure-based tools for RNA-RNA interaction predictions provide a quick way to identify possible interaction targets and structures. However, these tools ignore the effect of steric hindrance on the tertiary (3D) structure level, and do not consider whether a suitable folding pathway exists to form the interaction. As a consequence, these tools often predict interactions that are unrealistically long and could be formed (in three dimensions) only by going through highly entangled intermediates. Here, we present a computational pipeline to assess whether a proposed secondary (2D) structure interaction is sterically feasible and reachable along a plausible folding pathway. To this end, we simulate the folding of a series of 3D structures along a given 2D folding path. To avoid the complexity of large-scale atomic resolution simulations, our pipeline uses coarse-grained 3D modeling and breaks up the folding path into small steps, each corresponding to the extension of the interaction by 1 or 2 bp. We apply our pipeline to analyze RNA-RNA interaction formation for three selected RNA-RNA complexes. We find that kissing hairpins, in contrast to interactions in the exterior loop, are difficult to extend and tend to get stuck at an interaction length of 6 bp. Our tool, including source code, documentation, and sample data, is available at www.github.com/irenekb/RRI-3D.


Assuntos
Dobramento de RNA , RNA , RNA/química , Conformação de Ácido Nucleico , Estudos de Viabilidade , Software
2.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971965

RESUMO

MOTIVATION: In living organisms, many RNA molecules are modified post-transcriptionally. This turns the widely known four-letter RNA alphabet ACGU into a much larger one with currently more than 300 known distinct modified bases. The roles for the majority of modified bases remain uncertain, but many are already well-known for their ability to influence the preferred structures that an RNA may adopt. In fact, tRNAs sometimes require certain modifications to fold into their cloverleaf shaped structure. However, predicting the structure of RNAs with base modifications is still difficult due to the lack of efficient algorithms that can deal with the extended sequence alphabet, as well as missing parameter sets that account for the changes in stability induced by the modified bases. RESULTS: We present an approach to include sparse energy parameter data for modified bases into the ViennaRNA Package. Our method does not require any changes to the underlying efficient algorithms but instead uses a set of plug-in constraints that adapt the predictions in terms of loop evaluation at runtime. These adaptations are efficient in the sense that they are only performed for loops where additional parameters are actually available for. In addition, our approach also facilitates the inclusion of more modified bases as soon as further parameters become available. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are available at https://www.tbi.univie.ac.at/RNA.


Assuntos
RNA , Software , Conformação de Ácido Nucleico , RNA/química , Algoritmos , Dobramento de RNA
3.
J Bioinform Comput Biol ; 21(4): 2350016, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37522173

RESUMO

Most of the functional RNA elements located within large transcripts are local. Local folding therefore serves a practically useful approximation to global structure prediction. Due to the sensitivity of RNA secondary structure prediction to the exact definition of sequence ends, accuracy can be increased by averaging local structure predictions over multiple, overlapping sequence windows. These averages can be computed efficiently by dynamic programming. Here we revisit the local folding problem, present a concise mathematical formalization that generalizes previous approaches and show that correct Boltzmann samples can be obtained by local stochastic backtracing in McCaskill's algorithms but not from local folding recursions. Corresponding new features are implemented in the ViennaRNA package to improve the support of local folding. Applications include the computation of maximum expected accuracy structures from RNAplfold data and a mutual information measure to quantify the sensitivity of individual sequence positions.


Assuntos
Dobramento de RNA , RNA , Conformação de Ácido Nucleico , RNA/química , Algoritmos , RNA não Traduzido
4.
Algorithms Mol Biol ; 18(1): 8, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516881

RESUMO

BACKGROUND: RNA features a highly negatively charged phosphate backbone that attracts a cloud of counter-ions that reduce the electrostatic repulsion in a concentration dependent manner. Ion concentrations thus have a large influence on folding and stability of RNA structures. Despite their well-documented effects, salt effects are not handled consistently by currently available secondary structure prediction algorithms. Combining Debye-Hückel potentials for line charges and Manning's counter-ion condensation theory, Einert et al. (Biophys J 100: 2745-2753, 2011) modeled the energetic contributions of monovalent cations on loops and helices. RESULTS: The model of Einert et al. is adapted to match the structure of the dynamic programming recursion of RNA secondary structure prediction algorithms. An empirical term describing the salt dependence of the duplex initiation energy is added to improve co-folding predictions for two or more RNA strands. The slightly modified model is implemented in the ViennaRNA package in such way that only the energy parameters but not the algorithmic structure is affected. A comparison with data from the literature show that predicted free energies and melting temperatures are in reasonable agreement with experiments. CONCLUSION: The new feature in the ViennaRNA package makes it possible to study effects of salt concentrations on RNA folding in a systematic manner. Strictly speaking, the model pertains only to mono-valent cations, and thus covers the most important parameter, i.e., the NaCl concentration. It remains a question for future research to what extent unspecific effects of bi- and tri-valent cations can be approximated in a similar manner. AVAILABILITY: Corrections for the concentration of monovalent cations are available in the ViennaRNA package starting from version 2.6.0.

5.
Nucleic Acids Res ; 51(9): 4588-4601, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36999609

RESUMO

Numerous viruses utilize essential long-range RNA-RNA genome interactions, specifically flaviviruses. Using Japanese encephalitis virus (JEV) as a model system, we computationally predicted and then biophysically validated and characterized its long-range RNA-RNA genomic interaction. Using multiple RNA computation assessment programs, we determine the primary RNA-RNA interacting site among JEV isolates and numerous related viruses. Following in vitro transcription of RNA, we provide, for the first time, characterization of an RNA-RNA interaction using size-exclusion chromatography coupled with multi-angle light scattering and analytical ultracentrifugation. Next, we demonstrate that the 5' and 3' terminal regions of JEV interact with nM affinity using microscale thermophoresis, and this affinity is significantly reduced when the conserved cyclization sequence is not present. Furthermore, we perform computational kinetic analyses validating the cyclization sequence as the primary driver of this RNA-RNA interaction. Finally, we examined the 3D structure of the interaction using small-angle X-ray scattering, revealing a flexible yet stable interaction. This pathway can be adapted and utilized to study various viral and human long-non-coding RNA-RNA interactions and determine their binding affinities, a critical pharmacological property of designing potential therapeutics.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , RNA Viral , Humanos , RNA Viral/química , RNA Longo não Codificante/química
6.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655786

RESUMO

MOTIVATION: Folding during transcription can have an important influence on the structure and function of RNA molecules, as regions closer to the 5' end can fold into metastable structures before potentially stronger interactions with the 3' end become available. Thermodynamic RNA folding models are not suitable to predict structures that result from cotranscriptional folding, as they can only calculate properties of the equilibrium distribution. Other software packages that simulate the kinetic process of RNA folding during transcription exist, but they are mostly applicable for short sequences. RESULTS: We present a new algorithm that tracks changes to the RNA secondary structure ensemble during transcription. At every transcription step, new representative local minima are identified, a neighborhood relation is defined and transition rates are estimated for kinetic simulations. After every simulation, a part of the ensemble is removed and the remainder is used to search for new representative structures. The presented algorithm is deterministic (up to numeric instabilities of simulations), fast (in comparison with existing methods), and it is capable of folding RNAs much longer than 200 nucleotides. AVAILABILITY AND IMPLEMENTATION: This software is open-source and available at https://github.com/ViennaRNA/drtransformer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Heurística , Dobramento de RNA , Conformação de Ácido Nucleico , RNA/química , Software , Algoritmos
7.
Front Bioinform ; 2: 835422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304289

RESUMO

Machine learning (ML) and in particular deep learning techniques have gained popularity for predicting structures from biopolymer sequences. An interesting case is the prediction of RNA secondary structures, where well established biophysics based methods exist. The accuracy of these classical methods is limited due to lack of experimental parameters and certain simplifying assumptions and has seen little improvement over the last decade. This makes RNA folding an attractive target for machine learning and consequently several deep learning models have been proposed in recent years. However, for ML approaches to be competitive for de-novo structure prediction, the models must not just demonstrate good phenomenological fits, but be able to learn a (complex) biophysical model. In this contribution we discuss limitations of current approaches, in particular due to biases in the training data. Furthermore, we propose to study capabilities and limitations of ML models by first applying them on synthetic data (obtained from a simplified biophysical model) that can be generated in arbitrary amounts and where all biases can be controlled. We assume that a deep learning model that performs well on these synthetic, would also perform well on real data, and vice versa. We apply this idea by testing several ML models of varying complexity. Finally, we show that the best models are capable of capturing many, but not all, properties of RNA secondary structures. Most severely, the number of predicted base pairs scales quadratically with sequence length, even though a secondary structure can only accommodate a linear number of pairs.

8.
RNA Biol ; 19(1): 496-506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380920

RESUMO

The internal ribosome entry site (IRES) RNA of bovine viral diarrhoea virus (BVDV), an economically significant Pestivirus, is required for the cap-independent translation of viral genomic RNA. Thus, it is essential for viral replication and pathogenesis. We applied a combination of high-throughput biochemical RNA structure probing (SHAPE-MaP) and in silico modelling approaches to gain insight into the secondary and tertiary structures of BVDV IRES RNA. Our study demonstrated that BVDV IRES RNA in solution forms a modular architecture composed of three distinct structural domains (I-III). Two regions within domain III are represented in tertiary interactions to form an H-type pseudoknot. Computational modelling of the pseudoknot motif provided a fine-grained picture of the tertiary structure and local arrangement of helices in the BVDV IRES. Furthermore, comparative genomics and consensus structure predictions revealed that the pseudoknot is evolutionarily conserved among many Pestivirus species. These studies provide detailed insight into the structural arrangement of BVDV IRES RNA H-type pseudoknot and encompassing motifs that likely contribute to the optimal functionality of viral cap-independent translation element.


Assuntos
Vírus da Diarreia Viral Bovina , Sítios Internos de Entrada Ribossomal , Diarreia , Vírus da Diarreia Viral Bovina/genética , Humanos , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Replicação Viral
9.
Bioinformatics ; 37(15): 2126-2133, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-33538792

RESUMO

MOTIVATION: Predicting the folding dynamics of RNAs is a computationally difficult problem, first and foremost due to the combinatorial explosion of alternative structures in the folding space. Abstractions are therefore needed to simplify downstream analyses, and thus make them computationally tractable. This can be achieved by various structure sampling algorithms. However, current sampling methods are still time consuming and frequently fail to represent key elements of the folding space. METHOD: We introduce RNAxplorer, a novel adaptive sampling method to efficiently explore the structure space of RNAs. RNAxplorer uses dynamic programming to perform an efficient Boltzmann sampling in the presence of guiding potentials, which are accumulated into pseudo-energy terms and reflect similarity to already well-sampled structures. This way, we effectively steer sampling toward underrepresented or unexplored regions of the structure space. RESULTS: We developed and applied different measures to benchmark our sampling methods against its competitors. Most of the measures show that RNAxplorer produces more diverse structure samples, yields rare conformations that may be inaccessible to other sampling methods and is better at finding the most relevant kinetic traps in the landscape. Thus, it produces a more representative coarse graining of the landscape, which is well suited to subsequently compute better approximations of RNA folding kinetics. AVAILABILITYAND IMPLEMENTATION: https://github.com/ViennaRNA/RNAxplorer/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Nat Commun ; 11(1): 148, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919376

RESUMO

Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptome, playing important roles in development and disease. However, our understanding of structure-function relationships for this emerging class of RNAs has been limited to secondary structures. Here, we report the 3-D atomistic structural study of epigenetic lncRNA, Braveheart (Bvht), and its complex with CNBP (Cellular Nucleic acid Binding Protein). Using small angle X-ray scattering (SAXS), we elucidate the ensemble of Bvht RNA conformations in solution, revealing that Bvht lncRNA has a well-defined, albeit flexible 3-D structure that is remodeled upon CNBP binding. Our study suggests that CNBP binding requires multiple domains of Bvht and the RHT/AGIL RNA motif. We show that RHT/AGIL, previously shown to interact with CNBP, contains a highly flexible loop surrounded by more ordered helices. As one of the largest RNA-only 3-D studies, the work lays the foundation for future structural studies of lncRNA-protein complexes.


Assuntos
Conformação de Ácido Nucleico , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Humanos , Magnésio/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos/fisiologia , Espalhamento a Baixo Ângulo
11.
J Bioinform Comput Biol ; 17(5): 1940009, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31856671

RESUMO

Efficient computational tools for the identification of putative target RNAs regulated by prokaryotic sRNAs rely on thermodynamic models of RNA secondary structures. While they typically predict RNA-RNA interaction complexes accurately, they yield many highly-ranked false positives in target screens. One obvious source of this low specificity appears to be the disability of current secondary-structure-based models to reflect steric constraints, which nevertheless govern the kinetic formation of RNA-RNA interactions. For example, often - even thermodynamically favorable - extensions of short initial kissing hairpin interactions are kinetically prohibited, since this would require unwinding of intra-molecular helices as well as sterically impossible bending of the interaction helix. Another source is the consideration of instable and thus unlikely subinteractions that enable better scoring of longer interactions. In consequence, the efficient prediction methods that do not consider such effects show a high false positive rate. To increase the prediction accuracy we devise IntaRNAhelix, a dynamic programming algorithm that length-restricts the runs of consecutive inter-molecular base pairs (perfect canonical stackings), which we hypothesize to implicitly model the steric and kinetic effects. The novel method is implemented by extending the state-of-the-art tool IntaRNA. Our comprehensive bacterial sRNA target prediction benchmark demonstrates significant improvements of the prediction accuracy and enables more than 40-times faster computations. These results indicate - supporting our hypothesis - that stable helix composition increases the accuracy of interaction prediction models compared to the current state-of-the-art approach.


Assuntos
Algoritmos , Biologia Computacional/métodos , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pareamento de Bases , Conformação de Ácido Nucleico , Termodinâmica
12.
Viruses ; 11(9)2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470643

RESUMO

Chikungunya virus (CHIKV), a mosquito-borne alphavirus of the family Togaviridae, has recently emerged in the Americas from lineages from two continents: Asia and Africa. Historically, CHIKV circulated as at least four lineages worldwide with both enzootic and epidemic transmission cycles. To understand the recent patterns of emergence and the current status of the CHIKV spread, updated analyses of the viral genetic data and metadata are needed. Here, we performed phylogenetic and comparative genomics screens of CHIKV genomes, taking advantage of the public availability of many recently sequenced isolates. Based on these new data and analyses, we derive a revised phylogeny from nucleotide sequences in coding regions. Using this phylogeny, we uncover the presence of several distinct lineages in Africa that were previously considered a single one. In parallel, we performed thermodynamic modeling of CHIKV untranslated regions (UTRs), which revealed evolutionarily conserved structured and unstructured RNA elements in the 3'UTR. We provide evidence for duplication events in recently emerged American isolates of the Asian CHIKV lineage and propose the existence of a flexible 3'UTR architecture among different CHIKV lineages.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , RNA Viral/química , Regiões 3' não Traduzidas/genética , América/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Evolução Molecular , Genoma Viral/genética , Conformação de Ácido Nucleico , Filogenia , Filogeografia , RNA Viral/genética
13.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31069053

RESUMO

We present forgi, a Python library to analyze the tertiary structure of RNA secondary structure elements. Our representation of an RNA molecule is centered on secondary structure elements (stems, bulges and loops). By fitting a cylinder to the helix axis, these elements are carried over into a coarse-grained 3D structure representation. Integration with Biopython allows for handling of all-atom 3D information. forgi can deal with a variety of file formats including dotbracket strings, PDB and MMCIF files. We can handle modified residues, missing residues, cofold and multifold structures as well as nucleotide numbers starting at arbitrary positions. We apply this library to the study of stacking helices in junctions and pseudo knots and investigate how far stacking helices in solved experimental structures can divert from coaxial geometries.


Assuntos
Azepinas , Compostos Organometálicos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA
14.
Viruses ; 11(3)2019 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-30909641

RESUMO

Untranslated regions (UTRs) of flaviviruses contain a large number of RNA structural elements involved in mediating the viral life cycle, including cyclisation, replication, and encapsidation. Here we report on a comparative genomics approach to characterize evolutionarily conserved RNAs in the 3 ' UTR of tick-borne, insect-specific and no-known-vector flaviviruses in silico. Our data support the wide distribution of previously experimentally characterized exoribonuclease resistant RNAs (xrRNAs) within tick-borne and no-known-vector flaviviruses and provide evidence for the existence of a cascade of duplicated RNA structures within insect-specific flaviviruses. On a broader scale, our findings indicate that viral 3 ' UTRs represent a flexible scaffold for evolution to come up with novel xrRNAs.


Assuntos
Regiões 3' não Traduzidas , Flavivirus/genética , Genômica , Insetos/virologia , RNA Viral/química , Animais , Evolução Molecular , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/genética , RNA Viral/genética
15.
Plant Physiol ; 180(1): 305-322, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760640

RESUMO

Cis-Natural Antisense Transcripts (cis-NATs), which overlap protein coding genes and are transcribed from the opposite DNA strand, constitute an important group of noncoding RNAs. Whereas several examples of cis-NATs regulating the expression of their cognate sense gene are known, most cis-NATs function by altering the steady-state level or structure of mRNA via changes in transcription, mRNA stability, or splicing, and very few cases involve the regulation of sense mRNA translation. This study was designed to systematically search for cis-NATs influencing cognate sense mRNA translation in Arabidopsis (Arabidopsis thaliana). Establishment of a pipeline relying on sequencing of total polyA+ and polysomal RNA from Arabidopsis grown under various conditions (i.e. nutrient deprivation and phytohormone treatments) allowed the identification of 14 cis-NATs whose expression correlated either positively or negatively with cognate sense mRNA translation. With use of a combination of cis-NAT stable over-expression in transgenic plants and transient expression in protoplasts, the impact of cis-NAT expression on mRNA translation was confirmed for 4 out of 5 tested cis-NAT:sense mRNA pairs. These results expand the number of cis-NATs known to regulate cognate sense mRNA translation and provide a foundation for future studies of their mode of action. Moreover, this study highlights the role of this class of noncoding RNAs in translation regulation.


Assuntos
Arabidopsis/genética , Biossíntese de Proteínas , RNA Antissenso/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA de Plantas , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fatores de Transcrição/genética
16.
Methods ; 156: 32-39, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385321

RESUMO

Chemical modifications of RNA nucleotides change their identity and characteristics and thus alter genetic and structural information encoded in the genomic DNA. tRNA and rRNA are probably the most heavily modified genes, and often depend on derivatization or isomerization of their nucleobases in order to correctly fold into their functional structures. Recent RNomics studies, however, report transcriptome wide RNA modification and suggest a more general regulation of structuredness of RNAs by this so called epitranscriptome. Modification seems to require specific substrate structures, which in turn are stabilized or destabilized and thus promote or inhibit refolding events of regulatory RNA structures. In this review, we revisit RNA modifications and the related structures from a computational point of view. We discuss known substrate structures, their properties such as sub-motifs as well as consequences of modifications on base pairing patterns and possible refolding events. Given that efficient RNA structure prediction methods for canonical base pairs have been established several decades ago, we review to what extend these methods allow the inclusion of modified nucleotides to model and study epitranscriptomic effects on RNA structures.


Assuntos
Adenosina/metabolismo , Inosina/metabolismo , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Pareamento de Bases , Sequência de Bases , Humanos , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
17.
Pathog Dis ; 76(7)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184175

RESUMO

Bordetella pertussis is a strictly human pathogen causing the respiratory infectious disease called whooping cough or pertussis. B. pertussis adaptation to acellular pertussis vaccine pressure has been repeatedly highlighted, but recent data indicate that adaptation of circulating strains started already in the era of the whole cell pertussis vaccine (wP) use. We sequenced the genomes of five B. pertussis wP vaccine strains isolated in the former Czechoslovakia in the pre-wP (1954-1957) and early wP (1958-1965) eras, when only limited population travel into and out of the country was possible. Four isolates exhibit a similar genome organization and form a distinct phylogenetic cluster with a geographic signature. The fifth strain is rather distinct, both in genome organization and SNP-based phylogeny. Surprisingly, despite isolation of this strain before 1966, its closest sequenced relative appears to be a recent isolate from the US. On the genome content level, the five vaccine strains contained both new and already described regions of difference. One of the new regions contains duplicated genes potentially associated with transport across the membrane. The prevalence of this region in recent isolates indicates that its spread might be associated with selective advantage leading to increased strain fitness.


Assuntos
Bordetella pertussis/genética , Genômica , Vacina contra Coqueluche/genética , Bordetella pertussis/isolamento & purificação , República Tcheca , Tchecoslováquia , Ordem dos Genes , Variação Genética , Humanos , Sequenciamento Completo do Genoma
18.
Genes (Basel) ; 9(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071678

RESUMO

In this work, we present a computational screen conducted for functional RNA structures, resulting in over 100,000 conserved RNA structure elements found in alignments of mouse (mm10) against 59 other vertebrates. We explicitly included masked repeat regions to explore the potential of transposable elements and low-complexity regions to give rise to regulatory RNA elements. In our analysis pipeline, we implemented a four-step procedure: (i) we screened genome-wide alignments for potential structure elements using RNAz-2, (ii) realigned and refined candidate loci with LocARNA-P, (iii) scored candidates again with RNAz-2 in structure alignment mode, and (iv) searched for additional homologous loci in mouse genome that were not covered by genome alignments. The 3'-untranslated regions (3'-UTRs) of protein-coding genes and small noncoding RNAs are enriched for structures, while coding sequences are depleted. Repeat-associated loci make up about 95% of the homologous loci identified and are, as expected, predominantly found in intronic and intergenic regions. Nevertheless, we report the structure elements enriched in specific genome elements, such as 3'-UTRs and long noncoding RNAs (lncRNAs). We provide full access to our results via a custom UCSC genome browser trackhub freely available on our website (http://rna.tbi.univie.ac.at/trackhubs/#RNAz).

19.
Methods ; 143: 70-76, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730250

RESUMO

Riboswitches form an abundant class of cis-regulatory RNA elements that mediate gene expression by binding a small metabolite. For synthetic biology applications, they are becoming cheap and accessible systems for selectively triggering transcription or translation of downstream genes. Many riboswitches are kinetically controlled, hence knowledge of their co-transcriptional mechanisms is essential. We present here an efficient implementation for analyzing co-transcriptional RNA-ligand interaction dynamics. This approach allows for the first time to model concentration-dependent metabolite binding/unbinding kinetics. We exemplify this novel approach by means of the recently studied I-A 2'-deoxyguanosine (2'dG)-sensing riboswitch from Mesoplasma florum.


Assuntos
Biologia Computacional/métodos , Conformação de Ácido Nucleico , RNA Bacteriano/genética , Riboswitch/genética , Transcrição Gênica , Sítios de Ligação/genética , Entomoplasmataceae/genética , Cinética , Ligantes , Modelos Biológicos , Dobramento de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo
20.
Methods ; 143: 90-101, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660485

RESUMO

This contribution sketches a work flow to design an RNA switch that is able to adapt two structural conformations in a ligand-dependent way. A well characterized RNA aptamer, i.e., knowing its Kd and adaptive structural features, is an essential ingredient of the described design process. We exemplify the principles using the well-known theophylline aptamer throughout this work. The aptamer in its ligand-binding competent structure represents one structural conformation of the switch while an alternative fold that disrupts the binding-competent structure forms the other conformation. To keep it simple we do not incorporate any regulatory mechanism to control transcription or translation. We elucidate a commonly used design process by explicitly dissecting and explaining the necessary steps in detail. We developed a novel objective function which specifies the mechanistics of this simple, ligand-triggered riboswitch and describe an extensive in silico analysis pipeline to evaluate important kinetic properties of the designed sequences. This protocol and the developed software can be easily extended or adapted to fit novel design scenarios and thus can serve as a template for future needs.


Assuntos
Aptâmeros de Nucleotídeos/síntese química , Biologia Computacional/métodos , Conformação de Ácido Nucleico , Riboswitch/genética , Aptâmeros de Nucleotídeos/genética , Biologia Computacional/instrumentação , Cinética , Ligantes , Dobramento de RNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA