Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancer Sci ; 115(2): 477-489, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081591

RESUMO

Inhibition of cholesterol de novo synthesis (DNS) by statins has controversial effects on the treatment of hepatocellular carcinoma (HCC). High fatty acid conditions have been reported to limit the effect of statins on metabolism diseases. Whether high fatty acid conditions interfere with the effect of statins on HCC remains unclear. Here, we reported that inhibiting cholesterol DNS with atorvastatin promoted the oncogenic capabilities of diethylnitrosamine (DEN) in mice fed high fatty acid diets (HFD). The combined analysis of metabolomics and transcriptomics revealed that arachidonic acid (AA) metabolism was the most significant changed pathway between mice with and without atorvastatin treatment. In vitro, in the presence of AA precursor linoleic acid (LA), atorvastatin promoted the proliferation and migration ability of HCC cell lines. However, in the absence of LA, these phenomena disappeared. TCGA and tissue microarray examination revealed that prostaglandin e synthase 2 (PTGES2), a key enzyme in AA metabolism, was associated with the poor outcome of HCC patients. Overexpression of PTGES2 promoted the proliferation and migration of HCC cell lines, and knockdown of PTGES2 inhibited the proliferation and migration of cells. Additionally, atorvastatin upregulated PTGES2 expression by enhancing Sterol-regulatory element binding protein 2 (SREBP2)-mediated transcription. Knockdown of PTGES2 reversed the proliferation and migration ability enhanced by atorvastatin. Overall, our study reveals that a high fatty acid background is one of the possible conditions limiting the application of statins in HCC, under which statins promote the progression of HCC by enhancing SREBP2-mediated PTGES2 transcription.


Assuntos
Carcinoma Hepatocelular , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ácido Araquidônico/farmacologia , Prostaglandina-E Sintases/genética , Atorvastatina/farmacologia , Linhagem Celular Tumoral , Colesterol , Proliferação de Células
2.
Front Bioeng Biotechnol ; 10: 841034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923577

RESUMO

Background: Colorectal cancer (CRC) is a heterogeneous disease with many somatic mutations defining its genomic instability. Alternative Splicing (AS) events, are essential for maintaining genomic instability. However, the role of genomic instability-related AS events in CRC has not been investigated. Methods: From The Cancer Genome Atlas (TCGA) program, we obtained the splicing profiles, the single nucleotide polymorphism, transcriptomics, and clinical information of CRC. Combining somatic mutation and AS events data, a genomic instability-related AS signature was constructed for CRC. Mutations analyses, clinical stratification analyses, and multivariate Cox regression analyses evaluated this signature in training set. Subsequently, we validated the sensitivity and specificity of this prognostic signature using a test set and the entire TCGA dataset. We constructed a nomogram for the prognosis prediction of CRC patients. Differentially infiltrating immune cells were screened by using CIBERSORT. Inmmunophenoscore (IPS) analysis was used to evaluate the response of immunotherapy. The AS events-related splicing factors (SF) were analyzed by Pearson's correlation. The effects of SF regulating the prognostic AS events in proliferation and migration were validated in Caco2 cells. Results: A prognostic signature consisting of seven AS events (PDHA1-88633-ES, KIAA1522-1632-AP, TATDN1-85088-ES, PRMT1-51042-ES, VEZT-23786-ES, AIG1-77972-AT, and PHF11-25891-AP) was constructed. Patients in the high-risk score group showed a higher somatic mutation. The genomic instability risk score was an independent variable associated with overall survival (OS), with a hazard ratio of a risk score of 1.537. The area under the curve of receiver operator characteristic curve of the genomic instability risk score in predicting the OS of CRC patients was 0.733. Furthermore, a nomogram was established and could be used clinically to stratify patients to predict prognosis. Patients defined as high-risk by this signature showed a lower proportion of eosinophils than the low-risk group. Patients with low risk were more sensitive to anti-CTLA4 immunotherapy. Additionally, HSPA1A and FAM50B were two SF regulating the OS-related AS. Downregulation of HSPA1A and FAM50B inhibited the proliferation and migration of Caco2 cells. Conclusion: We constructed an ideal prognostic signature reflecting the genomic instability and OS of CRC patients. HSPA1A and FAM50B were verified as two important SF regulating the OS-related AS.

3.
EBioMedicine ; 82: 104181, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35908416

RESUMO

BACKGROUND: Intestinal barrier dysfunction is crucial in alcohol-associated liver disease (ALD). The decreased beta-Klotho (KLB) expression caused by gene variation is associated with hyperpermeability in patients with irritable bowel syndrome. Here we investigated the roles of intestinal KLB in maintaining the intestinal epithelial barrier in ALD and the underlying mechanisms. METHODS: We constructed the intestine-specific overexpression KLB mice to investigate the role of KLB on alcohol-induced intestinal barrier dysfunction and liver injury in an ALD mouse model. To investigate the molecular mechanism in vitro, Caco2 cells were cultured and infected with the KLB overexpression lentivirus, or transfected with KLB/TRPV6 siRNA, or TRPV6/FXR1 overexpression plasmid, and treated with or without ethanol. FINDINGS: The upregulation of KLB in enterocytes effectively protected mice from alcohol-induced intestinal barrier hyperpermeability, thereby ameliorating hepatic steatosis and inflammation. KLB competitively suppressed FXR1 binding to the TRPV6 mRNA, increasing TRPV6 mRNA stability and protein abundance in intestinal epithelial cells. Furthermore, KLB formed a complex with TRPV6 and tight junction (TJ) proteins, protecting against alcohol-induced TJ proteins endocytosis and degradation as well as intestinal barrier impairment. INTERPRETATION: This work suggested that KLB attenuated alcohol-induced intestinal epithelial barrier dysfunction and liver injury through FXR1/TRPV6/TJ proteins pathway. FUNDING: National Natural Science Foundation of China, Chongqing Natural Science Foundation, Talent Project of Chongqing and the Science and Technology Research Program of Chongqing Municipal Education Commission.


Assuntos
Proteínas Klotho/metabolismo , Hepatopatias Alcoólicas , Animais , Células CACO-2 , Etanol/metabolismo , Etanol/toxicidade , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Proteção , Proteínas de Ligação a RNA/metabolismo
4.
Sheng Li Xue Bao ; 73(5): 813-820, 2021 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-34708238

RESUMO

This study aimed to investigate the effect of lipopolysaccharide (LPS) on lipophagy in hepatocytes and the underlying mechanism. Human hepatoma cell line HepG2 was cultured in vitro, treated with 0.1 mmol/L palmitic acid (PA), and then divided into control group (0 µg/mL LPS), LPS group (10 µg/mL LPS), LPS+DMSO group and LPS+RAPA (rapamycin, 10 µmol/L) group. Lipid accumulation in hepatocytes was observed by oil red O staining. The autophagic flux of the cells was assessed using confocal laser scanning microscope after being transfected with autophagy double-labeled adenovirus (mRFP-GFP-LC3). The level of intracellular lipophagy was visualized by the colocalization of lipid droplets (BODIPY 493/503 staining) and lysosomes (lysosome marker, lysosomal associated membrane protein 1, LAMP1). The expression levels of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), ribosome protein subunit 6 kinase 1 (S6K1), p-S6K1, LC3II/I and P62 protein were examined by Western blot. The results showed that the number of red lipid droplets stained with oil red O was significantly increased in LPS group compared with that in control group (P < 0.001). Moreover, in LPS group, the number of autophagosomes was increased, while the number of autophagolysosomes and the colocalization rate of LAMP1 and BODIPY were significantly decreased (P < 0.05). Meanwhile, the ratios of p-mTOR/mTOR and p-S6K1/S6K1, the ratio of LC3II/LC3I and the protein expression of P62 were significantly increased (P < 0.05) in LPS group. Furthermore, compared with LPS+DMSO group, RAPA treatment obviously reduced the number of lipid droplets and autophagosomes, and raised the number of autophagolysosomes and the colocalization rate of LAMP1 and BODIPY (P < 0.05). In conclusion, the results demonstrate that LPS inhibits lipophagy in HepG2 cells via activating mTOR signaling pathway, thereby aggravating intracellular lipid accumulation.


Assuntos
Lipopolissacarídeos , Serina-Treonina Quinases TOR , Autofagia , Células Hep G2 , Humanos , Ácido Palmítico , Transdução de Sinais
5.
Exp Cell Res ; 399(2): 112438, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33358861

RESUMO

Palmitic acid (PA)-induced hepatocyte apoptosis is critical for the progression of nonalcoholic fatty liver disease (NAFLD). Inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) is an intracellular Ca2+-release channel and is involved in PA-induced hepatocyte apoptosis. While the expression of IP3R1 is elevated in patients with NAFLD and in hepatocytes treated with PA, it remains unclear how PA promotes the expression of IP3R1. In present study, our results showed that PA induced mitochondrial dysfunction and apoptosis, which is accompanied with the increase of the IP3R1 expression in hepatic cells. The inhibition of IP3R1 expression using siRNA ameliorated the PA-induced mitochondrial dysfunction. Furthermore, PA enhanced the stability of the IP3R1 protein instead of an increase in its mRNA levels. PA also promoted the phosphorylation of IP3R1 at the Tyr353 site and increased the phosphorylation of src in hepatic cells. Moreover, an inhibitor of src kinase (SU6656) significantly reduced the Tyr353 phosphorylation of IP3R1 and decreased its stability. In addition, SU6656 improved mitochondrial function and reduced apoptosis in hepatocytes. Conclusion: PA promotes the Tyr353 phosphorylation of IP3R1 by activating the src pathway and increasing the protein stability of IP3R1, which consequently results in mitochondrial Ca2+ overload and mitochondrial dysfunction in hepatic cells. Our results also suggested that inhibition of the src/IP3R1 pathway, such as by SU6656, may be a novel potential therapeutic approach for the treatment of NAFLD.


Assuntos
Apoptose , Hepatócitos/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ácido Palmítico/farmacologia , Quinases da Família src/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Hep G2 , Hepatócitos/fisiologia , Humanos , Indóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosforilação/efeitos dos fármacos , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA