Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Total Environ ; 931: 172899, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38692328

RESUMO

Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.


Assuntos
Agricultura , Carvão Vegetal , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/análise , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Solo/química , Metais Pesados/análise
2.
J Environ Manage ; 361: 121252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820793

RESUMO

Heavy metal pollution in farmland soil has become increasingly severe, and multi-element composite pollution has brought enormous harm to human production and life. Environmental changes in cold regions (such as freeze-thaw cycles and dry-wet alternations) may increase the potential physiological toxicity of heavy metals and exacerbate pollution risks. In order to reveal the effectiveness of sepiolite modified biochar in the remediation of the soil contaminated with lead (Pb), cadmium (Cd), and chromium (Cr), the rice husk biochar pyrolyzed at 500 and 800 °C were selected for remediation treatment (denoted as BC500 and BC800). Meanwhile, different proportions of sepiolite were used for modification (biochar: sepiolite = 1: 0.5 and 1: 1), denoted as MBC500/MBC800 and HBC500/HBC800, respectively. The results showed that modified biochar with sepiolite can effectively improve the immobilization of heavy metals. Under natural conservation condition, the amount of diethylenetriaminepentaacetic acid (DTPA) extractable Pb in BC500, MBC500, and HBC500 decreased by 5.95, 12.39, and 13.55%, respectively, compared to CK. Freeze-thaw cycles and dry-wet alternations activated soil heavy metals, while modified biochar increased adsorption sites and oxygen-containing functional groups under aging conditions, inhibiting the fractions transformation of heavy metals. Furthermore, freeze-thaw cycles promoted the decomposition and mineralization of soil organic carbon (SOC), while sepiolite hindered the release of active carbon through ion exchange and adsorption complexation. Among them, and the soil dissolved organic carbon (DOC) content in HBC800 decreased by 49.39% compared to BC800. Additionally, the high-temperature pyrolyzed biochar (BC800) enhanced the porosity richness and alkalinity of material, which effectively inhibited the migration and transformation of heavy metals compared to BC500, and reduced the decomposition of soil DOC.


Assuntos
Carbono , Carvão Vegetal , Argila , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/química , Carvão Vegetal/química , Solo/química , Argila/química , Poluentes do Solo/química , Carbono/química , Adsorção , Minerais/química , Recuperação e Remediação Ambiental/métodos
3.
J Environ Manage ; 360: 121196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763117

RESUMO

At present, biochar has a large application potential in soil amelioration, pollution remediation, carbon sequestration and emission reduction, and research on the effect of biochar on soil ecology and environment has made positive progress. However, under natural and anthropogenic perturbations, biochar may undergo a series of environmental behaviors such as migratory transformation, mineralization and decomposition, and synergistic transport, thus posing certain potential risks. This paper outlines the multi-interfacial migration pathway of biochar in "air-soil-plant-animal-water", and analyzes the migration process and mechanism at different interfaces during the preparation, transportation and application of biochar. The two stages of the biochar mineralization process (mineralization of easily degradable aliphatic carbon components in the early stage and mineralization of relatively stable aromatic carbon components in the later stage) were described, the self-influencing factors and external environmental factors of biochar mineralization were analyzed, and the mineral stabilization mechanism and positive/negative excitation effects of biochar into the soil were elucidated. The proximity between field natural and artificially simulated aging of biochar were analyzed, and the change of its properties showed a trend of biological aging > chemical aging > physical aging > natural aging, and in order to improve the simulation and prediction, the artificially simulated aging party needs to be changed from a qualitative method to a quantitative method. The technical advantages, application scope and potential drawbacks of different biochar modification methods were compared, and biological modification can create new materials with enhanced environmental application. The stability performance of modified biochar was compared, indicating that raw materials, pyrolysis temperature and modification method were the key factors affecting the stability of biochar. The potential risks to the soil environment from different pollutants carried by biochar were summarized, the levels of pollutants released from biochar in the soil environment were highlighted, and a comprehensive selection of ecological risk assessment methods was suggested in terms of evaluation requirements, data acquisition and operation difficulty. Dynamic tracing of migration decomposition behavior, long-term assessment of pollution remediation effects, and directional design of modified composite biochar materials were proposed as scientific issues worthy of focused attention. The results can provide a certain reference basis for the theoretical research and technological development of biochar.


Assuntos
Carvão Vegetal , Ecossistema , Solo , Carvão Vegetal/química , Solo/química , Medição de Risco , Poluentes do Solo , Ecologia
4.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677114

RESUMO

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Assuntos
Carvão Vegetal , Compostagem , Glicina , Glifosato , Herbicidas , Neonicotinoides , Nitrocompostos , Microbiologia do Solo , Poluentes do Solo , Estrobilurinas , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Carvão Vegetal/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Carbamatos/metabolismo , Carbamatos/toxicidade , Microbiota/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Biodegradação Ambiental , Solo/química , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
5.
Chemosphere ; 353: 141556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412890

RESUMO

Mercury (Hg) is a global environmental concern that affects both humans and ecosystem. The comprehensive understanding of sources and dynamics is crucial for facilitating targeted and effective control strategies. Herein, a robust approach integrating Multivariate Statistics, Geostatistics, and Positive Matrix Factorization (PMF) was employed to quantitatively elucidate the distribution and sources of Hg in agricultural lands. Results indicated elevated Hg concentrations in the land with 74.46% of soils, including 84.85% of topsoil, 69.70% of subsoil, and 67.31% of deepsoil, exceeding risk screening value. Geoaccumulation Index of Hg in soil surpassed level Ⅱ with more than 50% of Hg in the residual fraction regardless of the layer or location. The levels of Hg in surface water for irrigation exhibited a negative correlation with the distance from the mine and a positive correlation with that in sediment (R2>0.78, p < 0.01), suggesting the downstream migration and remobilization from sediment. Source apportion revealed that human activities as primary contributors despite high variability across locations and soil layers. Contributions to downstream soil Hg from Natural Background (NB), Primary Ore Mining (OM), Agricultural Practices (AP), and Wastewater Irrigation (WI) were 15.5%, 83.1%, 1.3%, and 0.1%, respectively. A reliable approach for source apportionment of Hg in soil was suggested, demonstrating potential applicability in the risk management of Hg-contaminated sites.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Mercúrio/análise , Solo , Ecossistema , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Mineração , Medição de Risco , China , Metais Pesados/análise
6.
Sci Total Environ ; 905: 167220, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734613

RESUMO

Immobilization represents the most extensively utilized technique for the remediation of soils contaminated by heavy metals and metalloids. However, it is crucial to acknowledge that contaminants are not removed during this process, thereby leaving room for potential mobilization over time. Currently, our comprehension of the temporal variations in immobilization efficacy, specifically in relation to amendments suitable for industrial sites, remains very limited. To address this knowledge gap, our research delved into the aging characteristics of diverse oxides, hydroxides, and hydroxy-oxides (collectively referred to as oxides) for the simultaneous immobilization of arsenic (As), cadmium (Cd), and antimony (Sb) in soils procured from 16 contaminated industrial sites. Our findings unveiled that Ca-oxides initially showed excellent immobilization performance for As and Sb within 7 days but experienced substantial mobilization by up to 71 and 13 times within 1 year, respectively. In contrast, the efficacy of Cd immobilization by Ca-oxides was enhanced with the passage of time. Fe- and Mg-oxides, which primarily operate through encapsulation or surface complexation, exhibited steady immobilization performances over time. This reliable and commendable immobilization effect was observed across distinct soils characterized by varying physicochemical properties, including pH, texture, CEC, TOC, and EC, underscoring the suitability of such amendments for immobilizing metal(loid)s in diverse soil types. MgO, in particular, displayed even superior immobilization performance over time, owing primarily to gradual hydration and physical entrapment effects. Remarkably, Mg-Al LDHs emerged as the most effective candidate for the simultaneous immobilization of As, Cd, and Sb. The results obtained from this study furnish valuable data for future investigations on the immobilization of metals and metalloids in industrial soils. They enable the projection of immobilization performance and offer practical guidance in selecting suitable amendments for the immobilization of metal(loid)s.

7.
Environ Pollut ; 336: 122413, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598928

RESUMO

The Minamata Convention on Mercury has mandated a renewed global effort to tackle Hg pollution. The present study evaluates Hg pollution at a primary Hg production site exploited since the Qin Dynasty (200s BC), with intensive industrial scale production over the past four decades. This single location accounts for over 95% total Hg production in China in recent years. To assess the environmental risk and effectiveness of recently implemented control measures, we collected 90 soil samples, 60 plant tissue samples, 47 sediment samples, and 47 river water samples from the site and its vicinity. A site-specific conceptual site model was established based on the sources, migration transformation pathways of Hg pollutant and its exposure scenarios. The maximum soil Hg concentration reached 10,451 mg kg-1, posing a high health and ecological risk. Vegetable and crop Hg concentrations outside the site reached 0.23 mg kg-1 in rice grains and 4.24 mg kg-1 in green onion. The highest health risk, with a hazard quotient of 130.66, was observed in the Ore Storage Site, which reduced to 17.14 when Hg bioavailability was considered. Risk control measures implemented in recent years included a stormwater collection system and capping of the tailing pond area with clean imported soil. These measures were generally successful; however, Hg in the tailings were found to be contaminating the imported surficial soil due to rainfall saturation and upward migration, suggesting a need for long-term post remedial site monitoring and maintenance. We also found that mining and smelting activities have contaminated a 6 km stretch of a nearby river, with sediment Hg concentrations reaching 2819 mg kg-1, and water column concentrations reaching 193.21 ng L-1. The sediment and water concentrations are highly correlated (R2 = 0.78), suggesting that, with risk control measures in place, a reservoir of Hg in polluted river sediment is now driving pollution in the water column. This work demonstrates that primary Hg mining has caused widespread and serious soil and water pollution. Risk control measures can reduce human health and ecological risks, but robust monitoring and maintenance are required for remediation to be effective in the long-term.

8.
Chemosphere ; 336: 139250, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343640

RESUMO

Biochar has great potential to increase the soil nutrient storage capacity. However, with aging, biochar gradually disintegrates and releases fractions with migration potential, resulting in unknown effects on soil nutrient regulation. Based on this problem, we used ultrasound to separate original biochar (TB) into potentially migrating biochar (DB) and residual biochar (RB). The elemental composition and pore characteristics of TB, DB and RB were analyzed. Different fractions of biochar were applied to black soil, and the kinetic model and isothermal adsorption models were used to explore the adsorption characteristics of different treatments. Then, the effects of initial pH and coexisting ions on adsorption were compared. The adsorption mechanism and potential leaching process of phosphorus in soil were investigated. The results showed that RB had higher O and H contents and was less stable than TB, while RB was more aromatic. The phosphorus adsorption capacity of different treatments was SRB (1.3318 mg g-1) > STB (1.2873 mg g-1) > SDB (1.3025 mg g-1) > SCK (1.1905 mg g-1). SRB had optimal phosphorus adsorption performance and storage capacity, with a maximum adsorption capacity of 1.6741 mg g-1 for the Langmuir isotherm, and it also showed excellent applicability in a pH gradient and with coexisting ions. The main adsorption mode of phosphorus by different treatments was monolayer chemisorption, related to electrostatic repulsion and oxygen-containing functional groups. DB was less effective in inhibiting soil phosphorus migration, with the cumulative leaching of SDB reaching 8.99 mg and the percentage of phosphorus in the 0-6 cm soil layer reaching only 15.42%. Overall, the results can help elucidate potential trends in the adsorption performance and migration process of soil phosphorus by biochar, and improve the comprehensive utilization efficiency of biochar.


Assuntos
Poluentes do Solo , Solo , Solo/química , Fósforo/química , Adsorção , Poluentes do Solo/análise , Carvão Vegetal/química
9.
J Environ Manage ; 342: 118302, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267765

RESUMO

Global climate change has altered soil freeze‒thaw cycle events, and little is known about soil microbe response to and multifunctionality regarding freeze‒thaw cycles. Therefore, in this study, biochar was used as a material to place under seasonal freeze-thaw cycling conditions. The purpose of this study was to explore the ability of biochar to regulate the function of freeze-thaw soil cycles to ensure spring sowing and food production. The results showed that biochar significantly increased the richness and diversity of soil bacteria before and after freezing-thawing. In the freezing period, the B50 treatment had the greatest improvement effect (2.6% and 5.5%, respectively), while in the thawing period, the B75 treatment had the best improvement effect. Biochar changed the composition and distribution characteristics of the bacterial structure and enhanced the multifunctionality of freeze-thaw soil and the stability of the bacterial symbiotic network. Compared with the CK treatment, the topological characteristics of the bacterial ecological network of the B50 treatment increased the most. They were 0.89 (Avg.degree), 9.79 (Modularity), 9 (Nodes), and 255 (Links). The freeze-thaw cycle decreased the richness and diversity of the bacterial community and changed the composition and distribution of the bacterial community, and the total bacterial population decreased by 658 (CK), 394 (B25), 644 (B50) and 86 (B75) during the thawing period compared with the freezing period. The soil multifunctionality in the freezing period was higher than that during the thawing period, indicating that the freeze-thaw cycle reduced soil ecological function. From the perspective of abiotic analysis, the decrease in soil multifunctionality was due to the decrease in soil nutrients, enzyme activities, soil basic respiration and other singular functions. From the perspective of bacteria, the decrease in soil multifunctionality was mainly due to the change in the Actinobacteriota group. This work expands the understanding of biochar ecology in cold black soil. These results are conducive to the sustainable development of soil ecological function in cold regions and ultimately ensure crop growth and food productivity.


Assuntos
Carvão Vegetal , Solo , Solo/química , Congelamento , Carvão Vegetal/química , Bactérias , Microbiologia do Solo
10.
Sci Total Environ ; 893: 164845, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329907

RESUMO

Freeze-thaw cycles (FTCs) usually occur in the nongrowing season of crops, and the temporal mismatch between soil nitrogen (N) supply and crop N utilization increases the risk of N loss. Crop straw burning is a seasonal air pollution source, and biochar provides new alternatives for waste biomass recycling and soil pollution remediation. To investigate the effect of biochar on N loss and N2O emissions under frequent FTCs, different biochar content treatments (0 %, 1 %, 2 %) were set, and laboratory simulated soil column FTC tests were conducted. Based on the Langmuir and Freundlich models, the surface microstructure evolution and N adsorption mechanism of biochar before and after FTCs were analyzed, and the change characteristics of the soil water-soil environment, available N and N2O emissions under the interactive effect of FTCs and biochar were studied. The results showed that FTCs increased the oxygen (O) content by 19.69 % and the N content by 17.75 % and decreased the carbon (C) content by 12.39 % of biochar. The increase in the N adsorption capacity of biochar after FTCs was related to changes in surface structure and chemical properties. Biochar can improve the soil water-soil environment, adsorb available nutrients, and reduce N2O emissions by 35.89 %-46.31 %. The water-filled pore space (WFPS) and urease activity (S-UE) were the main environmental factors determining N2O emissions. Ammonium nitrogen (NH4+-N) and microbial biomass nitrogen (MBN), as substrates of N biochemical reactions, significantly affected N2O emissions. The interaction of biochar content and FTCs in different treatments had significant effects on available N (p < 0.05). The application of biochar is an effective way to reduce N loss and N2O emissions under the action of frequent FTCs. These research results can provide a reference for the rational application of biochar and efficient utilization of soil hydrothermal resources in seasonally frozen soil areas.


Assuntos
Nitrogênio , Solo , Solo/química , Adsorção , Óxido Nitroso/análise , Carvão Vegetal , Água , Fertilizantes
11.
Environ Pollut ; 313: 120143, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096259

RESUMO

The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high-latitude cold regions, this study simulated freeze-thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze-thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze-thaw cycles caused the total amount of PTEs to have a U-shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28-56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Fazendas , Congelamento , Humanos , Chumbo , Solo/química , Poluentes do Solo/análise
12.
Chemosphere ; 308(Pt 1): 136292, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064023

RESUMO

Leachable metal in abandoned mine tailings may be toxic to vegetation, affecting effective ecological restoration. In this study, MRB was synthesized through MgCl2·6H2O wet impregnation followed by duplicate slow pyrolysis. Manganese tailings were mixed with MRB, rice husk biochar (RB), and MgO at a dosage of 0-5%, followed by 90-day incubation. Toxicity characteristic leaching procedure and sequential leaching were used to analyze the leachability and species of Mn in tailings, while a stabilization mechanism was proposed with the support of the characterization of the tailings before and after amendment. Results suggested MRB addition significantly decreased leachable Mn by 63.8%, reducing from 59.88 mg/L to 21.68 mg/L, while only a 14.39% reduction was achieved by rice husk biochar (RB). The sharp decline of leachable Mn after 90-day mixing was contributed by the transformation from labile to stable fractions. A microporous biochar matrix along with the uniform dispersion of MgO active component were both responsible for the better Mn stabilization. Only less than 10% of the variation in substrate pH was observed with the increase of MgO loading or incubation time. Linear correlation analyses indicated substrate pH's strongl negative relationship with leachable Mn and moderately positive relationship with residual fraction. Characterization results revealed that MRB exhibited different stabilization mechanisms in mine tailings, where Mn was likely to be stabilized by direct interaction with active MgO or indirect alkaline precipitation to form stable MgMn2O4, Mn(CH3COO)2, and MnO(OH)2. This work validated the promoting potential of recycling agricultural biomass waste for the amendment of manganese mine tailings.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Carvão Vegetal , Óxido de Magnésio , Manganês/química , Poluentes do Solo/análise
13.
Sci Total Environ ; 831: 154880, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364177

RESUMO

Cadmium (Cd) soil pollution is a global issue affecting crop production and food safety. Remediation methods involving in-situ Cd immobilization have been developed, but their effectiveness can diminish under seasonal freeze-thaw aging processes. In this study, we assessed the field performance of four soil treatments at a seasonally frozen rice paddy. Amendments were applied at 2 wt%, including: (i) sepiolite (a 2:1 clay mineral), (ii) superphosphate, (iii) biochar (produced by rice husk at 500 °C for 2 h), and (iv) joint application of biochar & superphosphate (1:1 mixture by weight). Immobilization performance was determined as DTPA extractable Cd and plant uptake in various organs. Overall, the four treatments significantly reduced Cd bioavailability during the plant growth period, with average DTPA-extractable concentrations decreasing by 43%, 34%, 39% and 45% for the four treatments, respectively, relative to untreated soil (control). Rice grain yields from the superphosphate and the joint application treatments increased by 8.0% and 11.8%, respectively, and Cd accumulation within those grains reduced by 14.3% and 48.9%, respectively. During the winter non-growth period, freeze-thaw aging facilitated Cd mobilization, with DTPA-extractable Cd increasing by 16.9% in the control soil, relative to the initial period. However, this reduced to 10.9%, 14.4%, 7.6% and 5.0%, for the sepiolite, superphosphate, biochar and joint application treatments, respectively. Overall, the joint application of biochar and superphosphate provided the best performance in terms of both long-term Cd immobilization and rice production enhancement, offering a green remediation option for risk management at Cd contaminated rice paddies in seasonally frozen regions.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Carvão Vegetal/metabolismo , Ácido Pentético/metabolismo , Solo , Poluentes do Solo/análise
14.
Sci Total Environ ; 821: 153421, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35092766

RESUMO

Biochar has been widely studied as a soil amendment, but little is known about the "biochar-freeze-thaw soil-crop root system" interface in seasonally frozen soil areas. In the second year after the application of biochar, we conducted research on the morphological characteristic indicators of the soybean root system and the nutrient migration of the soil in the root zone under different biochar application periods (spring and autumn mixed, autumn, and spring biochar application) and different biochar application rates (3 kg·m-2, 6 kg·m-2, 9 kg·m-2, and 12 kg·m-2). The effects of different biochar treatments on the growth and development of soybean roots were examined. The soil organic carbon, ammonium nitrogen and nitrate nitrogen contents of the soil were measured at different locations in the root zone, and the migration processes of these nutrients in the soil were explored. The conclusions drawn from the experiments are as follows. (i) The biochar application rate and application method together determine the root morphological characteristic indicators of soybean plants. During long freeze-thaw periods, the freeze-thaw cycles change the internal environment of the biochar-freeze-thaw soil complex. (ii) Biochar tends to move towards the root system, which can increase soil organic carbon content, but the effect of biochar on root characteristics is not caused by the change in soil organic carbon content. (iii) Biochar promotes nitrogen cycling in the soil and the migration of soil nitrogen to the root sheath, increasing the number of nitrogen compounds that can be directly absorbed and utilized by crops. (iv) From a comparison of the effects of various biochar treatments on crop roots and farmland soils, we suggest that the 9 kg·m-2 biochar application rate under spring and autumn mixed biochar application is the optimal treatment.


Assuntos
Glycine max , Solo , Carbono , Carvão Vegetal , Nitrogênio
15.
Sci Total Environ ; 807(Pt 1): 150746, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619186

RESUMO

The moisture content of farmland soils is closely related to the farmland soil environment. Although biochar has been widely studied for farmland soil amelioration in tropical and temperate farmland soils, its application in areas of seasonally frozen soil is rare. In this study, field experiments were conducted to explore the effect of biochar on soil temperature and soil liquid moisture content in seasonally frozen soils and its corresponding mechanism. Biochar was applied to the soil at different rates (3 kg·m-2, 6 kg·m-2, 9 kg·m-2, and 12 kg·m-2) in autumn and spring. Daily monitoring data from the 20 cm soil-layer recorded for one year from the biochar application date were analyzed. The approximate entropy was introduced to explore the complex changes in soil temperature and soil liquid moisture content under biochar application in seasonally frozen soils. According to the calculation of approximate entropy, the application of biochar increased the complexity for most treatments. In the case of ignoring the heterogeneity of snowfall and uneven land tillage to the soil, we infer that this change was caused by changes in properties of the biochar due to the freeze-thaw cycle. The treatment under mixed biochar application in spring and autumn of 9 kg·m-2 had the smallest change in water and heat complexity. And the approximate entropy of this treatment is the smallest. Moreover, in the freezing period, the soil liquid moisture content is positively correlated with the biochar amount applied and negatively correlated with the biochar and soil mixing time. In the melting period, the opposite correlations occur. The changes in soil moisture conditions caused by freezing and thawing restrict the affinity of biochar for water. Therefore, the effect of biochar addition on the soil liquid moisture content varies among different freezing and thawing periods.


Assuntos
Solo , Água , Carvão Vegetal , Fazendas , Congelamento
16.
Environ Res ; 206: 112303, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34756913

RESUMO

Greenhouse gas (GHG) emissions from soil carbon and nitrogen cycles during freeze-thaw cycles (FTCs) provide positive feedback to climate warming. Biochar is a new type of soil conditioner that shows potential in soil GHG emissions reduction. To explore the mechanisms of the effects of biochar on soil GHG emissions in seasonally frozen soil areas, this study focused on farmland soil in the Songnen Plain. Variations in soil environmental factors, available carbon and nitrogen and microbial biomass were analyzed using an indoor simulation of soil FTCs. A structural equation model (SEM) was established to reveal the key driving factors and potential mechanism of biochar on soil GHG emissions under FTCs. The results showed that biochar increased carbon dioxide (CO2) emissions by 3.40% and methane (CH4) absorption by 2.52% and decreased nitrous oxide (N2O) emissions by 35.90%. SEM showed that soil temperature (ST) was the main environmental factor determining CO2 emissions and that soil moisture (SM) was the main environmental factor determining CH4 and N2O emissions. Soil available carbon and nitrogen and microbial biomass are important for soil GHG emissions as the reaction substrates and main participants in the biochemical transformation of soil carbon and nitrogen, respectively. This study showed that the application of biochar in farmland is a feasible choice to address climate change in the long term via soil carbon sequestration and GHG emissions reduction. The research results provide a theoretical basis and scientific guidance for soil GHG emissions reduction during FTCs in middle to high latitudes.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Carvão Vegetal , Fazendas , Humanos , Metano/análise , Óxido Nitroso , Solo/química
17.
J Environ Manage ; 301: 113943, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731955

RESUMO

To explore the effects of different regulation modes on the soil structure and gas transport characteristics in seasonal permafrost regions, freeze-thaw cycles (FTCs) were used as boundary conditions and three typical soils on the Songnen Plain were used: black soil, baijiang soil and meadow soil. Four treatments were established: biochar addition (B1), straw addition (S1), biochar combined with straw addition (B1S1) and an untreated control (CK). The changes in the proportion of soil water-stable aggregates, total soil porosity (TP), soil water characteristic curves (SWRCs), soil dissolved organic carbon (DOC) and soil air permeability (PL) were analyzed. The results showed that biochar and straw influenced the structure of the three soil types. The proportions of large (2-0.5 mm) and medium (0.5-0.25 mm) aggregates increased significantly. The soil aggregate stability indexes of the treated soils were better than those of the CK, and the three-phase ratios of the treated soils were closer to ideal. The different treatments had particularly obvious effects on the black soil; the generalized soil structure index (GSSI) values reached 95.59, 94.36 and 98.74 in the B1, S1 and B1S1 treatments, respectively. An interaction effect was observed between biochar and straw. B1S1 had a stronger effect than the other treatments, and the soil water holding capacity was significantly improved (FC = 0.317 cm3 cm-3). Under the B1S1 treatment, the DOC contents in black soil, baijiang soil and meadow soil were 160.78 mg/kg, 272.828 mg/kg and 271.912 mg/kg, respectively. Moreover, biochar and straw combined effectively reduced PL fluctuations under FTCs and improved the long-term stability of the soil structure. These results can aid in rational straw and biochar use to achieve comprehensive agricultural waste utilization.


Assuntos
Solo , Água , Carbono , Carvão Vegetal
18.
J Hazard Mater ; 415: 125650, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088176

RESUMO

Among the toxic metals, hexavalent chromium [Cr(VI)] has attracted much attention due to its high mobility and toxicity, rendering considerable challenges for long-term remediation. In this study, the soil was collected from a dichromate contaminated industrial site in Liaoning Province, a seasonally frozen area in northern China, and subjected to frequent freeze-thaw cycles. Three additives, including (i) ferrous sulfate; (ii) calcium polysulfide; and (iii) combined biochar and calcium polysulfide were applied to reduce and immobilize Cr(VI) in the soils. The samples underwent 28 days of incubation followed by 16 freeze-thaw cycles. The toxicity characteristic leaching procedure (TCLP) and simulated acid rain leaching were adopted to test the remediation performances. It was observed that all three treatments can significantly reduce and immobilize Cr(VI) after short-term incubation, while biochar with abundant functional groups could adsorb and reduce Cr(VI) effectively. Notably, the concentration of Cr(VI) in TCLP leachates after incubation in combined treatment decreased by 67.87% and 37.27%, respectively, compared with the application of ferrous sulfate or calcium polysulfide alone. Freeze-thaw cycles induced the disintegration of soil particles and increased the risk of contaminant mobilization. Conversely, biochar particles has become finer and even produced nanoparticles with ageing, accompanied by the increase in oxygen-containing surface functional groups. Additionally, the specific surface area increased with the pyrolysis of biochar, which further enhanced the retention of soil colloidal particles and suppressed the migration of contaminants. Therefore, the cumulative release of Cr(VI) in the combined treatment (i.e., 10.97 ~ 32.97 mg/kg) was much lower than that of the other two treatments after freeze-thaw ageing. Overall, the combination of biochar and calcium polysulfide displayed advantages in the reduction and immobilization of Cr(VI), and offered a long-term, effective strategy for the remediation of Cr(VI) contaminated soils in cold regions.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Carvão Vegetal , China , Cromo/análise , Cromo/toxicidade , Solo , Poluentes do Solo/análise
19.
J Hazard Mater ; 419: 126413, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153617

RESUMO

Terrestrial soils are not only a large reservoir for Microplastics (MPs), but also a possible entrance to the subsurface environment, posing potential risks to the subterranean habitats and groundwater. In this study, we examined the vertical transport of MPs of four polymers, i.e., polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP) and polyamide (PA), in porous sand media driven by wet-dry cycling. The effects of polymer properties, MP size, sand particle size, wet-dry cycles, and dissolved organic matter (DOM) on their migration behavior were investigated. Surface hydrophobicity showed a strong positive correlation with MP mobility, with PA exhibiting the greatest movement potential, followed by PE, PET, and PP. The penetration depth of MP particles increased with decreasing MP particle size (dMP) and increasing sand diameter (dsand). MP particles migrated deeper in sand media when dMP/dsand < 0.11. Furthermore, frequent wet-dry cycles and the presence of DOM promoted the vertical migration of MPs in the sand. The results revealed multiple factors influencing the vertical migration of MPs in sand, which is instructive for understanding the ecological risk of MPs in potentially contaminated soil (e.g., farmland with long-term mulching) to the subsurface environment and potential negative impact to public health.


Assuntos
Água Subterrânea , Microplásticos , Plásticos , Porosidade , Solo
20.
Sci Total Environ ; 774: 145194, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609831

RESUMO

To investigate the adsorption mechanism of heavy metals by biochar under freeze-thaw conditions, based on indoor simulation experiments, the changes in pH value, surface area (SA), pore structure and functional groups of biochar under natural and freeze-thaw conditions were analysed. Using isothermal adsorption method, Langmuir and Freundlich adsorption equations of heavy metals, the adsorption characteristics of biochar for heavy metals Cu and Zn were analysed. The results showed that after 10 periods (30 cycles), the pH value of the biochar decreased from 8.80 to 7.99, the SA increased from 6.28 m2/g to 20.26 m2/g, the pore volume (PV) decreased from 0.009 mL/g to 0.003 mL/g, and the pore diameter (PD) decreased from 1.692 to 1.423 nm. In period 10, compared to the control group (CK), the adsorption capacity of Cu and Zn increased by 72.00% and 44.55%, respectively, and the number of oxygen-containing functional groups -OH, -COOH and -C=O greatly increased. This study provides scientific and reasonable theoretical guidance for future studies on the biochar adsorption and biochar remediation of soil.


Assuntos
Carvão Vegetal , Metais Pesados , Adsorção , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA