Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(3): 100733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342410

RESUMO

Nitrotyrosine, or 3-nitrotyrosine, is an oxidative post-translational modification induced by reactive nitrogen species. Although nitrotyrosine is considered a marker of oxidative stress and has been associated with inflammation, neurodegeneration, cardiovascular disease, and cancer, identification of nitrotyrosine-modified proteins remains challenging owing to its low stoichiometric levels in biological samples. To facilitate a comprehensive analysis of proteins and peptides containing nitrotyrosine, we optimized an immunoprecipitation-based enrichment workflow using a cell line model. The identification of proteins and peptides containing nitrotyrosine residues was carried out after peroxynitrite treatment of cell lysates, which generated modified nitrotyrosine residues on susceptible sites on proteins. We evaluated the efficacy of enriching nitrotyrosine-modified proteins and peptides by employing four different commercially available monoclonal antibodies directed against nitrotyrosine. LC-MS/MS analysis resulted in the identification of 1377 and 1624 nitrotyrosine-containing peptides from protein- and peptide-based enrichment experiments, respectively. Although the yield of nitrotyrosine-containing peptides was higher in experiments where peptides rather than proteins were enriched, we found a substantial proportion (37-65%) of identified nitrotyrosine-containing peptides contained nitrotyrosine at the N-terminus. However, in protein-based immunoprecipitation <9% of nitrotyrosine-containing peptides had nitrotyrosine modification at the N-terminus of the peptide. Overall, our study resulted in the identification of 2603 nitrotyrosine-containing peptides of which >2000 have not previously been reported. We synthesized 101 novel nitrotyrosine-containing peptides identified in our analysis and analyzed them by LC-MS/MS to validate our findings. We have confirmed the validity of 70% of these peptides, as they demonstrated a similarity score exceeding 0.7 when compared to peptides identified through experimental methods. Finally, we also validated the presence of nitrotyrosine modification on PKM and EF2 proteins in peroxynitrite-treated samples by immunoblot analysis. The large catalog presented in this study along with the workflow should facilitate the investigation of nitrotyrosine as an oxidative modification in a variety of settings in greater detail.


Assuntos
Ácido Peroxinitroso , Espectrometria de Massas em Tandem , Tirosina/análogos & derivados , Cromatografia Líquida/métodos , Proteínas/química , Peptídeos/química , Tirosina/metabolismo , Anticorpos
2.
J Cancer Res Clin Oncol ; 146(7): 1671-1676, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333143

RESUMO

BACKGROUND: DNA topoisomerase and telomerase enzymes are popular targets of several anti-tumor drugs. Smooth proceeding of telomeric recombination requires Topoisomerase II (Top2), which is involved in telomere-telomere recombination through functioning in relaxation of positive supercoils among the cells adopting telomerase-independent Alternative lengthening of telomere (ALT) pathway. Most of the inhibitors reported so far have been designed to targetsolely telomerase-positive cells, which can potentially lead to therapeutic failure because tumor cells treated with telomerase inhibitors can activate the ALT pathway for telomere maintenance. Knowing that ALT cells are more sensitive against a Top2 inhibitor, ICRF-93 agent, compared to telomerase-positive cells, we analyzed two selected ellipticine derivatives that we recently reported as TopII-targeting compounds, to assess their effects on the formation of DNA breaks and suppression of ALT pathway. METHODS: Cell viability, Comet, C-Circle assays, dot blot, immunofluorescence staining, and telomere fluorescence in situ hybridization (FISH) staining were used for determining the effect of the compounds on ALT status of tumor cells. RESULTS AND CONCLUSIONS: Treatment of ALT cells with ellipticine derivatives resulted in the formation of DNA breaks and suppression of ALT-associated phenotypes in vitro. Our results will contribute to the development of therapeutic strategies combining telomerase and ALT pathway inhibitors.


Assuntos
Antineoplásicos/farmacologia , Elipticinas/farmacologia , Telomerase/genética , Homeostase do Telômero/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/química , Linhagem Celular , Elipticinas/química , Imunofluorescência , Humanos , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA